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Guido Masella
Exotic Quantum Phenomena in Cold Atomic Gases

Résumé L’objectif principal de cette thèse est l’étude des propriétés à basse
énergie et température de systèmes fortement corrélés de bosons interagissant
via des potentiels à portée longue et étendue, et pertinentes pour la réalisation
expérimentale avec des gaz atomiques froids. Cette étude est réalisée à l’aide
d’une combinaison de techniques numériques, comme le Path Integral Mon-
tecarlo et de techniques analytiques. Le principal résultat demon travail est la
démonstration de l’existence d’une phase supersolide à bandes et d’une rare
transition entre différents supersolides dans un modèle à interaction finie de
bosons de coer dur sur un réseau carré. J’étudie également les scénarios hors
d’équilibre de tels modèles via des quenches de température simulées. Enfin,
j’étudie comment la restauration de l’extensibilité énergétique dans des sys-
tèmes en interaction à longue portée peut avoir une incidence profonde sur
les propriétés de basse énergie dans la limite thermodynamique.
Mots clés: Systèmes à 𝑁 corps quantiques, Physique de la matière condensée
Atomes froids, Mèthodes numériques, Supersolidité, Interactions à longue
portée, Quantum Monte Carlo

Abstract The central aim of this thesis is the study of the low-energy and
low-temperature properties of strongly correlated systems of bosonic parti-
cles interacting via finite- and long-range potentials, and relevant to exper-
imental realization with cold atomic gases. This study is carried out with
a combination of state-of-the-art numerical techniques such as Path Integral
Monte Carlo and analytical techniques. The main result of my work is the
demonstration of the existence of a stripe supersolid phase and of a rare tran-
sition between isotropic and anisotropic supersolids in a finite-range interact-
ing model of hard-bosons on a square lattice. I also investigate the out-of-
equilibrium scenarios of such models via simulated temperature quenches.
Finally, I investigate how restoring energy extensivity in long-range interact-
ing systems can have a profound incidence on the low-energy properties in
the thermodynamic limit.
Keywords: Quantum Many-Body Systems, Condensed Matter Physics, Nu-
merical Methods, Supersolids, Long-Range Interactions, Quantum Monte
Carlo
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Résumé de la Thése en Fraçais

Introduction
Au cours des deux dernières décennies, les gaz atomiques froids se sont

révélés être un cadre utile pour l’exploration d’une riche variété de proprié-
tés et de phénomènes quantiques à plusieurs corps [1]. Grâce au développe-
ment des technologies laser et à la compréhension profonde des interactions
atome-lumière, il est aujourd’hui possible de concevoir des expériences avec
des atomes confinés sur des réseaux optiques et de manipuler les interactions
interatomiques avec un niveau d’accordabilité sans précédent [2]. Ces carac-
téristiques font des systèmes atomiques froids les meilleurs candidats pour
réaliser un simulateur quantique, c’est-à-dire un système conçu pour simuler le
comportement des Hamiltoniens de systèmes fortement corrélés de matiére
condensée. Suite à ces progrès remarquables, la compréhension théorique de
problèmes difficiles en physique de la matière condensée a été renforcée avec
une nouvelle génération de théories et d’idées orientées vers la perspective de
faciliter la compréhension des données expérimentales (autant que possible),
et de fournir un guide utile pour le développement futur de la technologie
des simulateurs quantiques.

Poussé par ces avancées et en particulier par des expériences avec des atomes
ayant des fortes interactionsmagnétiques, desmolécules polaires, des atomes
excités dans des états de Rydberg, des ions et des atomes neutres couplés à
des modes photoniques, l’étude des effets des interactions à longue distance
sur les phases quantiques des systèmes à plusieurs corps est devenu un sujet
populaire de recherche.

En raison du manque de solutions analytiques et des difficultés à traiter
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même numériquement le grand nombre de degrés de liberté, ces systèmes
présentent des défis théoriques majeurs qui peuvent être partiellement ré-
solus en utilisant des méthodes numériques de pointe. Pour l’étude des sys-
tèmes quantiques à plusieurs corps de bosons non frustrés, les méthodes de
Monte Carlo quantique (QuantumMonte Carlo) (QMC) [3], et en particulier
lesméthodesMonteCarlo de intégrale de chemin (path integralMonteCarlo)
(PIMC) [4] avec les updates du “Worm” [5], fournissent un outil très puissant
et polyvalent permettant, en principe, d’effectuer des simulations numérique-
ment exactes. D’autre part, les algorithmes de density matrix renormaliza-
tion group (DMRG) [6] peuvent fournir une précision sans précédent pour
les simulations numériques de bosons et de fermions limités à des systèmes
unidimensionnels. Cependant, les interactions à longue portée représentent
un défi majeur dans les deux cas car elles peuvent générer une prolifération
d’états à faible énergie, dont le nombre augmente de manière exponentielle
avec la taille du système, ce qui entraîne généralement des problèmes essen-
tiellement insolubles (par exemple dans le cas de structures dites ”escalier du
diable”).

Ici, en nous appuyant sur ces méthodes autant que possible, nous présen-
tons une étude de phénomènes quantiques exotiques dans des modèles ayant
un intérêt direct pour des expériences avec des gaz atomiques froids. La su-
persolidité, c’est-à-dire la coexistence de la superfluidité et d’une structure cris-
talline, est un exemple frappant (voir par exemple [7]). Cette phase exotique
et insaisissable a été prédite dans une pléthore de modèles théoriques mais
n’a jamais été observée expérimentalement à l’équilibre (une observation ré-
cente d’une phase supersolide métastable est donnée dans [8]). Il est donc
primordial d’étudier plus en detail cette phase dans des systèmes présentant
un intérêt direct pour les réalisations expérimentales.

Résultats et discussions
Dans la première partie de ce travail, après une brève introduction des

concepts de superfluidité et de supersolidité, nous discutons la mise en œuvre
originale de l’algorithme “Worm”, une technique numérique PIMC idéale
pour simuler des modèles de particules bosoniques non frustrées sur un ré-

x Guido Masella – Ph. D. thesis



seau. La méthode standard d’intégrale de chemin permet de ramener un pro-
blème quantique à 𝑑 dimensions à un problème classique à 𝑑 + 1 dimensions
(la dimension ajoutée étant le temps imaginaire). Les moyennes thermodyna-
miques d’observables physiques pertinentes sont obtenues en calculant la
moyenne sur toutes les configurations possibles du système généré via les
méthodes de la chaine de Markov Monte Carlo. Nous discutons ici de l’effi-
cacité de notre implémentation dans le cas de modèles avec interactions aux
sauts à longue portée, et nous montrons comment l’estimation des obser-
vables cruciales pour la compréhension de ce modèle (c’est-à-dire la densité
superfluide [9]) est affectée par rapport au cas des modèles à courte portée.

Dans une seconde partie de cette thèse, nous étudions un modèle de Bose-
Hubbard étendu de particules bosoniques confinées sur un réseau bidimen-
sionnel et interagissant via un interaction repoussante à portée étendue (extended-
range repulsive interactions (ERI). Les interactions de ce type présentent un
intérêt immédiat pour les expériences utilisant des atomes habillés de Ryd-
berg ; à des densités suffisamment élevées, les ERI sont caractérisés par la
mise en amas, qui est une caractéristique liée à la supersolidité dans un es-
pace continu bidimensionnel, et à la supersolidité et (super)vitrosité sur un
réseau triangulaire [10]. Dans lemodèle étudié dans cette thèse, les particules
interagissent jusqu’à une distance 𝑟𝑐 = 2√2 Par souci de simplicité, nous nous
référerons à ce modèle en tant que Modèle I. Dans ce modèle, une particule
peut sauter entre des sites voisins avec une amplitude 𝑡 tout en satisfaisant la
contrainte de cœur dur (une seule particule est autorisée sur chaque site).

La démonstration du comportement des bandes dans les condensats de
Bose-Einstein en présence de couplage spin-orbite a récemment suscité un vif
intérêt, mais également la formation de gouttelettes dans les nuages d’atomes
magnétiques dipolaires en raison de la concurrence des fluctuations quan-
tiques et des interactions à courte et longue portée. Des résultats numériques
exacts ont en outre démontré théoriquement que des interactions dipolaires
anisotropes pour des particules confinées en deux dimensions peuvent géné-
rer des bandes tout en préservant la superfluidité [11, 12], ce qui correspond
à une réalisation possible de la supersolidité sous la forme de bandes [13, 7].
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Résumé de la Thése en Fraçais

Cette dernière a une longue histoire en matière condensée, où elle a été intro-
duite pour la première fois en tant que phase dite de superstripe. En effet, les
structures métalliques non homogènes présentant une symétrie spatiale bri-
sée semblaient alors favoriser la supraconductivité [14]. Bien que l’originemi-
croscopique d’une telle phase fasse encore l’objet de débats, il est clair qu’un
rôle important est joué par la combinaison des interactions fortes et du po-
tentiel du réseau. Dans ce contexte, les principaux défis à relever consistent à
proposer et à comprendre les mécanismes sous-jacents à la formation de (su-
per)bandes dans les géométries de réseau présentant un intérêt expérimental,
et à faire des prédictions théoriques exactes dans le régime des interactions
fortes. Nous étudions ici les phases de l’état fondamental (EF) du modèle I
en fonction de la force d’interaction 𝑉/𝑡. Nous trouvons plusieurs nouveaux
phénomènes. Pour des interactions suffisamment fortes, l’EF est un cristal
à bandes (stripe crystal) (SC) isolant hautement anisotrope, émergeant de
l’auto assemblage en amas dans l’EF classique correspondant. Pour une force
d’interaction intermédiaire, nous trouvons une transition de phase quantique
inattendue d’un état supersolide à un autre état supersolide, séparant un état
supersolide isotrope (isotropic supersolid) (IS) d’un état supersolide aniso-
trope à bande (anisotropic stripe supersolid) (SS). Dans cet état, la super-
fluidité se produit principalement le long de bandes horizontales, tandis que
l’ordre diagonal à grande distance se trouve dans la direction perpendiculaire
- ce qui rappelle la phase dite superstripe trouvée dans les supraconducteurs
sur réseau [14].

Nous étudions aussi systématiquement les scénarios hors d’équilibre (HE)
du Modèle I. Au moyen de la même approche de PIMC, nous déséquilibrons
le système avec des “quench” simulés à basse température (𝑇), et nous analy-
sons les modifications que cette procédure peut induire sur les phases d’équi-
libre calculées. Nos principales conclusions sont les suivantes : i) Contraire-
ment aux supersolides isotropes et anisotropes trouvés pour 2.6 ≲ 𝑉/𝑡 ≲ 4.0
et 4.0 ≲ 𝑉/𝑡 ≲ 4.45 respectivement, un “quench” à basse température conduit
à des états supersolides largement isotropes pour 3.8 ≲ 𝑉/𝑡 ≲ 4.2, ainsi q’un
état solide normal HE pour 𝑙𝑒𝑠𝑠𝑠𝑖𝑚𝑉/𝑡 ≲ 5.5. Remarquablement, ces états HE

xii Guido Masella – Ph. D. thesis



Fig. 1. : Diagramme de phase schématique du modèle I en fonction de la force d’in-

teraction 𝑉/𝑡. Chaque région colorée dans la partie inférieure de la figure correspond

à une phase d’équilibre de EF : à savoir, un superfluide (superfluide (SF), cyan), un

supersolide isotrope (IS, orange), un supersolide à bandes (SS, vert) et un cristal

à bandes (SC, rose). Les dessins sont des croquis de la structure cristalline (le cas

échéant) de chaque phase à l’équilibre. Les schémas de remplissage dans la partie

supérieure du diagramme montrent les résultats dans la limite thermodynamique

des “quench” de température simulées jusqu’à la température cible 𝑇/𝑡 = 1/20. Les

régions où le “quench” conduit à des états supersolides, solides et vitreux sont dé-

signées par des motifs de remplissage horizontaux, diagonaux ou en points.

sont également trouvés pour les valeurs de 𝑉/𝑡 pour lesquelles les phases
à l’équilibre sont plutôt anisotropes. ii) De la même manière qu’une étude
précédente du même modèle quantique sur le réseau triangulaire [10] (bien
qu’elle soit plus petite que 𝑟𝑐), nous trouvons que la contrepartie HE du cris-
tal à l’équilibre à grand 𝑉/𝑡 est un verre normal, et non un verre superfluide
ou un superglass. iii) Dans la plage de paramètres étudiés, aucune preuve de
comportement de superglass n’est obtenue. L’existence d’un tel état, qui a été
prédite pour le réseau triangulaire, dépend essentiellement de l’interaction
entre la géométrie du réseau, la densité de particules, et l’extension 𝑟𝑐 de la
partie plate du potentiel inter-particules.

Dans certains cas, des techniques numériques telles que celles introduites
dans ce travail permettent, au prix d’une énorme puissance de calcul, de ré-
soudre de façon “brute-force” les modèles à longue portée. Dans la dernière
partie de ce travail, nousmontrons des exemples de ces systèmes. Nous consi-
dérons tout d’abord un modèle de bosons de cœur dur sur un réseau unidi-
mensionnel avec des interactions se comportant en loi de puissance en fonc-
tion de la distance 𝑟 entre deux particules ∼ 1/𝑟𝛼 (Modèle II). Nousmontrons
en particulier comment les propriétés de ces systèmes sont radicalement mo-
difiées lors de l’application de la “prescription de Kac” [15], qui restaure l’ex-
tensivité de l’énergie du système. En l’absence de cette prescription, les cal-
culs numériques effectués avec la méthode DMRG nous ont permis d’étendre
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la conclusion précédente de la Ref. [16] dans le cas 𝛼 = 1 pour l’ensemble de
ce qu’on appelle le régime des fortes interactions à longue portée (0 < 𝛼 ≤ 1).

Conclusion générale
Dans cette thèse, nous prédisons et étudions de nombreux phénomènes

et phases exotiques apparaissant dans différents modèles de systèmes à plu-
sieurs corps fortement corrélés. Nous mettons en lumière des états superso-
lides anisotropes et des transitions de phase quantiques entre différents types
de supersolides dans un modèle de Bose-Hubbard étendu avec les ERI. Nous
explorons les états HE du même modèle en soulignant les différences entre
ces phases et les phases d’EF. Dans unmodèle unidimensionnel de bosons de
cœur dur avec des interactions à longue portée, nous discutons des différents
scénarios physiques obtenus en appliquant ou non la “prescription de Kac”
[15] dans le cas du régime des fortes interactions à longue-portée, tout en
étudiant la validité de la théorie des liquides de Luttinger dans les deux cas.
Pour tous les modèles étudiés, nous discutons les réalisations expérimentales
possibles, et en particulier les expériences mettant en jeu des gaz atomiques
froids et des atomes de Rydberg.

xiv Guido Masella – Ph. D. thesis
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I started working as a Ph. D. student in the group of Prof. Guido Pupillo al-
most three years ago, in February 2017. During this period I have investigated
different physical problems in many-body systems with long--range interac-
tions including supersolidity and superfluidity in lattice bosonic models, Ry-
dberg atoms, ultracold neutral plasmas and finally many-body localization.
In particular I’ve utilized advanced numerical techniques such as Quantum
Monte Carlo methods and Path Integral Monte Carlo methods working on
different implementations of the so-calledworm algorithm in the canonical en-
semble. Together with Dr. Adriano Angelone I’ve also worked on refining an
existing grand canonical implementation of the same algorithm. This imple-
mentation of the algorithm was used to derive most of the results presented
in Chapters 1 and 2 in collaboration with also Prof. Nikolay V. Prokof’ev and
Dr. FabioMezzacapo. I also implemented and used different exact or approx-
imate numerical techniques including exact diagonalization and density matrix
renormalization group methods.

In the following I detail my contribution to the different publications I have
authored and co-authored during my Ph. D.

• G. Masella, A. Angelone, F. Mezzacapo, G. Pupillo, and N. V. Prokof’ev.
“Supersolid Stripe Crystal from Finite-Range Interactions on a Lattice”.
In: Phys. Rev. Lett. 123.4 (July 26, 2019), p. 045301. doi: 10 . 1103 /

PhysRevLett.123.045301. As first author I was responsible of all the
numerical simulations, and results presented in this paper, in its sup-
plemental material and in Chapter 1 . I contributed extensively to the
writing of the published paper.
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Phases of Long-Range Interacting Systems”. Submitted to: Phys. Rev.
Lett. (2019). arXiv: 1909.12105. My contribution to this work, which
is presented in Chapter 3 and Appendix B , consists of a preliminary
Quantum Monte Carlo study of the correlation functions the long-rage
interacting system presented. This study brought to light the first ques-
tions about (non-)extensivity and the problem of defining the thermo-
dynamic limit for the model. Answers to these questions are provided
in the paper using by Thomas Botzung and Dr. David Hagenmüller us-
ing different techniques. I have also contributed to discussion and writ-
ing of the paper.

• M. Mizoguchi, Y. Zhang, M. Kunimi, A. Tanaka, S. Takeda, N. Takei, V.
Bharti, K. Koyasu, T. Kishimoto, D. Jaksch, A. Glaetzle, M. Kiffner, G.
Masella, G. Pupillo, M. Weidemüller, and K. Ohmori. “Ultrafast Cre-
ation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-
Insulator Lattice”. Submitted to: Science (2019). arXiv: 1910.05292.
This work, is an experimental study of the ionization processes in a sys-
tem of ultracold atomic gases excited to Rydberg states. I contributed
to the studies of the dynamics of the ionization in the case of the atomic
system being initially in a Mott insulator state.
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Introduction

The behavior of large and complex aggregations of elementary particles, it turns out, is not to

be understood in terms of a simple extrapolation of the properties of a few particles. Instead,

at each level of complexity entirely new properties appear, and the understanding of the new

behaviors requires research which I think is as fundamental in its nature as any other

— P. W. Anderson [21]

Condensed matter physics is the study of systems of many particles in a
condensed phase, i.e. solid or liquid. At low temperature the physics of many
particle systems is governed by quantum mechanics, and macroscopic prop-
erties can in principle all be derived from the solutions of the Schrödinger
equation. However, solving Schrödinger equation exactly usually turns out
to be an intractable task. Even a classical computer made by all of the atoms
in our universe would not be powerful enough to handle the solutions of the
Schrödinger equation for the typically large number of particles in condensed
matter systems (∼ 1023). And even if such an exact solution were available,
it would be extremely complex to understand how it determines the macro-
scopic behaviour and in particular the emergent phenomena of such large col-
lection of particles. For these reasons the study of many-body systems often
relies in practice on incomplete and approximate numerical and theoretical
descriptions, in order to extract the macroscopic properties.

At sufficiently high temperatures, matter is in a gaseous phase which is
one of the simplest many-body systems. Gases are referred to as weakly cor-
related systems because the motion of an atom in a gas hardly depends on
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the positions and motion of the other ones. For this reason one can in gen-
eral describe the properties of gases in terms of single-particle theories. As
the temperature is lowered, the motion of the atoms becomes more and more
correlated and, eventually, they solidify into crystalline structure whose exci-
tations, called phonons, correspond to the collective motion of many of them.
A crystal is one of the simplest examples of strongly-correlated states. The
formation of solids and crystalline structures is associated with the breaking
of the continuous translational symmetry typical of free space. The resulting
spatial modulation of the density 𝜌(r) can be described as 𝜌(r) = 𝜌(r + R)
for any vector R of the Bravais lattice. The appearance of these periodic mod-
ulations, or long-range diagonal order, are also manifested in Fourier space by
peaks in the static structure factor at the vectors K of the reciprocal lattice for
which K ⋅ R = 2𝜋𝑛 where 𝑛 is an integer.

In the beginning of the 20th century, many new states of matter have been
found thanks to the development of low-temperature technologies. An exam-
ple is superconductivity, i.e. the loss of electrical resistance and the appearance
of anomalous magnetic behaviours at very low temperature in metals. The
basic theory of superconductivity is due to Bardeen, Cooper, and Schrieffer
(BCS theory [22]), and explains most of the properties of this state in terms
of a superfluid, which consists of a dissipation-free flow of electron pairs called
Cooper pairs. As of today, the study of strongly-correlated matter remains a
very active field of research.

Below we briefly introduce from an historical point of view the superfluid
and supersolid state of matter which we encountered often during the studies
presented in the remainder of this thesis.

Superfluidity is a rather general property of bosonic, interacting systems at
low temperature. It was first discovered in 4He in 1937 by Kapitsa inMoscow,
and almost simultaneously byAllen andMisener in Cambridge1. At that time

1See Refs. [23, 24, 25] for in-depth reviews and books about superfluidity.
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Figure 0.1.: Sketch of the excitation spectrum of 4He showing the line 𝜖(𝑝) = 𝑣𝑐𝑝

(dashed) corresponding to limit velocity of a superfluid. Here 𝑣𝑐 = min𝑝 (𝜖(𝑝)/𝑝).

Helium was known to liquefy at temperatures lower than 4K and was dis-
covered to undergo a phase transition if cooled below the so-called 𝜆-point
(𝑇𝜆 = 2.17K). Above the 𝜆-point the fluid referred to as He-I behaves like
a normal, viscous fluid. For temperatures below 𝑇𝜆, in the phase referred to
as He-II, the viscosity of the fluid drops to values experimentally compatible
with zero. This property of matter can be characterized by a dissipation-free
flow referred to as a superflow.

While the atoms or molecules in He-I move in a random manner as in nor-
mal classical liquids, they move coherently in He-II forming a macroscopic
wave of matter. This idea is at the basis of the first theory of superfluidity
introduced by Fritz London [26], who connected this phenomenon in 4He
(a bosonic isotope of Helium) to Bose-Einstein condensation, a phenomenon
which consists in themacroscopic occupation of a single (single-particle-like)
state.
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Themodern understanding of superfluidity stems from Landau’s theory of
the two fluids. In this theory superfluids are constituted of two separate flu-
ids: normal component, which is made of quasiparticles, namely phonons, rotons,
and a superfluid component. The superfluid component carries no entropy and
moves without dissipation while the normal one is viscous and carries a non-
zero entropy. One of the first achievements of this theory is the prediction of
the excitation spectrum showed schematically in Fig. 0.1. It comes from two
different contributions, one linear, due to phonons, and another quadratic due
to rotons2. In the framework of Landau’s two fluids theory, the emergence of
superfluidity can be understood by considering an object moving at a veloc-
ity 𝑣 inside the superfluid. The only way such an object can lose energy to the
fluid is by exciting some collective modes but, thanks to the peculiar form of
the spectrum, there exists a limit velocity 𝑣𝑐 up to which no modes can be ex-
cited (see Fig. 0.1). For this reason such object can propagate inside the fluid
without dissipation [27].

Considering a slowly rotating bucket filled with 4He, another prediction of
Landau’s theory is that only the normal part of the fluid is allowed to rotate
while the superfluid part stays at rest. This prediction has been later con-
firmed by Andronikashvili by using a torsional oscillator [28] which allowed
him to determine the two fluid fractions by measuring the change in the mo-
ment of inertia across the transition point.

A useful concept to further describe the onset of superfluidity in three-di-
mensional systems is the concept of off-diagonal long-range order, originally
introduced by Oliver Penrose. Off-diagonal long-range order is associated
to the spontaneous symmetry breaking of the gauge invariance symmetry
(𝑈(1)) associated to the emergence of a macroscopic wave function, and to
the macroscopic occupation of the single-particle ground state called Bose-
Einstein condensation [29, 24].

More precisely, one can consider the one particle density matrix defined as
𝜌1(r − r′) ≡ ⟨ ̂𝜓†(r) ̂𝜓(r′)⟩ where ̂𝜓† and ̂𝜓† are the field operators for bosonic

2the exact form of the roton excitation spectrum was given by Feynman and Cohen
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particles. Its Fourier transform is themomentumdistribution𝑛k ≡ ⟨ ̂𝜓(k)† ̂𝜓(k)⟩
where ̂𝜓(k)† and ̂𝜓(k) create and annihilate a bosonic particle with momen-
tum k.

In a Bose-Einstein condensate, one state, e.g., k = 0, becomes macroscopi-
cally occupied so that 𝑛k = 𝑁0𝛿(k)+𝑓 (k) where 𝑁0 is of the order of the total
number (𝑁) of particles in the system and 𝑓 is a smooth function of k. In terms
of the one-bodydensitymatrix, this condition implies that lim∣r−r′∣→∞ 𝜌1(r − r′) =
𝑁0
𝒱 with 𝒱 the total volume of the system. This is the formal definition of off-
diagonal long-range order.

It is worth mentioning that although the relation between Bose-Einstein
condensation and superfluidity is straightforward in three-dimensions, in gen-
eral one never equates to nor even entails the other. In 4He, e.g., the con-
densed fraction, i.e., 𝑁0/𝑁, is ∼ 10% while the superfluid fraction approaches
unity as the temperature approaches the absolute zero. The possibility of hav-
ing superfluidity without condensation is dramatically demonstrated in two
dimensional systems at finite temperature where Bose-Einstein condensation
is replaced by quasi off-diagonal long-range order1.

As the name supersolid or superfluid solid suggests, a supersolid phase is a
“paradoxical” state ofmatterwhich displays both the features of a solid and of
a superfluid. Having a correct picture of the coexistence of these two phases is
difficult. Counterintuitively, supersolids allow dissipation-free flow of their
own constituents but not of external objects, and act in this regard as normal
solids. Formally a supersolid is defined by the coexistence of diagonal and
off-diagonal long-range orders. While superfluid phases have been observed
and identified in different systems comprising, e.g., 4 He and ultracold atomic
systems, supersolids have remained elusive for over 50 years and have been
observed only recently in dipolar quantum gases.

The search for supersolid phases started in 1969, with the theoretical pre-
dictions of Andreev and Lifshitz, and Chester [30, 31]. The proposed mech-
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anism for the formation of a supersolid consisted in the Bose-Einstein con-
densation and therefore superfluidity of a repulsively interacting gas of point
defects in solids, i.e. vacancies and dislocations. These proposals were also
based on the fact that point defects, which may be present in the ground state
of quantum many-body systems (e.g. 4He), were predicted to have a high
mobility at low temperature.

Following the proposal of Andreev and Lifshitz, and Chester, the experi-
mental investigation focused on solid 4He, the most quantum solid in nature.

Inspired by the experiments of Goodkind [32], in 2004 Kim and Chan per-
formed an experiment which provided a controversial evidence of superso-
lidity in 4He[33, 34]. In this experiment [33] the idea was to use a torsional
oscillator similar to the one used in 1948 to measure the rotational inertia of
superfluid Helium [28]. At temperatures 𝑇 < 200mK, Kim and Chan ob-
served a rapid change of the torsional oscillator period, and connected it to
a change in the moment of inertia of solid 4He (a part of it was not moving
anymorewith the rest). They estimated the superfluid component to be∼ 1%.

The experiment performed byKim andChan at the Pennsylvania State Uni-
versity raised more questions than answers: was the observed drop in the
period of the torsional oscillator due to a change of the moment of inertia,
and ultimately to superflow inside the solid helium, or it was due to some
other effect?

In the years following the experiment of Kim and Chan, numerical simula-
tion based on unbiased quantumMonte Carlomethods [35, 36, 37, 38] proved
that a perfect crystal of 4He, i.e. without vacancies and interstitials, could not
support a supersolid phase due to the absence of off-diagonal long-range or-
der. Moreover it was shown [39] that, due to both the finite energy gaps for
the formation of vacancies and interstitials, and to the prediction of strongly
attractive (not repulsive) interactions among the vacancies, the mechanism
of Andreev and Lifshitz was unlikely to be relevant for perfect 4He crystals.

After the theoretical predictions ruling out supersolidity in 4He, and the
observation [40] of the change of the shear modulus in bulk solid 4He, an
effect that could have explained their previous observations, Kim and Chan
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reported [41] in 2012 about a new and improved version of their original
experiment. Here they didn’t observe any change in the moment of inertia
which could suggest the presence of superflow inside solid 4He.

If solid 4He is not an answer to the search for supersolidity, in what other
places one should look at?

Since the first realization in 1995 of a Bose-Einstein condensate [42] which
was awarded by a Nobel prize in 2001 [43], ultracold quantum gases have
proven to be a unique framework for the exploration of a rich variety ofmany-
body quantum phenomena. Quantum gases are very dilute system however
their properties and behaviours are governed almost exclusively by the inter-
actions. Thanks to the recent impressive scientific and technological advances
is this field, it is nowadays possible to engineer systems with different and
tunable interactions. The short-range quasi contact-like interactions usually
occurring in these systems can be tuned and controlled taking advantage of
the so-called Fano-Feshbach resonances3. Furthermore dipolar interactions
[48] can be engineered in systems with strongly interacting magnetic atoms
[49, 50, 51, 52, 53], polar molecules [54, 55], Rydberg-excited atoms [56, 57]
or light-induced dipoles [58, 59, 60].

Interesting alternatives to dipole-dipole interactions are the unscreenedCou-
lomb interaction appearing in systems of trapped ions [61, 62, 63, 64], the
natural long-range interactions between neutral atoms coupled to photonic
modes [65, 66, 67, 68, 69, 70] and the extended range interactions of Rydberg-
dressed atoms [71, 72, 73, 74, 75].

Driven by the availability of such versatile platforms, new mechanisms for
the formation of the supersolid phase have been proposed as alternatives to
the Andreev-Lifschitz one. In the case of system with dipolar interactions in
free space, while the mechanism for the stabilization of the supersolid phase

3see [44] or Refs. [45, 46, 47] for the case of optical (Rydberg) Feshbach resonances
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has been identified4 no unbiased numerical prediction is, as of today, avail-
able. For dipolar systems of particles confined on optical lattices numerical
proofs of the existence of the supersolid phase have been produced [83, 84,
85].

Moreover, systems interacting via soft-shoulder extended range potentials,
e.g., Rydberg-dressed atoms5, have been predicted to support supersolidity
in two dimensional systems in free space [71, 86, 87, 88], on a triangular lat-
tice [89, 10] and finally, as shown in the results presented in Chapter 1 , on a
square lattice.

Recently, supersolidity has been experimentally observed in degenerate quan-
tum gases exploiting spin-orbit coupling[90], cavity-mediated long-range in-
teractions [91], in 2017 while this year (2019) three new experiments with
strongly magnetic atoms of Dysprosium and Erbium6 reported observations
of supersolidity [92, 8, 93, 94].

Outline of the results
The central aim of this thesis is the study of the low-energy and low-tem-

perature properties of strongly-correlated systems of bosonic particles inter-
acting via finite- and long-range potentials.

In Chapters 1 and 2 I present the results for a model of strongly correlated
hardcore bosons on a two dimensional square lattice, interacting via a finite-
range potential mimicking the Rydberg-dressed interaction on a lattice. The
main goal of the study presented in Chapters 1 and 2 is to study the equi-
librium phases and the out-of-equilibrium states such model for a particu-
lar choice of the interaction radius which will allow to show how complexity

4See [76, 77] for reviews, [78, 79] regarding the prediction of the present of roton-like spec-
trum in dipolar systems, [80, 81, 82] for numerical study of the roton instability and the
formation of droplets.

5See Appendix C for the detailed description.
6Dysprosium (Dy) and Erbium (Er) are respectively the second and the third most mag-

netic atomic species known, thanks to the magnetic moment in the ground state being
10𝜇B for Dy and 9𝜇B for Er, where 𝜇B is the Bohr magneton.
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Outline of the results

arise in the phase diagram due to the inclusion in the hamiltonian of features
typical of long-range interacting systems.

In Chapter 1 , I present the study of the ground state (equilibrium) phase
diagram finding: (i) For sufficiently strong interactions, the ground state is
a highly anisotropic, insulating stripe crystal. For intermediate interaction
strength I find a surprising (ii) supersolid-supersolid quantum phase tran-
sition separating an isotropic supersolid state from (iii) a highly anisotropic
one. In the latter, superfluidity occurs only along one direction while diago-
nal long-range order is found in the perpendicular one. I address this phase
to as superstripe phase due to the analogies with a similar phase found in lat-
tice-based superconductor [14].

In Chapter 2 , I present the investigation of the out-of-equilibrium scenar-
ios of the same model presented in Chapter 1 via simulated temperature
quenches. I find that (iv), as opposed to the isotropic and anisotropic su-
persolid ground states of the equilibrium study, low-temperature quenches
leads to isotropic out-of-equilibrium solid and supersolid states. (v) Similar
to a previous study performed on a triangular lattice [10], the out-of-equilib-
rium counterpart of the equilibrium crystal at large interaction strengths is a
normal glass. (vi) In contrast to [10], no evidence of a superglass (i.e., coex-
istence of glassy and superfluid behaviour) is found.

In Chapter 3 , I show the results concerning a study of a truly long-range
interacting model which consists of hard-core bosonic particles on a one-di-
mensional lattice-ring geometrywith 𝐿 sites interacting via interactionswhich
algebraically decay with the distance 𝑟, e.g., as 1/𝑟𝛼) This study is performed
in the so called strong long-range regime occurring when 𝛼 ≤ 𝑑 (here 𝑑 = 1).
One can show that this model feature non-extensive energy. Extensivity can
be restored by the so calledKac’s prescription. Themain goal is to understand
how the properties of long-range interacting systems are modified when en-
ergy extensivity is restored. We find that (vii) in the absence of Kac’s rescal-
ing, the ground state consists of an insulating gapped phase for the whole
range 0 < 𝛼 ≤ 1. In stark contrast with this results we find (viii) that Kac’s
rescaling leads to a metallic phase for the same values of the exponent 𝛼, and
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(ix) we demonstrate that this phase is incompatible with a conventional Lut-
tinger Liquid.
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1
Supersolid stripe crystal from
finite-range interactions on a

lattice

The effects of long-range interactions on quantum phases of many-body
lattice systems is a hot topic of research [95, 96, 97, 48, 77], which is driven
by outstanding advances in precision experiments with strongly interacting
magnetic atoms [49, 50, 51, 52, 53], polar molecules [54, 55], Rydberg-excited
atoms [56, 57], ions [61, 62, 63, 64], and neutral atoms coupled to photonic
modes [65, 66, 67, 68, 98, 70]. For bosonic particles, exact numerical results
fromquantumMonte-Carlomethods can in principle predict thermodynamic
properties of any unfrustrated model, where frustration is defined as the im-
possibility of simultaneously satisfying a minimum energy condition for all
the term of the Hamiltonian. However, long-range interactions in combina-
tion with confinement to periodic potentials present a unique challenge as
they generate a proliferation of metastable low-energy states, whose number
exponentially increases with the system size [99, 100], even in the absence of
external frustration. This usually results in, e.g., devil’s staircase-type struc-
tures that are essentially intractable [101, 102, 83, 84].

Much interest was recently generated by the demonstration of stripe be-
havior in spin-orbit-coupled Bose-Einstein condensates [103, 104, 105, 106,
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90] as well as droplet formation in clouds of dipolar magnetic atoms in the
mean-field regime [107, 108, 109], due to a competition of quantum fluc-
tuations, short- and long-range interactions [108, 110, 80]. Exact numerical
results have further demonstrated theoretically that anisotropic dipolar in-
teractions for particles confined to two dimensions (2D) can generate stripe
behavior while preserving superfluidity [11, 12], corresponding to a possible
realization of so-called stripe supersolidity [13, 7]. The latter has a long his-
tory in quantum condensedmatter, where itwas first introduced as superstripe
phase, in that non-homogeneousmetallic structures with broken spatial sym-
metrywere found to favor superconductivity [14]. While themicroscopic ori-
gin of such a phase is still a subject of debate, it is clear that a key role is played
by a combination of strong interactions and the lattice potential. In this con-
text, key open challenges are to propose and understand basic mechanisms
for (super)stripe formation on lattice geometries of experimental interest and
to provide exact theoretical predictions in the regime of strong interactions.

This chapter is devoted to showing the complexity that emerges within
long-range interacting systems by studying simple and numerically tractable
model, which featuresmany of the ingredients of a generic long-rangemodel.
We will do this by studing the low temperature phase diagram of an ensem-
ble of bosonic particles confined to a square lattice geometry and interact-
ing via a finite-range potential, interpolating between nearest-neighbors and
long-range physics. In §1.1, we introduce the model and the methods used,
shortly commenting on the construction of the ground state in the classical
limit, defined as the limit of vanishing tunnelling amplitude with respect to
all the other couplings in the system. In §1.2, we utilize exact quantumMonte
Carlo simulation to study the phase diagram of this system as a function of
the interaction strength, and identifying several novel features: (i) For suffi-
ciently strong interactions, the quantum ground state is a highly anisotropic,
insulating stripe crystal that emerges due to cluster self-assembling in the cor-
responding classical ground state. For intermediate interaction strength, we
find a surprising (ii) supersolid-supersolid quantum phase transition that
separates an isotropic supersolid state from (iii) a highly anisotropic stripe
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state. In the latter, superfluidity mostly occurs along horizontal (vertical)
stripes and is not suppressed at the supersolid-supersolid transition, while di-
agonal long-range order is found in the perpendicular direction – reminescent
of the so-called superstripe phase found in lattice-based superconductors [14].
§1.2.2 contains a brief discussion on the numerical complexity arising in these
model that can be seen in increased difficulty to obtain reilable equilibration
of the Monte Carlo simulations due to proliferation of low-energy metastable
states as the range of the interaction increases. The effects of variations in
density and interaction range on the many body phases found in §1.2 will be
discussed in §1.3. In particular, for a choice of density 𝜌 = 1/6, we demon-
strate the existence of a stripe crystal for large values of interaction strength,
and of a quantum phase transition from an isotropic supersolid to a homo-
geneous supersolid. We conclude the chapter with some final remarks and
outlooks in §1.4.

1.1 Model, methods and clusters in the classical

limit
We consider the following extendedHubbardHamiltonian for bosonic par-

ticles confined to a two-dimensional square lattice.

ℋ = −𝑡 ∑
⟨𝑖,𝑗⟩

(𝑏†
𝑖 𝑏𝑗 + h.c.) + 𝑉 ∑

𝑖<𝑗;𝑟𝑖𝑗≤𝑟𝑐

𝑛𝑖𝑛𝑗, (1.1)

where the hard-core boson operators satisfy the commutation relation

[𝑏𝑖, 𝑏†
𝑗 ] = 𝛿𝑖𝑗(1 − 2𝑏†

𝑖 𝑏𝑖) (1.2)

and the occupation number per site is restricted to 𝑛𝑗 = 0 or 1, with 𝑛𝑗 =
𝑏†

𝑗 𝑏𝑗
1. In the following the nearest-neighbor hopping energy 𝑡 and the lattice

spacing constant 𝑎 are taken as units of energy and length, respectively. While
the first term of Eq. (1.1) represents hopping of particles between nearest-
neighbor pairs of sites (denoted by ⟨⋯⟩) with amplitude 𝑡, the last term of
1The hard-core boson constraint and the commutation relation Eq. (1.2) can be also re-

alized by treating the hard-core bosons as soft-core ones with infinite on site repulsion
𝑈 ∑𝑖

𝑛𝑖(𝑛𝑖−1)
2 with 𝑈 → ∞
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represents the soft-shoulder interaction between bosons with strength 𝑉, 𝑟𝑖𝑗

is the distance between sites 𝑖 and 𝑗, with 𝑟𝑐 the interaction potential cutoff.

rc = 2
√
2a

a

I
(a) (b)

II

III

Figure 1.1.: Sketch of the interaction potential chosen in our work on a square lattice

of spacing 𝑎 [panel (a)]. The shaded region indicates the interaction range, which

extends up to the critical radius 𝑟𝑐 = 2√2𝑎. In the large-𝑉 limit, the ground state of

model Eq. (1.1) at our chosen density 𝜌 = 5/36 can be found by tiling the lattice with

clusters of type I, II and III [panel (a)]. Crosses and full red circles refer to empty

and occupied lattice sites, respectively.

In classical physics, this interaction is of interest for soft-matter models of,
e.g., colloids [111, 112, 113]. In quantum physics, similar interactions can be
engineered in clouds of cold Rydberg atoms, by weakly-admixing a Rydberg
state to the ground state using laser light [71, 72, 73, 87, 114, 74, 75]. Such
interaction is described in detail in Appendix C .

Here, we choose 𝑟𝑐 = 2√2𝑎 for which in the classical limit 𝑉/𝑡 → ∞ each
particle tries to establish an avoided square region of total area 16𝑎2 [see
Fig. 1.1(a)]. For density 𝜌 = 1/9 this is indeed possible and the system can
arrange into an optimal configuration characterized by zero potential energy
by covering the lattice with clusters of type I, see Fig. 1.1(b). However, this is
not possible for higher densities, and the ground state shall be contructed as
the solution of a tiling problem, where tiles are constituted by clusters of par-
ticles and holes that are effectively bound together by the repulsive interac-
tions. The number of such clusters, or tiles, increases with increasing particle
density. Fig. 1.1(b) shows the three clusters I, II, and III (i.e., the tiles) that ap-
pear at low energy for densities 1/9 < 𝜌 < 1/6. Similarly to the 1D case [115,
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Figure 1.2.: Example of a single configuration of the ground state of the model

Eq. (1.1) in the classical limit defined by 𝑉/𝑡 → ∞. The configuration is obtained

using only tiles of types I and II of Fig. 1.1 Crosses and full red circles refer to empty

and occupied lattice sites, respectively.

116], the classical ground state can then be built from the exponentially large
number of permutations of clusters I-III. This large degeneracy is character-
istic of long-range interactions and can in principle constitute an obstacle to
the solution of the quantum problem. In the following, we determine the ef-
fects of quantum fluctuations on this highly degenerate classical ground state
by computing the quantum phase diagram for model Eq. (1.1), for an exam-
ple density 𝜌 = 5/36. Our focus is the determination of quantum phases and
phase transitions in this system.

Figure 1.2 shows a single example configuration of the classical ground
state obtained for the target density 𝜌 = 5/36. This configuration results from
the perfect tiling of the systems with cluster of types I and II and from the
minimization of the energy 𝐸 = 𝑉𝑁𝐼𝐼, where 𝑁𝐼𝐼 is he number of clusters of
type 𝐼𝐼.

We studyHamiltonian Eq. (1.1) bymeans of path integral QuantumMonte
Carlo simulations based on the worm algorithm [5]. This technique, pre-
sented in detail in Appendix A , is numerically exact for unfrustrated bosonic
models, giving access to accurate estimates of fundamental observables such

Guido Masella – Ph. D. thesis 15



Chapter 1. Supersolid stripe crystal from finite-range interactions on a lattice

as, e.g., the superfluid fraction 𝜌𝑠/𝜌, the static structure factor 𝑆(k) and the
single-particle equal time Green’s function 𝐺(r), which can be written as:

𝜌𝑠
𝜌 =

1
4𝑡𝛽𝜌 ⟨𝑊2

𝑥 + 𝑊2
𝑦⟩ , (1.3)

𝑆(k) =
1

𝑁2 ∑
𝑖𝑗

⟨𝑒−𝑖k⋅r𝑖𝑗𝑛𝑖𝑛𝑗⟩, (1.4)

𝐺(r) =
1
𝑁 ⟨∑

𝑖
𝑏†

𝑖 𝑏𝑖+r⟩ . (1.5)

Theymeasure superfluidity, diagonal long-range, and off-diagonal long-range
orders, respectively. We recall that diagonal long-range order is associated
with breaking of the discrete translational symmetry (e.g., crystallization)
while off-diagonal long-range order to spontaneous breaking of the 𝑈(1) or
gauge symmetry (e.g., Bose-Einstein condensation). In Eq. (1.3), 𝛽 = 1/(𝑘𝐵𝑇)
is the inverse temperature, with 𝑘𝐵 the Boltzmann constant (set to unity); 𝑊𝑥

(𝑊𝑦) is the winding number along the 𝑥 (𝑦) direction, k is a lattice wave vec-
tor and ⟨… ⟩ stands for statistical averaging. Calculations are performed on
lattices of size 𝑁 = 𝐿×𝐿, with 𝐿 as large as 𝐿 = 96 and temperatures as low as
𝑇/𝑡 = 1/96. We find that for 𝑇/𝑡 ≤ 1/20 results are essentially indistinguish-
able from the extrapolated ground state ones.

1.2 Quantum phases: Results
Themain results are presented in Figs. 1.3 and 1.4. Fig. 1.3(a) andFig. 1.3(b)

show estimates of the structure factor 𝑆(k) and the superfluid fraction 𝜌𝑠/𝜌
(left ordinate axis) together with the ratio between the superfluid responses
𝜌𝑥/𝜌𝑦 ≡ ⟨𝑊2

𝑥⟩ / ⟨𝑊2
𝑦⟩ along the horizontal and vertical directions (right ordi-

nate axis) as a function of 𝑉/𝑡, for 𝑇/𝑡 = 1/20 and 𝑁 = 96 × 96, respectively.
Examples of finite-size scalings [Fig. 1.4] clarify that the chosen system size
is large enough to provide an accurate description of the various observables
in the thermodynamic limit, as results obtained for 𝐿 = 96 essentially coin-
cidewith the extrapolated estimates. The combination of 𝑆(k), 𝜌𝑠/𝜌, and their
anisotropies allows for the determination of the quantum phases.

We find that for weak interaction strengths 𝑉/𝑡 ≲ 2.6 the ground state is
a homogeneus superfluid (SF) with 𝜌𝑠/𝜌 > 0, 𝜌𝑥 ≃ 𝜌𝑦, and 𝑆(k) = 0. For
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Figure 1.3.: Panel (a): Structure factor 𝑆(k) as a function of 𝑉/𝑡 for values of lattice

wave vector k = (𝑘𝑐, 0) (up-pointing triangles), (0, 𝑘𝑐) (down-pointing triangles),

(0, 𝑘𝑠) (squares) characteristic of the isotropic supersolid (IS), stripe crystal (SC),

and anisotropic stripe supersolid (SS) ordered phase, respectively (see text). Here

𝑘𝑐 = 2𝜋 × 7/24 and 𝑘𝑠 = 2𝜋 × 1/3. Panel (b): Superfluid fraction 𝜌𝑠/𝜌 (circles), and

ratio between the superfluid responses 𝜌𝑥/𝜌𝑦 along the 𝑥 horizontal and 𝑦 vertical

axis (diamonds). Data is shown for 𝐿 = 96 and 𝑇/𝑡 = 1/20.

2.6 ≲ 𝑉/𝑡 ≲ 4.45, however, both the superfluid fraction and the structure fac-
tor are finite, indicating the presence of a supersolid ground state. Surpris-
ingly, in this range of interaction strength we find two distinct supersolids.
Specifically, an isotropic supersolid (IS) and an anisotropic stripe supersolid
(SS) occur for 2.6 ≲ 𝑉/𝑡 ≲ 4.0 and 4.0 ≲ 𝑉/𝑡 ≲ 4.45, respectively. Within
the IS phase, 𝑆(k) [Fig. 1.3(a)] takes its maximum value for k = (0, ±𝑘𝑐) and
(±𝑘𝑐, 0) (down- and up-pointing triangles, respectively) with 𝑘𝑐 = 2𝜋 × 7/24;
in IS the superfluid response is isotropic [Fig. 1.3(b), diamonds].

In contrast, in the SS phase the diagonal long-range order is found along
one direction only (i.e., the 𝑦 direction in the figure), being drastically sup-
pressed along the perpendicular one; in addition, the maximum of the struc-
ture factor is found for k = (0, ±𝑘𝑠), with 𝑘𝑠 = 2𝜋×1/3 ≠ 𝑘𝑐, while 𝑆(0, ±𝑘𝑐) =
𝑆(±𝑘𝑐, 0) = 0 [Fig. 1.3(a), triangles]. Here, the superfluid response becomes
strongly anisotropic with 𝜌𝑥 ≫ 𝜌𝑦, signalling the formation of superfluid
stripes along the 𝑥-axis. This corresponds to a transition to a self-assembled
array of essentially one-dimensional superfluids, which, unexpectedly, have
larger superfluid density near the phase boundary: 𝜌𝑠/𝜌 initially increases
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Figure 1.4.: Finite-size scaling of the structure factor 𝑆(k) (empty symbols) and the

superfluid fraction 𝜌𝑠/𝜌 (full circles) for 𝑉/𝑡 = 2.5 [panel (a)], 𝑉/𝑡 = 3.7 [panel (b)],

4.4 [panel (c)], and 5.0 [panel (d)]. Different empty symbols refer to 𝑆(k) for val-

ues of lattice wave vector k = (𝑘𝑐, 0) (up-pointing triangles), (0, 𝑘𝑐) (down-pointing

triangles), (0, 𝑘𝑠) (squares) (see text). Data is whown for 𝑇/𝑡 = 1/20.

within the SS phase, before decreasing again, with increasing 𝑉/𝑡.

Finally, for 𝑉/𝑡 ≳ 4.45 the system loses its superfluid character and, al-
though the maximum value of 𝑆(k) still occurs for k = (0, ±𝑘𝑠), secondary
peaks emerge at k = (±𝑘𝑐, 0). These latter peaks imply both crystallization
along the stripe direction as well as the emergence of weak correlations be-
tween particles across different stripes (see below). The resulting ground
state is a normal (non supefluid) crystal.
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Figure 1.5.: Relative energy difference Δ𝐸rel between the SS and IS phases as a func-

tion of 𝑉/𝑡. The SS has lower energywhere Δ𝐸rel is negative. Data is shown for 𝐿 = 96

and 𝑇/𝑡 = 1/20.
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1.2. Quantum phases: Results

We find that different metastable states with entirely different quantum or-
ders compete in the region of intermediate strengths of interactions 𝑉/𝑡 ≳
3.0. In order to determine the ground state we perform two sets of simu-
lations: namely, starting from the equilibrium configuration at 𝑉1/𝑡 = 3.7
(𝑉2/𝑡 = 5.0) a careful annealing in the interaction strength is performedwith
annealing step 0 < Δ𝑉1/𝑡 ≤ 0.1 (−0.1 ≤ Δ𝑉2/𝑡 < 0). When the desired
target value of 𝑉/𝑡 is reached the calculation leading to a lower energy 𝐸 is
taken as the ground state. Figure 1.5 shows the relative energy difference
Δ𝐸r𝑒𝑙 = (𝐸2 − 𝐸1)/𝐸1 as a function of 𝑉/𝑡. The change in sign at 𝑉/𝑡 ≃ 4.0
signals the phase transition between the IS and SS phases. The correspond-
ing sudden changes in crystalline order, measured by discontinuities of the
structure factors in Fig. 1.3(a), are consistent with a first order phase transi-
tion between the two supersolids.

The formation of stripes remains favored for larger 𝑉/𝑡: hence, the phase
transition from the SS to the stripe crystal phase at 𝑉/𝑡 ≃ 4.45 is resolved by
monitoring the vanishing of superfluidity fraction.

1.2.1 Phase diagram and Green’s functions
The ground state phase diagramofmodel Eq. (1.1) is summarized in Fig. 1.6.

The demonstration of the existence of novel superfluid and insulating stripe
crystals, as well as an exotic supersolid-supersolid quantumphase transitions
due to classical cluster formation in a rather general model with a simple
isotropic interaction are the main results of this work. Further insight into the
discussed ground states can be obtained from the densitymaps in Figs. 1.6(b)
to 1.6(e) and the corresponding Green’s function 𝐺𝑥 (𝐺𝑦) along the 𝑥 (𝑦) axis
[Fig. 1.7].

As expected, for small 𝑉/𝑡 (where the system is a homogeneous SF) the av-
erage occupation number at each site equals the density 𝜌 [Fig. 1.6(b)]. Sim-
ilarly, the Green’s functions are equal in the 𝑥 and 𝑦 directions at all distances
(i.e., 𝐺𝑥 ≃ 𝐺𝑦), within the statistical error bars. They become nearly flat at
large distances, which is consistent with the presence of off-diagonal (quasi)
long-range order [Fig. 1.7(a)]. We note that the algebraic rather than flat de-
cay of the Green’s function is consistent with the predicions of the Mermin-
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Figure 1.6.: Ground state phase diagram of model Eq. (1.1) as a function of the in-

teraction strength 𝑉/𝑡 [Panel (a)]. For increasing values of 𝑉/𝑡 the ground state is

a superfluid (SF), an IS, an SS and SC (see text). Panels (b), (c), (d), and (e) show

site-density maps of a portion of the system for representative interaction strengths

at which the ground state is a SF (𝑉/𝑡 = 2.5), IS (𝑉/𝑡 = 3.7), SS (𝑉/𝑡 = 4.3), and

SC (𝑉/𝑡 = 6.0), respectively. The size of the dots is proportional to the occupation of

the corresponding sites.
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Figure 1.7.:Green’s functions 𝐺𝑥 and 𝐺𝑦 along the 𝑥 (solid lines) and 𝑦 (dashed lines)

directions, respectively, in the SF, IS, SS, and SC. Here 𝐿 = 96, 𝑇/𝑡 = 1/20 and the

values of 𝑉/𝑡 are the same as those in Figs. 1.6(b) to 1.6(e).

Wagner theoremwhich excludes the presence of true off-diagonal long-range
order for a two-dimensional system at 𝑇/𝑡 ≠ 0 [117, 118]. In the IS phase
[Fig. 1.6(c)] the isotropic ordered structure formed by clusters of particles
coexists with quantum exchanges and superfluidity. Here, 𝐺𝑥,𝑦 displays a
weak power-law decay, indicating off-diagonal quasi-long-range order, ac-
companied by oscillations [Fig. 1.7(b)], which we find to have a periodic-
ity consistent with particle exchanges between different clusters, thus con-
firming the underlying classical structure. When stripes are formed in the SF
phase, Fig. 1.6(d), no density modulations appear along their direction (i.e.,
the horizontal one). 𝐺𝑥 is found to decay as a power-law [Fig. 1.7(c)], consis-
tent with the measured finite superfluidity along the stripe direction. Long
exchange cycles of identical particles take place almost exclusively along the
stripes, being strongly suppressed in the perpendicular direction. The overall
picture here is that of a 2D quantum system of quasi 1D superfluids (i.e. the
stripes). In the SC phase the emergence of a nearly classical cluster-crystalline
structure is evident [Fig. 1.6(e)]. Here long-range quantum exchanges are
completely suppressed and clusters (and particles) can only slightly fluctu-
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ate around their equilibrium position due to zero point motion, implying an
exponential decay of the Green’s functions in Fig. 1.7(d), albeit with different
slopes in the 𝑥 and 𝑦 directions.
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Figure 1.8.: Comparison of power-law (pow) and exponential (exp) fit of the Green’s

function 𝐺𝑦 ≡ 𝐺(0, 𝑟) in the SS phase for 𝑉/𝑡 = 4.3, 𝑇/𝑡 = 1/20 and 𝐿 = 96. The fit is

performed separately on the highest (-h) and lowest (-l) points of the oscillation.

In Fig. 1.8 we determine the long distance behavior of the Green’s function
𝐺𝑦 in the SS phases by fitting the it with exponentially and algebraically de-
caying function of the type:

pow ∶𝐺𝑦(𝑥) =
𝑏
2 [

1
𝑥𝑎 +

1
(𝐿 − 𝑥)𝑎 ] (1.6)

exp ∶𝐺𝑦(𝑥) =
𝑑
2 [exp{−𝑐𝑥} + exp{−𝑐(𝐿 − 𝑥)}] (1.7)

The oscillations found in the Green’s function plotted in Fig. 1.8 are due to the
crystalline structure of the SS phase along the 𝑦-axis. In order to include the
effect of the oscillations we fit two different datasets derived from the same
Green’s function data: one derived taking all the integer distances non mul-
tiple of 3 (lower points) and one taking all the points for which the integer
distance 𝑟 is multiple of 3 (higher points). The comparison of the reduced
chi-squared (𝜒2/dof where dof is the number of degrees of freedom of the
fit) obtained by fitting the two different long-distance behaviors on the two
different datasets available is shown in Table 1.1. It demonstrates an expo-
nential decay that is dominant over the algebraic decay. In light of the results
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summarized in Table 1.1 and in Fig. 1.8, given that the correlations between
stripes decay exponentially with the distance, the SS phase can be described
as an array of (quasi) one-dimensional superfluid stripes or tubes.

We find that the phases above are robust for density variations within the
range 1/9 < 𝜌 < 1/6, where clusters I-III appear at low energy for large 𝑉/𝑡.
In §1.3 we demonstrate that they also persist for 𝜌 = 1/6, where only clusters
of type II and III exist for strong interactions, albeit with a different cluster
periodicity (i.e. different 𝑘𝑐).

Function Dataset 𝜒2/dof (closer to 1 is better)

Exponential
High 0.91897
Low 1.42404

Power-law
High 1.70635
Low 2.38805

Table 1.1.: Reduced chi-squared (𝜒2) for the exponential and power-law fits of

Fig. 1.8. The exponential function used fits both dataframes better than the power-

law function used.

1.2.2 Equilibration and metastable states
Finally, to exemplify possible out-of-equilibrium scenarios that can emerge

with imperfect annealing (i.e., failure to equilibrate an annealing step or im-
proper choice of the annealing step), Fig. 1.9 shows a density snapshot ob-
tained when the system is driven away from equilibrium via a temperature
quench. Here the target temperature is 𝑇/𝑡 = 1/20 for a value of 𝑉/𝑡 at which
the equilibrium phase is a SS. The resulting snapshot is isotropic rather than
anisotropic with a crystalline structure similar to Fig. 1.6(c), where diagonal
long-range order is found for characteristic wave vectors k = (0, ±𝑘∗) and
(±𝑘∗, 0) with 𝑘∗ ≠ 𝑘𝑐, 𝑘𝑠, and the value of 𝜌𝑠/𝜌 is much smaller than the equi-
librium one.

Increasing 𝑟𝑐 or smoothening the edges of the interactions can effectively re-
sult in the inclusion of more sites in the interaction volume. This can change
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Figure 1.9.: Out-of-equilibrium density snapshot for a systemwith 𝐿 = 96, 𝑉/𝑡 = 4.1

after a quench down to target temperature 𝑇/𝑡 = 1/20. For this choice of parameters

the corresponding equilibrium phase is a SS. The size of the dots is proportional to

the averaged occupation of the corresponding sites.

the number and type of clusters that appear at low-energy, and thus the re-
sulting crystal structures. For example, for a larger 𝑟𝑐 = 3𝑎 and 𝜌 = 1/7 the
strong-coupling phase is a SC not oriented in the 𝑥 or 𝑦-directions. In these
cases, we find that annealing can become increasingly difficult as equilibra-
tion is often dominated by the presence of many metastable states, typical
of long-range models [99, 100]. A detailed investigation of metastability for
model Eq. (1.1) is presented in Chapter 2 .

1.3 Stability against density and potential shape

variations
The numerical results presented in §1.2 are obtained for a specific choice of

density 𝜌 = 5/36 and for a soft-shoulder interaction potential with range 𝑟𝑐 =
2√2. Below we show that the main quantum phases and phase transitions
found in §1.2 are robust for density variationswithin the range 1/9 < 𝜌 ≤ 1/6,
where clusters of type II and III (in addition to type I) fully determine the
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1.3. Stability against density and potential shape variations

crystalline structure for large interaction strengths 𝑉/𝑡, consistent with the
discussion in §1.2. This is explicitly shown below for the limiting case 𝜌 = 1/6.

Variations of Hamiltonian terms such as the interaction range 𝑟𝑐 or shape
can in principle lead to different crystalline phases at strong coupling (i.e.
𝑉/𝑡 ≫ 1) with respect to the stripe crystal found before. Below we discuss
the crystalline phases occurring by increasing 𝑟𝑐 or by considering a smooth
interaction potential instead of the step-like potential as the one already con-
sidered.

1.3.1 Quantum phases for density 𝜌 = 1/6
The phases of Eq. (1.1) for 𝜌 = 5/36 are representative of densities in the

range 1/9 < 𝜌 < 1/6, where the clusters of type I, II and III in Fig. 1.1 dominate
the dynamics for a large ratio 𝑉/𝑡. Here, we investigate the case 𝜌 = 1/6,
corresponding to the smallest density increase for which the classical tiling
problem has a different structure, as only the clusters of type II and III occur
for large 𝑉/𝑡. Calculations are performed for system sizes up to 𝑁 = 96 × 96
and temperatures as low as 𝑇/𝑡 = 1/20.

Themain results are presented in Fig. 1.10, where, following the definitions
found in §1.2, the structure factor 𝑆(k) [Fig. 1.10(a)], the superfluid fraction
𝜌𝑠/𝜌 [Fig. 1.10(b) left ordinate axis], and the ratio between the superfluid
responses 𝜌𝑥/𝜌𝑦 [Fig. 1.10(b) right ordinate axis] are plotted as a function of
𝑉/𝑡, for 𝑇/𝑡 = 1/20 and 𝑁 = 96 × 96.

For large enough interaction strengths 𝑉/𝑡 > 3.9, we find a SC with no
superfluidity, similar to the case treated in §1.2. However, the peaks in 𝑆(k)
occur here for k = (0, ±𝑘𝑠) and k = (𝑘𝑠𝑐, 0), with 𝑘𝑠 = 2𝜋/3 and 𝑘𝑠𝑐 = 2𝜋/4,
respectively. The crystalline order appearing on the 𝑥-axis is thus slightly
different from that of the previously-found SC phase because 𝑘𝑠𝑐 ≠ 𝑘𝑐 = 2𝜋 ×
7/24.

Similarly to the case 𝜌 = 5/36, by decreasing the interaction strengthwefirst
find an anisotropic stripe supersolid (SS) and then an isotropic supersolid
(IS) phase. The latter phases occur for interaction strengths 3.0 ≲ 𝑉/𝑡 ≲ 3.9
and 𝑉/𝑡 ≲ 3, respectively. The peaks in the structure factor within the IS
phase are at k = (±𝑘𝑐, 0) and k = (0, ±𝑘𝑐), identical to the case 𝜌 = 5/36
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Figure 1.10.: Panel (a): Structure factor 𝑆(k) as a function of 𝑉/𝑡 for values of lattice

wave vector k = (𝑘𝑐, 0) (up-pointing triangles), (0, 𝑘𝑐) (down-pointing triangles),

(0, 𝑘𝑠) (squares), (𝑘𝑠𝑐, 0) (stars) characteristic of the IS, SS, and SC ordered phase,

respectively (see text). Here 𝑘𝑐 = 2𝜋 × 7/24 and 𝑘𝑠 = 2𝜋 × 1/3. Panel (b): Superfluid

fraction 𝜌𝑠/𝜌 (circles), and ratio between the superfluid responses 𝜌𝑥/𝜌𝑦 along the 𝑥

horizontal and 𝑦 vertical axis (diamonds). Data taken from calculations with 𝑁 =

96 × 96, 𝜌 = 1/6, and 𝑇/𝑡 = 1/20.

discussed in the §1.2.

Further insight can be obtained from the density maps in Fig. 1.11. In par-
ticular, Fig. 1.11(c) shows that for large 𝑉/𝑡 in the classical regime the ground
state corresponds to a perfect crystalline tiling of the surface with just one sin-
gle kind of clusters (i.e., cluster II in the 𝑥−direction in the figure). This results
in a SC that is qualitatively similar to the one of §1.2, albeit with a slightly dif-
ferent periodicity in the 𝑥-direction, as discussed above. By decreasing 𝑉/𝑡, a
melting of this crystalline phase gives way to the SS and then IS phases.

In conclusion, we find that the main results discussed in §1.2, namely the
appearance of an anisotropic (stripe) supersolid and a transition between two
different supersolids (IS and SS), are robust against different choices of den-
sity in the range 1/9 < 𝜌 ≤ 1/6, as long as the strong-coupling low-energy
physics is dominated by clusters of the type II and III in Fig. 1.1, as expected.
Further increasing densities with 𝜌 > 1/6 introduces different kinds of clus-
ters in the classical ground state that alter both the strong-coupling stripe
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Figure 1.11.: Site-density maps of a portion of the system for representative interac-

tion strengths at witch the ground state is a IS (𝑉/𝑡 = 2.8) [panel (a)], SS (𝑉/𝑡 = 3.2)

[panel (b)], and SC (𝑉/𝑡 = 6.0) [panel (a)]. The size of the dots is proportional

to the occupation number of the corresponding lattice site. The data is taken from

calculations at 𝑇/𝑡 = 1/20, 𝜌 = 1/6, and 𝑁 = 96 × 96.

crystalline structure, and the ensuing supersolid phases for intermediate val-
ues of 𝑉/𝑡. The corresponding quantum phases have then to be investigated
on a case-by-case basis, for each density.

1.3.2 Effects of the interaction range and shape on the

crystal phases of Eq. (1.1)
Varying the interaction range 𝑟𝑐 in Eq. (1.1) can change the number and

shape of relevant clusters in the large 𝑉/𝑡 limit. As a consequence, the many-
body ground state can change from the predictions of §1.2. As an example,
Fig. 1.12(b) shows a site-density map of a normal (not superfluid) crystalline
phase appearing at 𝑉/𝑡 = 6 for a choice of interaction range 𝑟𝑐 = 3.0 and
density 𝜌 = 1/7. The stripe crystal structure is now found to point in a di-
agonal direction. Further increasing 𝑟𝑐 to large values 𝑟𝑐/𝑎 ≫ 1 progressively
reduces the stripe anisotropy, in favor of a triangular cluster crystal, similar
to the continuous case [87].

Similar effects can be obtained by considering a smoother potential, instead
of the stepwise potential of Eq. (1.1). As an example, Fig. 1.13 shows re-
sults for a potential of the type 𝑉/[1 + (𝑟/𝑟𝑐)𝛼], for different values of 𝛼 and
𝑉/𝑡 ≫ 1. For 𝛼 → ∞ the shape of this interaction approximates well the
one in Eq. (1.1). We find that for 𝛼 ≳ 10 stripe order is favoured along the
𝑥-direction (𝑦-direction) for 𝑉/𝑡 ≫ 1, similar to the discussion for Eq. (1.1).
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Figure 1.12.: Panel (a): Interaction volume corresponding to themodel Eq. (1.1)with

the cutoff radius of the interaction being 𝑟𝑐 = 3.0. Panel (b): Side-density map of a

systemwith 𝑁 = 28×28 showing a possible anisotropic crystalline structure forming

for the choice 𝑟𝑐 = 3.0. The size of the dots is proportional to the occupation number

of the corresponding lattice site. The data is taken from calculations at 𝑇/𝑡 = 1/20

and 𝑉/𝑡 = 6.0 at the fixed density 𝜌 = 1/7.

For 𝛼 ≲ 10, however, the stripes progressively give way to a more isotropic,
triangular crystalline structure. In particular, for 𝛼 = 6 (relevant for Rydberg-
dressed atoms [74, 75]) the density map [Fig. 1.13(c)] and structure factor
[Fig. 1.13(f)] indicate a triangular crystal structure that is essentially isotropic
in the 𝑥 and 𝑦 directions. This can be qualitatively explained by considering
that lower values of 𝛼 effectively include more sites to the edges of the inter-
action volume for each particle, different from the case of §1.2. We note that
for the case of smooth potentials as in Rydberg-dressed gases anisotropy can
be re-introduced in the interactions by considering anisotropic Rydberg states
(e.g., excited Rydberg 𝑝-type states instead of 𝑠 states, as in [75, 119, 120]).

We find that strong metastable effects are often obtained in the numerical
simulations for the situations discussed above in the intermediate regime of
interactions 𝑉/𝑡 ≳ 1. The phase diagram thus has to be investigated on a
case-by-case basis.
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Figure 1.13.: Panels (a) to (c): site-density maps of a 48 × 48 system for different

values of 𝛼. The size of each dot is proportional to the average occupation of the

corresponding site. Calculation are performed at 𝑇/𝑡 = 1/20, 𝜌 = 5/36, and 𝑉/𝑡 =

10, 10, 12 respectively. Panels (d) to (f): Heat map plot for the structure factor 𝑆(k)

for the same calculations as panels (a) to (c). The intensity-color scale is shown in

panel (g).

1.4 Conclusion
We have demonstrated that stripe supersolid and crystals may be realized

in the ground state of bosonic, frustration-free cluster-forming Hamiltoni-
ans. In particular, for intermediate interaction strength the competition be-
tween quantum fluctuations and classical cluster formation gives rise to a
novel supersolid-supersolid transition between an isotropic cluster supersolid
and an anisotropic stripe supersolid. These results illustrate the complex-
ity of determining the quantum phase diagrams of systems with long-range
interacting systems, in a regime numerics is still feasible. Intriguing out-of-
equilibrium scenarios may also emerge and are the subject of the next chapter
Chapter 2 . Our predictions could be of direct interest for experiments with
cold Rydberg-dressed atoms in an optical lattice [121, 122]. More generally,
they constitute a step towards the understanding of how long-range interac-
tions can affect the properties of ultracold gases.
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The results presented in this chapter are subject of the following publica-
tion: G. Masella, A. Angelone, F. Mezzacapo, G. Pupillo, and N. V. Prokof’ev.
“Supersolid Stripe Crystal from Finite-Range Interactions on a Lattice”. In:
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2
Non-equilibrium scenarios in

cluster-forming quantum lattice
models

The search for ordered or disordered exotic states of matter is a very active
field of investigation in condensed matter physics [7, 123, 124]. The interac-
tions between the individual constituents of a given system play a fundamen-
tal role in this context, being intrinsically related to the physical mechanisms
responsible for the stabilization of different (possibly novel) physical scenar-
ios. Usually, intriguing equilibrium or out-of-equilibrium properties emerge
in the presence of frustration, i.e., the impossibility of simultaneously satisfy-
ing a minimum energy condition for all terms of the Hamiltonian (see, e.g.,
[125, 126]). The latter may arise, for example, from competing interactions,
polidispersity1 and/or from the presence of peculiar substrates, i.e., lattices.

Recently, a large class of purely repulsive, isotropic extended-range inter-
actions, whose relevance ranges from classical soft-matter systems [111, 112,
113] to cold Rydberg-atom experiments [56, 74, 75, 48, 57, 127, 128], has
elicited considerable theoretical interest. Indeed, these potentials offer the
possibility to explore a variety of equilibrium and out-of-equilibrium phe-

1Polydispersity is defined as the presence in the system of particles with different sizes,
shape, or mass.
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nomena in realistic models where frustration, in the forms discussed above,
is not included. The main features of (pair-wise) extended-range interac-
tions are a plateau which extends up to inter-particle distances of the order
of a given critical radius 𝑟𝑐 and a tail quickly approaching zero for 𝑟 > 𝑟𝑐.
In the classical limit, where quantum tunneling becomes negligible with re-
spect to all the other couplings in the system, systems with extended-range
interactions at high enough particle density 𝜌 are characterized, by a so-called
cluster crystalline ground state where crystalline sites are occupied by self-as-
sembled aggregates of particles (i.e., clusters). Classical cluster crystals have
been shown to possess peculiar equilibriumdynamical properties resembling
those of glass-forming liquids, while still retaining structural order [129]. For
these systems, out-of-equilibrium glassy scenarios where disorder coexists
with clusterization have also been predicted [130, 131]. Furthermore, when
quantum effects are taken into account, clusterizationmay lead to anomalous
Luttinger-liquid behavior2 in one spatial dimension [115, 116, 132, 133], as
well as to the coexistence of diagonal long range order and superfluidity (i.e.,
supersolidity) in 2D free-space [71, 86, 87, 88] or on a triangular lattice [10].
Here, superfluidity may also be concomitant to glassiness in a so-called out-
of-equilibrium superglass.

In order to gain insights into the novel physical phenomena related to clus-
terization, as well as into the interplay of the latter with quantum effects, sys-
tem geometry, and interaction radius 𝑟𝑐, it is of crucial interest to extend the
investigation to different lattices and choices of relevant parameters. In this
context, a previous chapter of this thesis (Chapter 1 ) has been devoted to
the study of the ground state phase diagram of a cluster-forming model of
hard-core bosons with extended-range interactions on a square lattice. For
such a model the ground state is a superfluid (stripe crystal) for sufficiently
small (large) interaction strength 𝑉. Surprisingly, for intermediate values

2In Ref.[115], for the case of spinless fermions interacting via a finite-range pair-wise inter-
action on a 1D lattice, a new cluster Luttinger liquid phase is predicted. In this phase, con-
trary to a regular Luttinger liquid, the granularity in the liquid is given not by individual
particles, but rather by clusters of particles.
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Figure 2.1.: Single-particle crystalline ground states of the extended Bose-Hubbard

Hamiltonian in Eq. (2.1) on a triangular lattice for 𝑟𝑐 = 2𝑎 and 𝜌 = 1/7 [panel (a)],

and on a square lattice for 𝑟𝑐 = 2√2𝑎 and 𝜌 = 1/9 [panel (b)]. Black crosses repre-

sents lattice sites while red dots occupied sites. Green circles highlight the range of

the interaction around an occupied site, black arrows are the vectors generating the

crystalline structure, and cyan regions indicate the primitive cells of the crystals.

of 𝑉 a first order phase transition occurs between two different supersolids:
an isotropic one, emerging from the superfluid when 𝑉 is increased, and an
anisotropic stripe supersolid emerging from the partial quantum melting of
the large-𝑉 crystal when 𝑉 is decreased. Here, since the large-𝑉 crystal is it-
self anisotropic, decreasing the interaction strengths leads to the formation of
anisotropic superfluid exchanges.

As mentioned in Chapter 1 , the study of the ground state phases iscussed
above required extensive calculations and careful temperature and interac-
tion annealings3 due to the presence of many competing out-of-equilibrium
states. The nature of the latter, aswell as their similarities anddifferenceswith
respect to the equilibrium phases, are the focus of this chapter. We present
a systematic study of the out-of-equilibrium scenarios of the model studied
in Chapter 1 and it is organized as follows: in §2.1 we describe the Hamilto-
nian model of interest in detail with particular attention to its cluster-form-
ing regimes and, briefly, the numerical methods adopted to carry out our in-

3Annealings consists here in the slow cooling of the system or in slowly changing the inter-
action strength 𝑉/𝑡 in the simulations starting from a state where equilibration is easy.
This technique can be useful, if the step atwhich𝑇/𝑡 or𝑉/𝑡 is changed is sufficiently small
and if equilibration is reached at every step, in removing internal defect in the systems
that prevent proper crystallization and equilibration in some parameter ranges.
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vestigation. By means of Path Integral Monte Carlo approach, we drive the
system out of equilibrium via simulated low-temperature (𝑇) quenches, an-
alyzing the changes that this procedure induces on the equilibrium phases.
The main findings, illustrated and discussed in §2.2, are: (i) As opposed to
the isotropic and anisotropic supersolid equilibrium ground states, low tem-
perature quenches leads to isotropic out-of-equilibrium (super)solid state.
Remarkably, these are also found for values of 𝑉 at which the equilibrium
phases are instead anisotropic. (ii) The out-of-equilibrium counterpart of the
equilibrium crystal at large 𝑉 is a normal glass, similarly to what happens in a
previous study of the same (albeith with smaller 𝑟𝑐) quantummodel on a tri-
angular lattice [10], as well as in the classical counterpart of the same model
in free space [130]. (iii) No evidence of superglassy behavior is obtained in
the investigated parameter range. The occurrence of such a state, which has
been predicted for the triangular lattice, crucially depends on the interplay
between lattice geometry, particle density and inter-particle interactions. Fi-
nally in §2.3 we outline the conclusions of our work.

2.1 Model and Methods
We investigate a model of monodisperse hard-core bosonic particles de-

scribed by the Hamiltonian

𝐻 = −𝑡 ∑
⟨𝑖𝑗⟩

(𝑏†
𝑖 𝑏𝑗 + h.c.) + 𝑉 ∑

𝑖<𝑗∶𝑟𝑖𝑗≤𝑟𝑐

𝑛𝑖𝑛𝑗 (2.1)

Particles are confined on a square lattice of𝑁 = 𝐿×𝐿 sites and lattice constant 𝑎
with periodic boundary conditions. Here 𝑡 is the hopping coefficient between
nearest-neighbor sites, 𝑏𝑖 and 𝑏†

𝑖 are annihilation and creation operators for
hard-core bosons on site 𝑖, respectively, 𝑛𝑖 = 𝑏†

𝑖 𝑏𝑖, 𝑉 is the interaction strength
and 𝑟𝑖𝑗 is the distance between sites 𝑖 and 𝑗. In the following, 𝑎 and 𝑡 will be
taken as units of length and energy, respectively.

For 𝑟𝑐 = 𝑎, i.e. nearest-neighbor potential, the phase diagram of the model
contains superfluid, solid, and insulatingphases [134], while supersolid states
can be stabilized adding longer-ranged density-density interactions (𝑟𝑐 > 𝑎)
[13, 135]. In the latter regime, which correspond to the case studied here,
cluster formation also takes place in the system.
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Figure 2.2.: Schematic phase diagram of Eq. (2.1) as a function of the interaction

strength 𝑉/𝑡. Each colored region in the lower part of the figure corresponds to a

ground state equilibrium phase: namely, a superfluid (SF), an anisotropic stripe su-

persolid (SS), a anisotropic stripe supersolid (SS) and a stripe crystal (SC). The draw-

ings are sketches of the crystalline structure (where present) of each equilibrium

phase. The filling patterns in the upper part of the diagram identify the out-of-equi-

librium states reached via simulated temperature quenching at target temperature

𝑇/𝑡 = 1/20. The regions where quenching leads to out-of-equilibrium supersolid,

solid and glassy states are denoted by horizontal, diagonal or dot filling patterns,

respectively.

For low enough particle density 𝜌, the classical (i.e., 𝑉/𝑡 → ∞) ground
state is a zero-energy single-particle crystal, where the inter-particle spacing
is larger than the interaction radius. The maximum density 𝜌𝑐 for which such
a crystal exists is determined by 𝑟𝑐 and the lattice geometry. As an example,
while in the study of Eq. (2.1) on the triangular lattice [10] the choice 𝑟𝑐 = 2𝑎
results in a critical density 𝜌tr

𝑐 = 1/7, in the equilibrium study performed in
Chapter 1 , on the other hand, a square lattice geometry with 𝑟𝑐 = 2√2𝑎 leads
to a critical density 𝜌sq

𝑐 = 1/9. The single-particle crystalline structures corre-
sponding to these densities are shown in Figs. 2.1(b) and 2.1(c), respectively.

For 𝜌 ≳ 𝜌𝑐, a single-particle solid has a higher potential energy than a solid
in which particles group up in tightly packed clusters. Indeed, the latter can
arrange themselves far enough from each other to be noninteracting (i.e., out-
side of their mutual interaction radius). A larger value of 𝜌 results in the
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formation of larger clusters. For instance, on the triangular lattice the cho-
sen value of 𝜌 = 13/36 ∼ 2.5𝜌tr

𝑐 led in [10] to clusters of 3 4 particles on
average, while on the square lattice case (Chapter 1 ), for 𝜌 = 5/36 ∼ 1.25𝜌sq

𝑐 ,
the largest clusters contain two particles.

When the system is driven away from thermal equilibrium, cluster forma-
tion can cause effective polidispersity4, which in turn plays a fundamental
role in the appearance of (super)glassy states [10]. This phenomenon is fa-
vored by large cluster sizes, aswell as (sufficiently) strong interactions, which
prevent particles from delocalizing between different clusters, as well as en-
tire clusters from spatially rearranging to establish an ordered (crystalline)
structure.

In this chapter we analyze the out-of-equilibrium physics of Eq. (2.1) for
the same parameter range investigated in Chapter 1 . The model shows a
rich ground state phase diagram, characterized by, e.g., competing supersolid
phases. Understanding how temperature quenchingmay alter this scenario is
one of the main objectives of the present study. Furthermore here, due to the
presence of significantly smaller clusters of the ones appearing in Ref. [10],
and for this reason frustration effects should be significantly weaker than
those occurring in the same triangular lattice case. This would allow to de-
termine, for instance, to which extent various out-of-equilibrium phenomena
depend on clusterization.

We study the model Eq. (2.1) by means of Path Integral Quantum Monte
Carlo simulations using Worm updates [5]. This technique, presented in de-
tail in Appendix A , yields numerically exact results for unfrustrated bosonic
systems and allows to accurately estimate observables such as the superfluid
fraction 𝜌𝑠/𝜌 and the static structure factor 𝑆(k), already defined in Eq. (1.3)
, which measure superfluidity and crystalline order, respectively. Finally, we
determine the single-particle Green Function defined as

𝐺(r) =
1
𝑁 ∑

𝑖
⟨𝑏†

𝑖 𝑏𝑖+r⟩, (2.2)

4Here, because of cluster formation, and to the presence of different types of clusters, the
system can be seen as polydisperse (i.e., composed of particles of different size, shape or
mass)
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associated to the presence of off-diagonal (quasi) long-range order in our
two-dimensional system.

Edwards-Anderson parameter Originally introduced in the mean field the-
ory of spin glasses [126, 136], the Edwards-Anderson order parameter is the
natural order parameter for a disordered phase. Here we define its renormal-
ized version in terms of the boson number density as

𝑄EA =
1

𝑄0
EA

∑
𝑖

⟨𝑛𝑖 − 𝜌⟩2 (2.3)

whereas the normalization 𝑄0
EA = 𝑁𝜌(1 − 𝜌) is the value obtained for a fully

localized state. By construction 𝑄EA = 0 in every homogeneous phase while,
any type of correlation between the site densities will lead to a non zero value
of 𝑄EA. For this reason a finite value of 𝑄EA diagnoses the presence of a dis-
ordered (i.e., glassy) phase only in the absence of any kind of long-range di-
agonal order (e.g. maxk 𝑆(k) = 0. 5

We perform large-scale simulations with up to 𝑁 = 96 × 96 sites and tem-
peratures between 𝑇/𝑡 = 1 and 𝑇/𝑡 = 1/20, the latter being the temperature
investigated in the equilibrium case of Chapter 1 nd there yielding essentially
ground state (𝑇 = 0) results. To gain insights into the out-of-equilibrium sce-
narios, we perform simulated temperature quenches: starting from a high-
temperature configuration, we drive the system out-of-equilibrium by run-
ning low-temperature simulations without performing annealing steps in 𝑇
as done in Chapter 1 .

2.2 Results
Equilibrium phases For clarity, we begin our discussion by summarizing
the ground state phase diagram of model Eq. (2.1) (we refer the reader to
Ref. [17] for an exhaustive discussion). The ground state (lower part of Fig. 2.2)
is a superfluid (SF) at weak interactions, and an isotropic supersolid (IS) at
𝑉/𝑡 = 2.6. The system then undergoes a first-order transition at 𝑉/𝑡 = 4.0 to
a supersolid state with anisotropic stripe crystalline structure and superfluid
5The interested reader can find an early use of the Edwards-Anderson order parameter in

quantum Monte Carlo simulations in Ref. [137]
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response, i.e., a anisotropic stripe supersolid (SS). Finally, superfluidity is lost
at 𝑉/𝑡 = 4.45, and the ground state becomes a stripe crystal (SC).

Driving the system away from thermal equilibrium results in the out-of-
equilibrium phase diagram shown in the upper part of Fig. 2.2, obtained via
analysis of the relevant observables shown in Fig. 2.3, and Fig. 2.4 and dis-
cussed below. In the strongly interacting regime, i.e., 𝑉/𝑡 > 5.5, and for
temperatures 𝑇/𝑡 < 1/5, the simulated quenches stabilize out-of-equilibrium
states where diagonal long range order vanishes in the thermodynamic limit.
As signaled by the finite value of 𝑄EA (see Fig. 2.3), concomitant to the ab-
sence of superfluidity, the resulting states are normal glasses. Conversely,
following our quenches at 𝑇/𝑡 = 1/20 in the intermediate-𝑉/𝑡 region (i.e.,
3.8 ≤ 𝑉/𝑡 ≤ 4.6) the system retains long range order, reaching out-of-equilib-
rium states with crystalline structures different from those obtained at equi-
librium [see Fig. 2.4(d)]. These results allow to identify a variety of crystalline
states in the out-of-equilibrium phase diagram. For 𝑉/𝑡 < 4.2 the system dis-
plays superfluid behavior [see Fig. 2.4(c)]. The latter coexists with diagonal
long range order down to 𝑉/𝑡 = 3.8, pointing out the occurrence of out-of-
equilibrium supersolid states in this parameter region. For 𝑉/𝑡 < 3.8 the sys-
tem equilibrates to an IS and a SF for 𝑉/𝑡 > 2.6 and 𝑉/𝑡 < 2.6, respectively,
rendering our quenching process ineffective. Remarkably, the out-of-equi-
librium supersolids display features considerably different from their equi-
librium counterparts. Specifically, both superfluid responses and crystalline
order are essentially isotropic even when the corresponding equilibrium su-
persolids are strongly anisotropic.

For both high and intermediate interaction strengths 𝑉/𝑡, we determine
the level of equilibration of each simulated quench by performing it in sev-
eral (i.e., ≳ 30) independent realizations, differing in both the initial config-
uration and in the thermalization seed of the quantum Monte Carlo (QMC)
simulation. If our quench protocol is not sufficient to drive the system away
from thermal equilibrium, essentially all the realizations will converge to the
equilibrium state, since the details of the QMC stochastic dynamics in con-
figuration space do not matter in this case. On the other hand, where the
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out-of-equilibrium driving succeeds most of the realizations fail to equili-
brate, with their initial conditions becoming crucial in determining the state
reached by each simulation. A typical example of the latter behavior is shown
in Fig. 2.3(a), where the mean value of an observable (in this case, the maxi-
mum value of the structure factor 𝑆(𝑅)

max) strongly depends on the realization.
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Figure 2.3.: Results for finite-temperature simulated quenches performed at 𝑉/𝑡 =

5.0 and 𝑉/𝑡 = 6.0. Panel (a): maximum value of the structure factor 𝑆(𝑅)
max as a func-

tion of the realization index for 𝐿 = 96, 𝑇/𝑡 = 1/20, and 𝑉/𝑡 = 6.0. Panel (b): real-

ization-averaged value of 𝑆max as a function of the inverse system size for 𝑉/𝑡 = 5.0.

Panel (c): same as for panel (b) for 𝑉/𝑡 = 6.0. Panel (d): Edwards-Anderson param-

eter 𝑄EA as a function of the inverse system size for 𝑉/𝑡 = 6.0. In panels (b) to (d)

triangles, squares and circles correspond to 𝑇/𝑡 = 1/5, 1/10, 1/20, respectively. The

dashed lines correspond to linear fits in 𝑁−1/2, shown when estimates for the two

largest sizes are not identical within numerical uncertainty.

Figures 2.3(b) to 2.3(d) show the scaling, as a function of the system size,
of the realization-averaged maximum peak of the structure factor 𝑆max =
maxk 𝑆(k) and of the Edwards-Anderson order parameter 𝑄EA after quench-
ing to different target temperatures for 𝑉/𝑡 = 5.0 [Fig. 2.3(b)] and 𝑉/𝑡 = 6.0
[Figs. 2.3(c) and 2.3(d)]. For these values of 𝑉/𝑡, the observed out-of-equi-
librium states are non-superfluid. We find equilibration to a stripe solid for
𝑇/𝑡 = 1/5 (triangles). A decrease of the target temperature results in fail-
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ure to equilibrate the vast majority of realizations, which converge to states
where diagonal long range order is suppressed with respect to the equilib-
rium scenario. For 𝑉/𝑡 = 5.0, 𝑆max remains finite in the thermodynamic limit
for 𝑇/𝑡 = 1/10 (filled squares) and 𝑇/𝑡 = 1/20 (filled circles), signaling an
out-of-equilibrium crystal. Conversely, crystalline order is lost for 𝑉/𝑡 = 6.0
and 𝑇/𝑡 = 1/10 (empty squares) and 𝑇/𝑡 = 1/20 (empty circles). For these
temperatures, 𝑄EA remains finite [Fig. 2.3(d)], signaling the emergence of
glassy behavior.

Figure 2.4 shows a detailed comparison of the superfluid and crystalline
order parameters for the out-of-equilibrium and equilibrium cases (full and
empty symbols, respectively) as a function of 𝑉/𝑡. Supersolid behavior oc-
curs, after quenching, for 3.8 ≤ 𝑉/𝑡 < 4.2, i.e., in an interaction strength
window smaller than that for which supersolidity is found at equilibrium. In
particular, superfluidity vanishes in the thermodynamic limit for 𝑉/𝑡 ≥ 4.2
(diamonds in Fig. 2.4(b)). More importantly, the features of these supersolid
out-of-equilibrium states may be both quantitatively and qualitatively differ-
ent from the equilibriumones, whose order parameters are denoted for clarity
by 𝜌eq

𝑠 /𝜌 and 𝑆eq
max, respectively. As expected, for small 𝑉/𝑡 ≲ 4 our quenching

protocol does not significantly alter the values of 𝜌𝑠/𝜌 and 𝑆max with respect
to 𝜌eq

𝑠 /𝜌 and 𝑆eq
max [Figs. 2.4(c) and 2.4(d) and finite-size scaling for 𝑉/𝑡 = 3.9

(triangles in Figs. 2.4(a) and 2.4(b))]. For intermediate 𝑉/𝑡, while at the tran-
sition between the IS and SS phases 𝑆eq

max (empty squares in Fig. 2.4(b)) de-
velops strong anisotropy [17] and features a sizeable variation, 𝑆max remains
essentially constant (filled squares in Fig. 2.4(d)) and isotropic. Indeed, in
all quench realizations the maximum peaks of the structure factor occur at
realization-dependent wavevectors (𝑘(𝑅)

𝑥 , 0) and (0, 𝑘(𝑅)
𝑦 ) with 𝑘(𝑅)

𝑥 ≃ 𝑘(𝑅)
𝑦

and 𝑆(𝑅) (𝑘(𝑅)
𝑥 , 0) ≃ 𝑆(𝑅) (0, 𝑘(𝑅)

𝑦 ). Similarly, 𝜌𝑠/𝜌 (filled circles in Fig. 2.4(c))
takes considerably lower values than 𝜌eq

𝑠 /𝜌 (empty circles in Fig. 2.4(c)) for
𝑉/𝑡 ≳ 4.0 and the superfluid response, as opposed to what found at equilib-
rium, is essentially isotropic. This clarifies the difference between the equilib-
rium supersolid states, which can be either isotropic or anisotropic, and the
out-of-equilibrium ones, which are found to be always largely isotropic. Such
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2.2. Results

a difference persists even in the absence of superfluidity in the out-of-equi-
librium states: for example, for 𝑉/𝑡 > 4.45 the ground state is a stripe crystal
while quenching results in the appearance of substantially isotropic crystals
and glasses.

1
∞

1
48

1
72

1
96

1/L

0.004

0.005

0.006

0.007

S
m

a
x

(a)

V/t = 3.9

V/t = 4.2

1
∞

1
48

1
72

1
96

1/L

0.00

0.05

0.10

0.15

0.20

ρ
s
/
ρ

(b)

0.0

0.1

0.2

0.3

ρ
s
/
ρ

(c)

annealing

quench

3.8 4.0 4.2 4.4 4.6

V/t

0.000

0.005

0.010

0.015

0.020

S
m

a
x

(d)

annealing

quench

Figure 2.4.: Panels (a) and (b): scaling in the inverse size of 𝜌𝑠/𝜌 and 𝑆max for 𝑉/𝑡 =

3.9 (triangles) and𝑉/𝑡 = 4.2 (diamonds) at𝑇/𝑡 = 1/20. Dashed lines are linear fits to

the numerical data, shown when estimates for the two largest sizes are not identical

within their uncertainty. Panel (c): comparison between the equilibrium superfluid

fraction 𝜌eq
𝑠 /𝜌 (empty circles) and the out-of-equilibrium one 𝜌𝑠/𝜌 (filled circles) as a

function of the interaction strength at 𝑇/𝑡 = 1/20, and 𝐿 = 96. Panel (d): comparison

of the equilibrium maximum value of the structure factor 𝑆eq
max (empty squares) and

the out-of-equilibrium one 𝑆max (filled squares) for the same parameters of panel (c).

In panels (c) and (d), solid and dashed lines are guides to the eye.

The isotropic character of the out-of-equilibrium states can also be inferred
by inspection of 𝐺𝑥 and 𝐺𝑦, i.e., the single-particle Green Function 𝐺(r) along
the 𝑥 and 𝑦 directions, respectively. For 𝑉/𝑡 = 4.1, 𝐺𝑥 and 𝐺𝑦 of the cor-
responding anisotropic SS ground state (triangles and circles in Fig. 2.5(a),
respectively) are clearly different. Specifically, while both decay algebraically
as a function of the distance, signaling quasi-off-diagonal long range order,
𝐺𝑦 is characterized by oscillations in correspondence of the stripe periodicity.
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Chapter 2. Non-equilibrium scenarios in cluster-forming quantum lattice models

The out-of-equilibrium 𝐺(r), on the other hand, is essentially isotropic, i.e.,
𝐺𝑥 ∼ 𝐺𝑦 (solid lines in Fig. 2.5(a) where, for simplicity, only 𝐺𝑦 is shown).
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Figure 2.5.: Single-particle Green function 𝐺(r) for 𝑉/𝑡 = 3.9 [panel (a)] and 𝑉/𝑡 =

4.2 at 𝑇/𝑡 = 1/20. Dashed and dotted lines refers to the equilibrium green functions

𝐺eq
𝑥 (𝑟) and 𝐺eq

𝑦 (𝑟) along the 𝑥 and 𝑦 direction, respectively. Solid lines denote the out-

of-equilibrium 𝐺𝑦(r) along the 𝑦 direction. The corresponding out-of-equilibrium

𝐺𝑥(r) along the 𝑥 direction (not shown) is essentially identical. Figure 2.5(b): same

as Fig. 2.5(b) for 𝑉/𝑡 = 6.0. In both panels 𝑇/𝑡 = 1/20 and 𝐿 = 96.

Fig. 2.5(b) displays the same comparison for 𝑉/𝑡 = 6.0. Here the decay of
the 𝐺(r), both at equilibrium and out-of-equilibrium, is exponential, as ex-
pected for a nearly classical crystal and a glass, respectively. Also in this case,
the equilibrium 𝐺(r) is strongly anisotropic, while 𝐺𝑥 ∼ 𝐺𝑦 in its out-of-equi-
librium counterpart.

Further insight into the out-of-equilibrium physics of our model can be
gained from the averaged occupation maps in Fig. 2.6. In both cases shown
in the figure [𝑉/𝑡 = 6.0 in Fig. 2.6(a) and 𝑉/𝑡 = 4.1 in Fig. 2.6(b)] particles
clusterize; for strong 𝑉/𝑡, clusters have in general different shapes and ori-
entations. These induce an effective polidispersity4, ultimately resulting in
glassy behavior [130]. On the other hand, for 𝑉/𝑡 = 4.1, where the system is
supersolid, particles can “hop” between different clusters, establishing long-
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2.2. Results

range exchanges which give rise to a sizeable superfluid response. The latter
is concomitant with a well defined crystalline structure.
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Figure 2.6.: Figure 2.6(a): portion of a site occupation map for one realization for

𝐿 = 96, 𝑇/𝑡 = 1/20, and 𝑉/𝑡 = 6.0. Figure 2.6(b): same as panel Fig. 2.6(a) for

𝑉/𝑡 = 4.1. The size of the dots is proportional to the occupation of each site.

It is important to mention that no evidence of superglassy behavior (e.g.,
no superfluidity in glassy phases) has been found in the parameter range
investigated in this work. This constitutes an important difference with the
results of our recent study of model Eq. (2.1) for 𝑟𝑐 = 2 on the triangular
lattice [10].

A qualitative explanation can be given in terms of a simple energetic argu-
ment. Indeed, the ratio Λ between potential and kinetic energy can be used to
roughly estimate particle mobility. When Λ is large (large 𝑉/𝑡), particles and
clusters formed after quenching, are strongly localized, preventing the real-
ization of a crystalline structure. Superglassy behavior emerges as a delicate
balance between localization and superfluidity, which instead takes place, at
low 𝑇/𝑡, for small Λ.

Indeed, on the triangular lattice superglasses were observed as the out-of-
equilibrium counterparts of supersolids atΛ ∼ 9 and 𝜌𝑠/𝜌 ∼ 0.1. On the other
hand, the equilibrium supersolid phases of model Eq. (2.1) on the square
lattice are characterized by much smaller Λ ∼ 1.1 1.3 and higher 𝜌𝑠/𝜌 ∼ 0.2.
Here the out-of-equilibrium driving leads to superfluid states where, due to
larger mobility, crystalline order can be restored.
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2.3 Conclusion and Outlook
In this chapter we studied the out-of-equilibrium scenarios of a model of

monodispersed hard-core bosons on a square lattice with an extended-range
potential of the soft-shoulder type, of interest for experiments with cold Ryd-
berg-dressed atoms. In the parameter region of our investigation, the ground
state of the model is a cluster crystal and a superfluid for strong and weak
interactions respectively, and an unusual transition between an isotropic and
an anisotropic supersolid state occurs for intermediate interaction strength.

Via simulated temperature quenches, we obtain a glass region for strong in-
teractions, while formoderate values of the latter a supersolid region appears.
We show that such a supersolid is qualitatively different from the ground state
one, being essentially isotropic even for values of the interaction strength for
which the corresponding ground state is anisotropic.

For all interaction strength values where out-of-equilibrium superfluidity
remains finite, long range crystalline order is also maintained. Therefore, no
evidence of superglassy behavior is found in our region of investigation, as
opposed to the case of the triangular lattice [10], where the presence of such
such an exotic state is demonstrated. This discrepancy can be qualitatively
explained in terms of the strong difference in the potential to kinetic energy
ratio, which takes significantly different values on the two mentioned lattice
geometries. In particular, this quantity is considerably smaller on the square
lattice, signaling increased particle mobility. The latter suppresses particle
and cluster localization, which is an essential ingredient for the onset of glassy
physics.
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3
Energy extensivity in quantum
long-range interacting systems

In Chapter 1 and in Chapter 2 we presented the study of a model with fi-
nite-range interactionswhich interpolates betweennearest-neighbor and long-
range couplings while remaining numerically tractable. In these previous
chapters we studied the ground state phase diagram and the out-of-equilib-
rium scenarios emerging from thismodelwhile, at the same time,weunveiled
the complexity arising due to the proliferation of low-energymetastable states
in long-range interacting systems.

Typical long-rangemodels are characterized by an interactionpotentialwhich
decays algebraically, as 1/𝑟𝛼, with the distance (𝑟) between the constituents.
For 𝑑-dimensional systems, the so called strong long-range regime is achieved
when the power-law exponent of the interaction is such that 𝛼 ≤ 𝑑. This
regime is typically associated to unusual thermodynamic properties such as
a non-extensive energy 𝐸 ∼ 𝒱2− 𝛼

𝑑 leading to an ill-defined thermodynamic
limit [138]. Furthermore, the total energy cannot be obtained by summing up
the energies of different subsystems as is usually the case for short-range in-
teractions [139, 140]. This non-additivity appears as a fundamental property
of long-range models and leads to exotic behaviors including the breaking of
ergodicity, the existence of slow relaxation processes, and the nonequivalence
of statistical ensembles [141, 142, 96, 143].
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A typical and still actively studied long-range quantummodel has been in-
troduced by Schulz and consists of one-dimensional (1D) fermions in free-
space interacting via a 1/𝑟𝛼=1 (unscreened) Coulomb potential, with 𝑟 the
distance separating two particles. In [144], Schulz showed using bosoniza-
tion techniques that the ground state of this system is a peculiar metal resem-
bling a classical Wigner crystal, with very slow decay of the charge correla-
tions associated to the plasmon mode [144, 145]. This result was confirmed
numerically using density matrix renormalization group (DMRG) [146] and
variational Monte Carlo methods [147, 148, 149]. In the presence of a lattice
at commensurate fillings, it was shown that while themetallic behavior is sur-
prisingly enhanced as compared to short-range interactions for small system
size, the ground state ultimately enters an insulating phase in the thermody-
namic limit [150, 16, 151, 152].

Here we investigate how restoring energy extensivity in a long-range inter-
acting model affects its fundamental physical properties. Energy extensivity
can be typically restored by rescaling the interaction potential with an appro-
priate volume-dependent factor Λ, which is known as Kac’s prescription [15].
The latter is systematically used to study the thermodynamic properties of
classical spin models with long-range interactions [153, 154, 155, 156, 157],
where the dynamical properties with and without Kac’s rescaling are the
same provided the respective time scales 𝑡res and 𝑡 satisfy 𝑡 = 𝑡res/√Λ [158,
159]. However, it can be shown that the latter statement does not hold true in
quantum systems. It is an open and interesting question to investigate what
other properties such as ground state phases can be fundamentally modified
by Kac’s rescaling.

This chapter is devoted to the study of a one-dimensional periodic chain
of hard-core bosons in the strong long-range interacting regime both in the
presence and absence of Kac’s prescription. In §3.1, we introduce the model
and the methods used in this study, namely the Density Matrix Renormal-
ization Group (DMRG) and the Luttinger liquid theory. In §3.2, we discuss
the results, and show that the main findings of Ref. [16], obtained in the ab-
sence of Kac’s rescaling and for 𝛼 = 1 can be extended to the whole range
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0 ≤ 𝛼 ≤ 1. Here the ground state consists of an insulating gapped phase
in the thermodynamic limit. However, in striking contrast with these results,
Kac’s prescription leads to a metallic phase for any finite strength of the in-
teraction for every 0 ≤ 𝛼 ≤ 1 in the thermodynamic limit. By computing the
Luttinger parameters from the single-particle correlation function, from the
structure factor, and from the charge gap and the charge stiffness, we demon-
strate that, surprisingly, this metallic phase is incompatible with a conven-
tional Luttinger liquid description. Restoring extensivity thought the Kac’s
prescription is further shown to eliminate the plasmon modes while preserv-
ing the long-range character of the potential, and with it inherent properties
of the strong long-range regime, such as non-additivity. Finally, a conclusion
is drawn in §3.3.

The work presented in this chapter is the product of a collaboration with Thomas Botzung1,

David Hagenmuller1 and all the co-authors of the publication: T. Botzung, D. Hagenmüller,

G. Masella, J. Dubail, N. Defenu, A. Trombettoni, and G. Pupillo. “Effects of Energy Ex-

tensivity on the Quantum Phases of Long-Range Interacting Systems”. Submitted to: Phys.

Rev. Lett. (2019). arXiv: 1909.12105 , currently submitted for review to Physical Review

Letters.

3.1 Model and methods
We consider the Hamiltonian

𝐻 = −𝑡
𝐿

∑
𝑖=1

(𝑏†
𝑖 𝑏𝑖+1 + h.c.) + ∑

𝑖>𝑗
𝑉(𝛼)

𝑖−𝑗 𝑛𝑖𝑛𝑗, (3.1)

where the operator 𝑏𝑖 (𝑏†
𝑖 ) annihilates (creates) a hard-core boson on site 𝑖 =

1, ⋯ , 𝐿 satisfying the commutation relations

[𝑏𝑖, 𝑏†
𝑗 ] = 𝛿𝑖𝑗(1 − 2𝑛𝑖) (3.2)

where 𝑛𝑖 = 𝑎†
𝑖 𝑎𝑖 is the local density which, due to Eq. (3.2), can only be 1 or 0.

The interaction potential reads

𝑉(𝛼)
𝑖−𝑗 =

𝑉
Λ𝛼(𝐿)𝑟𝛼

𝑖𝑗
𝑉 > 0, (3.3)

1Institut de Sciences et d’Ingenierie Supramoleculaires and University of Strasbourg
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Chapter 3. Energy extensivity in quantum long-range interacting systems

where the distance 𝑟𝑖𝑗

𝑟𝑖𝑗 =
𝐿𝑎
𝜋 sin(

𝜋
𝐿 ∣𝑖 − 𝑗∣) (3.4)

corresponds to the chord distance as depicted in Fig. 3.1 (we assume that the
sites are uniformly distributed on a ring).

Figure 3.1.: Sketch of the model Eq. (3.1). Sites (white circles) are arranged on a ring

with uniform spacing 𝑎. The distance between two sites is given by the cord distance

Eq. (3.4). Bosons (red circles) can hop to nearest neighboring site with hopping am-

plitude 𝑡. Themaximumoccupation number is 𝑛𝑖 = 1 due to the hard-core constraint.

In the following, the nearest neighbor hopping 𝑡 and lattice spacing 𝑎 are
taken as unit of energy and space, respectively (with 𝑎 ≡ 𝑡 ≡ 1). Kac’s rescal-
ing of the interaction potential is included via the function

Λ𝛼(𝐿) =

⎧{{{{
⎨{{{{⎩

1 𝛼 > 1

𝐿1−𝛼 𝛼 < 1

log (𝐿) 𝛼 = 1.

(3.5)

Mapping to other models We note that such a model of hard-core bosonic
particles can be mapped onto a XXZ Heisenberg model for spin-1/2 particles
with long range couplings by directlymapping the spin operators 𝑆+

𝑖 , 𝑆−
𝑖 , and

𝑆𝑧
𝑖 to the bosonic annihilation and creation operators via the relations [160]

𝑆+
𝑖 = 𝑏𝑖, 𝑆−

𝑖 = 𝑏†
𝑖 , 𝑆𝑧 =

1
2 − 𝑏†

𝑖 𝑏𝑖 (3.6)
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which result, by substituting Eq. (3.6) into Eq. (3.2), in the known commuta-
tion relations for spin-1/2 operators

[𝑆+
𝑖 , 𝑆−

𝑗 ] = 2𝛿𝑖𝑗𝑆𝑧
𝑖 , [𝑆±

𝑖 , 𝑆𝑧
𝑗 ] = ∓𝛿𝑖𝑗𝑆±

𝑖 (3.7)

and in the Hamiltonian

ℋ𝑋𝑋𝑍 = 𝐽𝑥 ∑
⟨𝑖𝑗⟩

(𝑆+
𝑖 𝑆−

𝑗 + 𝑆−
𝑖 𝑆+

𝑗 ) + 𝐽𝑧 ∑ 𝑖 < 𝑗
1
𝑟𝛼
𝑖𝑗

𝑆𝑧
𝑖 𝑆𝑧

𝑗 , 𝐽𝑥 = −2𝑡, 𝐽𝑧
𝑖𝑗 = 𝑉𝑖𝑗

(3.8)
We also note that suchmodel can bemapped into amodel of spinless fermions
via Jordan-Wigner transformations (see e.g., Refs. [161] for an example of
such mapping).

Methods and techniques The study of the ground state properties of Eq. (3.1)
presented in §3.2 is performed via a combination of numerical and analytical
tools including Luttinger liquid theory and the DMRG. Our DMRG implemen-
tation is based on the publicly available ITensor C++ library [162]. Calcu-
lations are performed for large system sizes (𝐿 ≳ 200 sites) both with and
without Kac’s rescaling.

3.2 Results
In Fig. 3.2, for a choice of 𝛼 = 1 and for different interaction strengths 𝑉/𝑡,

we compute the single-particle charge gap defined in terms of the ground
state energies 𝐸0 for states with 𝑁, 𝑁 − 1, and 𝑁 + 1 particles.

Δ = (𝐸0(𝑁 + 1) − 𝐸0(𝑁)) − (𝐸0(𝑁) − 𝐸0(𝑁 − 1)) (3.9)

The situation without Kac’s rescaling [Λ1(𝐿) = 1, Figs. 3.2(a) and 3.2(b)] has
been already investigated in Ref. [16], and features a non-extensive energy. In
this case, we find that the gap Δ(𝐿 ≫ 1) ≠ 0 for any 𝑉 > 0, which indicates an
insulating phase in the thermodynamic limit consistently with the conclusion
of Ref. [16]. These results are drastically modified when using the Kac’s pre-
scription. By rescaling the interaction potential [Λ1(𝐿) = log(𝐿), Figs. 3.2(c)
and 3.2(d)], we find that while extensivity is clearly restored, Δ ∼ 1/𝐿 for all
𝑉 > 0. This result indicates a metallic behavior in the thermodynamic limit
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observed in the whole range 0 ≤ 𝛼 ≤ 1 (not shown). This constitutes the
main result of this chapter.
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Figure 3.2.: Finite-size scaling of the single-particle gap Δ computed with DMRG at

half-filling ⟨𝑛𝑖⟩ = 0.5, for 𝛼 = 1 and different interaction strengths 𝑉 (in units of the

hopping energy 𝑡). While an insulating phase (Δ ≠ 0) is found without Kac’s rescal-

ing panels (a) and (b), the latter leads to a metallic phase (Δ = 0) in the thermody-

namic limit panels (c) and (d). Extrapolation for 𝐿 → ∞ is obtained by fitting the

numerical data with Δ(𝐿) = 𝑏 + 𝑐
𝐿 + 𝑑

𝐿2 (dotted lines). The finite-size scaling of the

ground state energy per particle is shown in panels (c) and (d).

In order to understand the physical origin of the significant difference be-
tween the extensive and non-extensivemodels, we investigate the low-energy
properties of Eq. (3.1) using the Luttinger liquid theory. A convenient bosonic
representation of 𝐻 in terms of the continuous variable 𝑥 ≡ 𝑗𝑎 can be obtained
by treating the interaction potential as a perturbation [163]

𝐻 =
1

2𝜋 ∫𝑑𝑥 𝑢𝐾 (𝜋Π)2 +
𝑢
𝐾∇2𝜙 −

𝑔
𝜋𝑎2 cos (4𝜙) , (3.10)

where Π(𝑥) and 𝜙(𝑥) and are canonically conjugate bosonic fields depending
on the long wavelength fluctuations of the fermion density. The so-called
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Luttinger parameters 𝑢 and 𝐾 are related by [16] Appendix B

𝑢𝐾 = 𝑣F

𝑢
𝐾 = 𝑣F +

1
𝜋

𝐿
∑
𝑟=1

𝑉(𝛼)
𝑟 [1 − cos (2𝑘F𝑟)] (3.11)

where 𝑣F denotes the Fermi velocity and 𝑘F the Fermi wave vector. The first
two (quadratic) terms of Eq. (3.10) describe how the properties of the non-
interacting Luttinger liquid are renormalized by the interactions. In particu-
lar, 𝐾 determines the decay of the single-particle correlation function ⟨𝑎†

𝑖 𝑎𝑗⟩ ∼
𝑟−1/(2𝐾)
𝑖𝑗 . The third term in Eq. (3.10) stems from scattering processes across
the Fermi surface where the particle momentum is conserved up to a recip-
rocal lattice vector. It is usually denoted as umklapp term and scales with the
strength

𝑔 =
𝐿

∑
𝑟=1

𝑉(𝛼)
𝑟 cos (2𝑘F𝑟) . (3.12)

For a finite 𝑔, it is possible to show using a renormalization-group study [163]
of the Hamiltonian Eq. (3.10) that the system goes from an insulating to a
metallic phase as 𝐾 is increased above a critical value 𝐾𝑐. At half-filling, and
neglecting multiple umklapp scattering [164], the critical value is 𝐾𝑐 = 0.5.
Note that in the case of a nearest-neighbor interaction 𝛼 → ∞, such a metal-
insulator transition occurs at 𝑉 = 2𝑡 [165].

We consider a half-filled band ⟨𝑛𝑖⟩ = 0.5, which provides 𝑘F = 𝜋/2 and 𝑣F =
2. In the absence of Kac’s rescaling, the first sum ∑𝑟 𝑉(𝛼)

𝑟 entering Eq. (3.11)
diverges in the thermodynamic limit ∼ log(𝐿) for 𝛼 = 1 and ∼ 𝐿1−𝛼/(1−𝛼) for
0 ≤ 𝛼 < 1. The second sum ∑𝑟 𝑉(𝛼)

𝑟 cos (2𝑘F𝑟) entering Eqs. (3.11) and (3.12)
is bounded due to the alternating sign. Therefore, while the umklapp scat-
tering strength 𝑔 remains finite, the Luttinger parameter 𝐾 → 0 for 0 < 𝛼 ≤ 1
and 𝑉 > 0 in the thermodynamic limit, consistently with an insulating phase.

We find that rescaling the interaction potential with the factor Λ𝛼(𝐿) =
log(𝐿) for 𝛼 = 1 and Λ𝛼(𝐿) = 𝐿1−𝛼 for 𝛼 < 1 strongly affects the compe-
tition between 𝐾 and 𝑔. In this case, the long-wavelength divergence is re-
moved since lim𝐿→∞ ∑𝑟 𝑉(𝛼)

𝑟 = 𝑉 for 𝛼 = 1 and lim𝐿→∞ ∑𝑟 𝑉(𝛼)
𝑟 = 𝑉/(1 − 𝛼)

for 𝛼 < 1. This suggests a metallic phase for 0 < 𝛼 ≤ 1, since 𝐾 remains fi-
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nite and 𝑔 → 0 for any finite 𝑉 > 0 in the thermodynamic limit as seen from
Eqs. (3.11) and (3.12)).

The above arguments cannot be used in the case 𝛼 = 0 since the series
∑𝑟 𝑉(𝛼)

𝑟 cos (2𝑘F𝑟) does not have a unique limit for 𝐿 → ∞. Nevertheless, this
particular case can be solved exactly using a mean-field approach. This leads
to a free fermion (metallic) phase with charge correlations ⟨𝑎†

𝑖 𝑎𝑗⟩ ∼ 𝑟−1/2
𝑖𝑗 ,

regardless of the presence or absence of Kac’s rescaling Appendix B . This
phase was referred to as a strange metal in Ref. [152], since a finite gap Δ = 𝑉
is found for 𝐿 → ∞ in the absence of Kac’s rescaling. Upon restoring a well-
defined thermodynamic limit (𝑉 → 𝑉/𝐿), we find that the gap Δ ∼ (𝑉 +
2𝜋𝑡)/𝐿 → 0 for 𝐿 → ∞ consistently with a metallic phase.

In order to gain further insights, we first compute the Luttinger parameter
𝐾 by fitting the correlation function ⟨𝑎†

𝑖 𝑎𝑗⟩, and represent it in Fig. 3.3 for dif-
ferent 𝑉 and 𝛼 = 0.5. We observe two opposite trends depending on whether
Kac’s rescaling is present or not. In the latter case [Fig. 3.3(a)], 𝐾 decreases
when increasing 𝐿 and lies below the critical value 𝐾𝑐 = 0.5 for 𝐿 → ∞,
which indicates an insulating phase. The case with Kac’s rescaling is shown
in Fig. 3.3(b), where a finite 𝐾 is found for all 𝑉 in the thermodynamic limit.

We then compute the charge stiffness [163]

𝐷 = 𝜋𝐿∣∣∣∣
𝜕2𝐸0(Φ)

𝜕Φ2
∣∣∣∣Φ=0

, (3.13)

which is proportional to the Drudeweight [167] and therefore provides valu-
able information on themetallic or insulating properties of the system. More-
over, it also gives a directmeasure of the umklapp scattering strength. A large
𝐷 corresponds to a goodmetal, while an insulating phase features 𝐷 = 0. The
charge stiffness is computed numerically from the ground state energy 𝐸0 by
threading a flux Φ through the circular chain, and represented in Fig. 3.4 as
a function of 1/𝐿2 for 𝛼 = 0.5. In the absence of Kac’s rescaling [Fig. 3.4(a)],
𝐷 decreases when increasing 𝐿 for any finite 𝑉. The latter drives the system
towards an insulating phase (𝐷 → 0) in the thermodynamic limit. In con-
trast, 𝐷 increases with 𝐿 in the presence of Kac’s rescaling [Fig. 3.4(b)], which
confirms the existence of a metallic behavior. In the thermodynamic limit,
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Figure 3.3.: Luttinger parameter 𝐾 computed numerically at half-filling for 𝛼 = 0.5

and different 𝑉, by fitting the correlation function ⟨𝑎†
𝑖 𝑎𝑗⟩ derived in Ref. [166]. The

critical value 𝐾𝑐 = 0.5 indicating the metal-insulator transition with nearest neigh-

bor interaction is displayed as a black dashed line. In the absence of Kac’s rescaling

[panel (a)], 𝐾 decreases when increasing 𝐿, lying below the critical line for 𝐿 → ∞

(insulating phase). In contrast, 𝐾 increases with 𝐿 in the presence of Kac’s rescaling

[panel (b)], and remains finite even for very large 𝑉 (metallic phase). Extrapolation

in the thermodynamic limit is obtained by fitting the data with the same function as

in Fig. 3.2 (dotted lines).

we find that 𝐷 ≈ 𝑣F even for very large 𝑉, in surprisingly good agreement
with the Luttinger liquid prediction 𝐷 = 𝑢𝐾 and Eq. (3.11). Note that we
have performed a full numerical study showing that the conclusions drawn
from Figs. 3.3 and 3.4 can be unambiguously extended to the whole range
0 ≤ 𝛼 ≤ 1.

Now that we have demonstrated the metallic character of the ground state,
we check the validity of the Luttinger liquid theory in Fig. 3.5 by computing
the parameter 𝐾 for 𝐿 → ∞ and 𝛼 = 0.5 in three different ways: From the
single-particle correlation function ⟨𝑎†

𝑖 𝑎𝑗⟩ (see above), from the static structure
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Figure 3.4.: Charge stiffness 𝐷 computed numerically from Eq. (3.13) at half-filling,

as a function of 1/𝐿2 for 𝛼 = 0.5 and different 𝑉. The magnetic flux Φ is imple-

mented via the twisted boundary condition 𝑐1 = 𝑒𝑖Φ𝑐𝐿+1 [164]. Two opposite trends

are observed depending on whether Kac’s rescaling is present (panel (b)) or not

(panel (a)). While 𝐷 → 0 for 𝐿 → ∞ in the latter case (insulator), 𝐷 remains finite

in the former case (metal).

factor

𝑆(𝑞) =
1
𝐿 ∑

𝑖,𝑗
𝑒i𝑞∣𝑖−𝑗∣ (⟨𝑛𝑖𝑛𝑗⟩ − ⟨𝑛𝑖⟩⟨𝑛𝑗⟩) (3.14)

as 𝐾 = 𝐿𝑆(𝑞 = 2𝜋/𝐿), and from the relations 𝜋 𝑢
𝐾 = 𝜕Δ

𝜕(1/𝐿) and 𝑢𝐾 = 𝐷
stemming from the Luttinger liquid theory [163]. In the absence of Kac’s
rescaling [Fig. 3.5(a)], a discrepancy between the values of 𝐾 extracted from
the two correlation functions (labeled 𝐾1p and 𝐾2p in the figure) is observed,
which indicates the breakdown of the Luttinger liquid theory related to the
opening of a gap (insulating phase). The agreement obtained for small 𝑉
is attributed to the metal-like character at finite 𝐿 consistently with the data
shown in Fig. 3.3. In the presence of Kac’s rescaling [Fig. 3.5(b)], 𝐾1p and
𝐾2p match well up to very large 𝑉, while they match neither the formula
𝐾 = 1/√1 + 𝑉/[𝜋𝑣F(1 − 𝛼)] (dotted line) stemming from Eq. (3.11) nor 𝐾
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obtained from Δ and 𝐷 (labeled 𝐾Δ/D in the figure). We find that this dis-
crepancy holds in the entire range 0 ≤ 𝛼 ≤ 1 (see inset), implying a break-
down of Luttinger liquid theory in the strong long-range regime. For 𝛼 > 0,
this breakdown is only partial since numerics indicate that both 𝐾Δ/D and
𝐾1p,2p maintain the functional form

𝐾 =
1

√1 + 𝛾𝑉/(𝜋𝑣F)
(3.15)

with 𝛾 finite for all 𝑉 [see Fig. 3.5(b)]. This is, however, not true for 𝛼 = 0
which can be solved analytically Appendix B . In this case, the free fermion
result 𝐾1p,2p = 1 for all 𝑉 extracted from the correlation functions differs sig-
nificantly from the functional form Eq. (3.15) (𝛾 = 0). Interestingly, we find
that 𝐾Δ/D is correctly described by Eq. (3.15) with 𝛾 = 1, which corresponds
exactly to the analytic prediction obtained from Eq. (3.11). Note that in the
short-range case 𝛼 ≫ 1, all methods predict the same 𝐾 as expected from the
Luttinger liquid theory (see inset). The demonstration of this gapless, crit-
icalAppendix B metallic phase that does not fall into the conventional Lut-
tinger liquid theory is a central result of this work. While here we focused on
the case of half-filling, this phase appears in fact for all densities.

In the supplemental material, we show that the long-wavelength excita-
tions of this metallic phase have a linear dispersion, similar to a Luttinger liq-
uid with short-range interactions. This can be readily shown by considering
the continuous Hamiltonian Eq. (3.10) with interaction potential 𝑉(𝛼)(𝑥) =
𝑉/ (𝑥2 + 𝑎2)𝛼/2. The diagonalization of this Hamiltonian in Fourier space
provides the plasmondispersion relation𝜔(𝑞) = 𝑣F𝑞√1 + 𝑉(𝛼)(𝑞)/(𝜋𝑣F). Kac’s
rescaling eliminates the long-wavelength divergence of the Fourier compo-
nent 𝑉(𝛼)(𝑞 → 0) and therefore leads to the dispersion relation of ametal with
short-range interactions 𝜔(𝑞) ∼ 𝑣F𝑞. Note that since the algebraic character of
the interaction potential is preserved when using the Kac’s prescription, the
latter is thus “weaker” than Thomas-Fermi screening which turns the long-
range interaction into a short-range one.
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3.3 Conclusion
In this chapterwehave shown that the low-energyproperties of one-dimen-

sional hard-core bosonic particles interacting via a long-range potential are
fundamentally modified when restoring energy extensivity and thus a well-
defined thermodynamic limit. When energy extensivity is restored, we find
an unusual metallic phase that is not described by the Luttinger liquid theory.
Since the linear excitation spectrum of this phase is also present for higher-
dimensional systems (𝑑 > 1) in the case 𝛼 = 1, investigating the properties
of such an unconventional liquid with restored energy extensivity in higher
dimension [168] is an interesting prospect.

Such study could be of interest for systems in which interactions are nat-
urally long-range and extensive, such as of cold and ultracold atoms with
cavity-mediated long range interactions [68]. For instance, the case 𝛼 = 0
can be typically obtained when the spatial extent of the atomic cloud is much
smaller than the cavity wavelength [169].

We also note that the Kac’s prescription Eq. (3.5) in not the only way to re-
store energy extensivity in the model Eq. (3.1). An alternative Kac’s prescrip-
tion indeed consists in dividing the whole Hamiltonian Eq. (3.1) by Λ𝛼(𝐿). In
this case, the behaviors of the correlation function and of the charge stiffness
are not affected by such a global rescaling, and are therefore those of an in-
sulator. However, the charge gap vanishes in the thermodynamic limit since
the energy of the ground state 𝐸0 is simply replaced by 𝐸0/𝐿, and the system
exhibits an hybrid insulating/metallic behavior.

56 Guido Masella – Ph. D. thesis



3.3. Conclusion

0.0 2.5 5.0 7.5 10.0

V

0.0

0.2

0.4

0.6

0.8

1.0

li
m
L
→
∞
K

(L
)

(a)

Kac off

0 20 40 60 80

V

(b)

Kac on

K∆/D

K1p

K2p

Figure 3.5.: Luttinger parameter 𝐾 extrapolated in the thermodynamic limit versus 𝑉

at half-filling and for 𝛼 = 0.5, without (panel (a)) and with (panel (b)) Kac’s rescal-

ing. 𝐾 is computed in 3 different ways: From the single-particle correlations (𝐾1p),

the structure factor (𝐾2p), and from the gap and the charge stiffness (𝐾Δ/D). The for-

mula obtained from Eq. (3.11) is displayed as a dotted line. Inset: ∣𝐾1p − 𝐾2p∣ and

∣𝐾1p − 𝐾Δ/D∣ versus 𝛼 for 𝑉 = 1.5. A discrepancy between 𝐾1p and 𝐾2p is observed

without Kac’s rescaling, which indicates the breakdown of the Luttinger liquid the-

ory (insulator). In contrast, the property 𝐾1p = 𝐾2p observed with Kac’s rescaling

even for large 𝑉 suggests a metallic phase, which is not captured by the conventional

Luttinger liquid theory since 𝐾Δ/D does not match 𝐾1p,2p for 𝛼 < 1. In the short-range

case 𝛼 ≫ 1, one recovers 𝐾1p,2p = 𝐾Δ/D in agreement with the standard Luttinger liq-

uid theory.
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4
Conclusions and Outlooks

In this Ph. D. work I investigated the emergence of exotic phenomena in
strongly-correlatedmodels of direct experimental interest in ultracold atomic
gases. I have focused this study on many-body systems of bosonic particles
interacting via finite- and long-range potentials using state-of-the-art numer-
ical techniques described in Appendix A .

In the first chapter we studied a frustration-free cluster-forming model of
hard-core bosonic particles interacting via a finite-range potential. We have
demonstrated that stripe supersolid and crystalsmaybe realized in the ground
state of such model. In particular we demonstrated the presence, at interme-
diate interaction strengths, of a novel supersolid-to-supersolid transition be-
tween isotropic and anisotropic supersolids. This transition is understood in
terms of the competition between quantum fluctuations and classical cluster
formation. These results illustrate the complexity of determining the quan-
tumphase diagrams of systemswith long-range interacting systems in a regime
where numerical simulations are still feasible. Our predictions, which include
the presence of different kind of supersolids, could be of direct interest for
experiments with cold Rydberg-dressed atoms in an optical lattice [121, 122].
They could also provide useful insights on the microscopic origin of the so-
called superstripe phase found in lattice-based superconductors [14]. More
generally, they constitute a step towards the understanding of how long-range
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interactions can affect the properties of ultracold gases.

In the second chapter we studied the out-of-equilibrium scenarios of the
same model investigated in Chapter 1 . This study has been carried out via
simulated temperature quenches evidencing a glassy phase for strong inter-
actions, in the same range of parameter where the corresponding equilibrium
state is a normal stripe crystal. For intermediate interactionswedemonstrated
the presence of a metastable isotropic supersolid state which appears to be
qualitatively different from the anisotropic one found in the ground state. In
stark contrast with a previous study on the triangular lattice [10], no evi-
dence of a superglass phase is found in our region of investigation. We in-
stead demonstrated that for all interaction strength values where the out-of-
equilibrium states are found to be superfluid, long range crystalline order is
also present. We understood the discrepancy with the triangular lattice case
in terms of the strong difference in the potential to kinetic energy ratio, which
takes significantly different values on the two mentioned lattice geometries.
In particular, this quantity is considerably smaller on the square lattice, sig-
naling increased particle mobility. The latter suppresses particle and cluster
localization, which is an essential ingredient for the onset of glassy physics.
The physics described in this chapter should be directly relevant for experi-
ments with ultracold Rydberg-dressed atoms confined to optical lattices [121,
122]. We hope that these results will provide new insights on the presence or
absence of metastable supersolid, superglassy and glassy phases.

In the last chapter of this thesis we have investigated how the properties
of long-range interacting systems are fundamentally modified when restor-
ing energy extensivity and consequently awell-defined thermodynamic limit.
We have focused our study on a one-dimensional model of hard-core bosonic
particles with interactions decaying as a power-law of the distance 1/𝑟𝛼. We
found, using combination of numerical and analytical techniques, that in place
of a gapped insulating phase in the absence of Kac’s rescaling, the ground
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state of the energy extensive, i.e. rescaled, model is an unusual metallic phase
that is not described by the Luttinger liquid theory. As we shown also in
Appendix B , the latter provides the correct functional behaviour for 𝛼 > 0
while it fully breaks down in the case 𝛼 = 0. Interesting prospects include the
investigation of such unconventional metallic phase in higher-dimensional
systems [168], and the experimental study in systems where interactions are
naturally long-range and extensive, such as of cold and ultracold atoms with
cavity-mediated long range interactions [68, 169].

DuringmyPh.D., I have collaboratedwith the experimental groupof Prof. Kenji
Ohmori1 in the analysis of their observations regarding the ionization dy-
namics of ultracold Rydberg atoms. In this work, which is not featured in
this thesis, we demonstrate the first step toward the realization of arrays of
ultracold atoms in optical lattice excited to states where single electron wave
functions spatially overlap. Such a system may be an ideal platform to simu-
late exotic electronic many-body phenomena in the condensed phase. In the
experiment the team of Prof. Ohmori excite high-lying electronic (Rydberg)
states in an atomic Mott insulator with a coherent ultrashort lasr pulse. In a
regime where the Rydberg orbitals of neighboring lattice sites overlap with
each other, the atoms should undergo spontaneous ionization2. The careful
analysis of the experimental results, towhich I have contributed, revealed that
indeed the observations of avalanche ionization, of the formation of ultracold
plasma, and of the significant differences in the ionization dynamics between
a Bose-Einsten condensate and a Mott insulator, signal the actual creation of
exotic electronic states with overlapping wave functions.

1Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
2Penning ionization
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A
Numerical Methods

This appendix constitutes a quick overview of the numerical methods used
to obtain the results shown in Chapters 1 and 2 . It is structured as follow: In
Appendix A.1 we discuss the basic ideas underlying Monte Carlo methods.
We use these ideas in Appendix A.2 to present the so called worm algorithm,
a Path Integral Monte Carlo method which has the remarkable property to be
numerically exact for bosonic systems on a lattice.

0 1
0

1

N = 400 π ≈ 3.3(2)

0 1
0

1

N = 4000 π ≈ 3.14(6)

0 1
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1

N = 40000 π ≈ 3.14(2)

Figure A.1.: Direct sampling Monte Carlo estimation of 𝜋 = 3.14159 …. Each point

corresponds to a position sampled from an uniform distribution on the are of the

square. For simplicity the evaluation is carried out only on a quarter of the area

of the square and conversely of the circle. Orange points corresponds to hits in the

circle while blue point corresponds to misses.
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A.1 Monte Carlo methods
Monte Carlo methods are a class of computational algorithms which relies

on repeated random sampling to provide generally approximate solutions to vast
ranges of problems. These methods are usually useful in cases where ana-
lytical or numerical solutions of the problem at hand don’t exist or are too
difficult to implement. Numerical Monte Carlo integration of high dimen-
sional integrals, such as appear in statistical physics and other domains, is
a prime example of the strengths of this method resulting in a vast range of
scientific applications.

One of the simplest examples of Monte Carlo methods consists in the esti-
mation of the value of 𝜋 via direct sampling of the ratio between the area of a
square and the area of the inscribed circle. This ratio is 𝜋/4. This estimation
is carried out by sampling randomly (with uniform probability distribution)
a certain number 𝑁 of different positions inside the square and then counting
the number of times 𝑁hits such points happens to hit the inscribed circle. As
the number of sampled points grows the ratio between the hits and the total
number of samples will approximate the ratio between the area of the circle
and the square1. The value of 𝜋 can then be estimated as

𝜋 ≈ 4
𝑁hits

𝑁 . (A.1)

This method is referred to as direct sampling because of the way samples are
directly generated from a probability distribution. Examples of estimations
of 𝜋 can be seen in Fig. A.1.

In the following we will encounter another sampling method known as
Markov Chain Monte Carlo sampling. To simply illustrate the method we shall
apply it to the problem of the evaluation of 𝜋. Starting from the center of the
square we proceed moving in steps of random length and random direction,
if the end position of each step is inside the circle we count it as a hit, other-
wise as a miss. As we proceed moving randomly inside the square area, we
can encounter cases where the sampled stepwould end up outside the square
1Jacob’s Bernoulli law of large numbers.
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Figure A.2.: Markov Chain Monte Carlo estimation of 𝜋 = 3.14159 …. Paths are

shown as a solid line (grey) while the size of each point (blue for misses, orange

for hits) is proportional to the number of times each point is sampled.

area. In these cases the step is rejected and the current standing position is
counted again as a hit or a miss depending if it was inside or outside the cir-
cle. Examples estimations of 𝜋 are shown in Fig. A.2.

The general problem these methods are called to solve is the determination
of the expectation value of an observable 𝒪(x) on a probability distribution
𝜋(x). Here, for simplicity we consider x to be an 𝑛-dimensional vector, i.e.
x ∈ ℝ𝑛. The expectation value of the observable 𝒪 is defined as

⟨𝒪⟩ =
∫ ⋯ ∫ 𝒪(x) 𝜋(x)d𝑛x

∫ ⋯ ∫ 𝜋(x)d𝑛x
. (A.2)

InMonteCarlomethods such an expectation value is computed as the average
over randomly sampled positions x𝑖 over the probability distribution 𝜋:

⟨𝒪⟩ = lim𝑚→∞

𝑚
∑
𝑖=1

𝒪(x𝑖). (A.3)

The difference between direct sampling and Markov Chain Monte Carlo
methods consists in how the set of samples {x𝑖} is generated. The first case
consists in the direct generation of the samples from the probability distri-
bution 𝜋 while the latter consist in the creation of a Markov Chain having 𝜋
as an equilibrium distribution. In general we can define a Markov chain on
a discrete set of states 𝑆 as a succession 𝑋1, 𝑋2, 𝑋3, ⋯ ∈ 𝑆 for which subse-
quent transitions 𝑋𝑡 → 𝑋𝑡+1 are statistically independent, i.e. the state 𝑋𝑡+1
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depends only on the state preceding state 𝑋𝑡 and not on the others. In order
for a Markov Chain to have 𝜋 as limiting equilibrium distribution it needs to
satisfy two conditions:

• Ergodicity: any configuration 𝑥 ∈ 𝑆 must be reachable from any other
through a finite number of updates, in formulas

∀𝑥, 𝑦 ∈ 𝑆 ∃𝑛 > 0 ∶ 𝑝𝑛
𝑥→𝑦 > 0 (A.4)

given 𝑝𝑛
𝑥→𝑦 the probability of reaching the state 𝑦 in 𝑛 steps, starting from

the state 𝑥.

• Balance:

∀𝑦 ∈ 𝑆, ∑
𝑥∈𝑆

𝜋(𝑥)𝑝𝑥→𝑦 = 𝜋(𝑦) (A.5)

where we have used the notation 𝑝𝑥→𝑦 ≡ 𝑝1
𝑥→𝑦

Sometimes it is useful to impose a stronger condition other than the balance:

• Detailed Balance:

∀𝑥, 𝑦 ∈ 𝑆 𝜋(𝑥)𝑝𝑥→𝑦 = 𝜋(𝑦)𝑝𝑦→𝑥 (A.6)

It can be shown2 that, if a Markov Chain satisfies these conditions, then the
time averages on the stochastic process will tend, as the length of the chain
goes to infinity, to averages on the equilibrium distribution 𝜋.

Metropolis-Hastings algorithm In order to design a Markov Chain which
satisfies these conditions, we can make use of the procedure known as the
Metropolis-Hastings algorithm [171, 172]. This technique consists in design-
ing a Markov Chain whose transition probabilities 𝑝𝑥→𝑦 can be split in two
contributions: a proposal probability 𝑔𝑥→𝑦, i.e. the probability of proposing the
state 𝑦 given the state 𝑥, and an acceptance ratio 𝑎(𝑦, 𝑥), i.e. the probability to
2See e.g., Ref.[170]
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accept the proposed state 𝑦. Accepting or rejecting a proposed transition or
update 𝑥 → 𝑦 with probability

𝑎(𝑦, 𝑥) = min⎛⎜
⎝

1,
𝜋(𝑦)𝑔𝑦→𝑥

𝜋(𝑥)𝑔𝑥→𝑦
⎞⎟
⎠

(A.7)

automatically satisfies the detailed balance conditionEq. (A.6), andultimately
ensures, if the set of updates is ergodic, that𝜋 is the limiting distribution of the
defined Markov process. In the next section Appendix A.2 the Metropolis-
Hasting algorithm will constitute the basis on which the methods presented
are built.

Markov ChainMonte Carlomethods are widely used in classical and quan-
tum[3] statistical physics where one is usually interested in the computation
of the expectation value of thermodynamic observables

⟨𝒪⟩ =
1
𝒵

Tr [𝒪e−𝛽𝐻] 𝒵 = Tr [e−𝛽𝐻] (A.8)

where 𝛽 = 1/𝑘𝐵𝑇 is the inverse temperature, 𝑘𝐵 the Boltzmann constant, 𝐻 is
the Hamiltonian of the system of interest, and 𝒵 is the partition function.

In the following sectionwewill introduce theQuantumMonteCarlomethod
that has been used to obtain many of the results presented in this thesis.

A.2 Path Integral Monte Carlo methods
The path integral Monte Carlo (PIMC) methods are a class of quantum

Monte Carlo algorithms based on a worldline graphical representation of the
partition function 𝒵. Without loss of generality we consider the Hamiltonian
𝐻 for a system of interacting bosonic particles. This Hamiltonian can be writ-
ten as a sum of a diagonal part 𝐻0 and an off-diagonal part 𝐻1

𝐻 = 𝐻0 + 𝐻1. (A.9)
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The starting point of the PIMCmethod is the decomposition of the Boltzmann
factor as

e−𝛽𝐻 = e−𝛽𝐻0+

− ∫
𝛽

0
d𝑡1 e−(𝛽−𝑡1)𝐻0𝐻1e−𝑡1𝐻0+

+ ∫
𝛽

0
d𝑡2 ∫

𝑡2

0
d𝑡1 e−(𝛽−𝑡2)𝐻0𝐻1e−(𝑡2−𝑡1)𝐻0𝐻1e−𝑡1𝐻0 − …

(A.10)

which in turns leads to the following expansion for the partition function

𝒵 = Tr [e−𝛽𝐻] = ∑
𝑖

⟨𝑖∣e−𝛽𝐻0 ∣𝑖⟩⏟⏟⏟⏟⏟
weight

+

− ∑
𝑖

∑
𝑖′

∫
𝛽

0
d𝑡1 ⟨𝑖∣e−(𝛽−𝑡1)𝐻0 ∣𝑖′⟩ ⟨𝑖′∣𝐻1e−𝑡1𝐻0 ∣𝑖⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

weight

+

+ ∑
𝑖

∑
𝑖′

∑
𝑖″

… .

(A.11)

To simplify the notationwewill refer to a given sequence of 𝑛 states {∣𝑖1⟩ , ∣𝑖2⟩ , … , ∣𝑖𝑛⟩}
and a corresponding set of times {𝑡1, … , 𝑡𝑛} as a configuration 𝐶𝑛 of order 𝑛
and to the quantity

𝑊(𝐶𝑛) = 𝑊(𝑖1, … 𝑖𝑛, 𝑡1, … , 𝑡𝑛) = ⟨𝑖1∣e−(𝛽−𝑡𝑛)𝐻0 ∣𝑖𝑛⟩ ⟨𝑖𝑛∣𝐻1e−(𝑡𝑛−𝑡𝑛−1)𝐻0 ∣𝑖𝑛−1⟩ ⋯
(A.12)

as its weight. From these definitions it follows that the expansion of the parti-
tion function Eq. (A.11) can be seen as a sum of weights over all the possible
configurations.

𝒵 =
∞
∑
𝑛=0

∑
𝐶𝑛

𝑊(𝐶𝑛). (A.13)

A natural way to graphically represent configurations is shown in Fig. A.3
and can be easily understood by using an Extended Bose-Hubbard model as
an example. The corresponding Hamiltonian decomposes as

𝐻 = ∑
𝑖<𝑗

𝑉𝑖𝑗𝑛𝑖𝑛𝑗 + ∑
𝑖

𝑈𝑖
𝑛𝑖(𝑛𝑖 − 1)

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐻0

− ∑
𝑖<𝑗

𝑡𝑖𝑗(𝑏†
𝑖 𝑏𝑗 + H.c.)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
−𝐻1

(A.14)

where 𝑏†
𝑖 (𝑏𝑖) is the creation (annihilation) operator for bosonic particle on site

𝑖, 𝑛𝑖 = 𝑏†
𝑖 𝑏𝑖, 𝑡𝑖𝑗 are the hopping amplitudes, and 𝑉𝑖𝑗 and 𝑈𝑖 are the interaction

strengths.
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0 β

empty site

filled site

t

i

or hopping term

Figure A.3.:Graphical representation of a single configuration on a one dimensional

lattice of 4 sites. 𝑖 indicates the different lattice sites and 𝑡 the imaginary time. Red

vertical lines represent hopping of particles which wraps around the system.

In this case it is easy to see that the exponential terms of the form e−𝑡𝐻0 can
be interpreted as time evolution operators in imaginary time 𝑡 = 𝚤𝜏 between
different states |𝑖⟩ (solid horizontal lines in Fig. A.3) while each 𝐻1 term cor-
responds to the hopping of particles between different sites happening at the
times 0 < 𝑡1 < ⋯ < 𝑡𝑛 < 𝛽 (vertical lines in Fig. A.3). Each continuous solid
line in Fig. A.3 referred to as worldlines and represents the path a particle in
imaginary time.

As a result of the expansion Eq. (A.13) of the partition function, the ther-
modynamic expectation value ⟨𝒪⟩ of an observable 𝒪 can be computed as

⟨𝒪⟩ =
1
𝒵

Tr [𝒪e−𝛽𝐻] =
1
𝒵

∞
∑
𝑛=0

∑
𝐶𝑛

⟨𝒪⟩𝐶𝑛
𝑊(𝐶𝑛) (A.15)

where ⟨𝒪⟩𝐶𝑛
is the imaginary-time average of the operator 𝒪 for a configura-

tion 𝐶𝑛.

As we have seen, Eq. (A.15) can be efficiently computed via Monte Carlo
methods by sampling configurations 𝐶𝑛 from the distribution 𝑊(𝐶𝑛)/𝒵. In
particular, different algorithms of this class perform this sampling by imple-
menting a Markov Chain.

Since we assume periodic boundaries on the space and imaginary time
axes, configurations that wind across these boundaries are physical config-
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urations that need to be sampled. The same is true, due to the bosonic nature
of the worldlines, for particle exchanges between the states at the imaginary
time boundaries. As an example the configuration in Fig. A.3 has winding
number 𝑤 = 2 given by the number of times worldlines wrap around the pe-
riodic boundaries. Since these features of the PIMC configurations are linked
to the presence of superfluidity in the system, it is of crucial importance to be
able to efficiently sample configurations with exchanges and different wind-
ing numbers.

A.2.1 Worm Algorithm
Introduced by Prokof’ev, Svistunov, and Tupitsyn in Ref. [5] the so-called

worm algorithm is a scheme of performing updates of PIMC configurations.
This algorithm turns out to be numerically exact3 for bosonic systems on lat-
tice geometries.

0 β

iramasha

t

i

Figure A.4.: Graphical representation of an extended configuration which include

the discontinuities named Ira (green) and Masha (red).

The updates that compose the worm algorithm are schematically shown
in Figs. A.5(a) to A.5(d). This algorithm takes advantage of sampling in an
extended space of configurations given by

𝒢 = Tr {𝒯(𝑏†
𝑖 (𝑡M)𝑏𝑗(𝑡I)e−𝛽𝐻)} (A.16)

where 𝒯 denotes the time-ordered product in imaginary time, while the cre-
3The uncertainity on the estimated expectation values is given only by the stochastic error

due to finite sampling, which is known to decrease as 1/√𝑚 with the number 𝑚 of sam-
ples.
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ation and annihilation operators 𝑏†
𝑖 (𝑡M) and 𝑏𝑗(𝑡I), correspond to two discon-

tinuities referred to as Masha and Ira respectively (see Fig. A.4).
The main working principle of the worm algorithm is to exploit the pres-

ence of the two discontinuities with updates defined in the extended space
𝒢 in order to sample more efficiently different configurations in the 𝒵 space,
connecting the two different sectors with a specific update. Schematically the
update scheme of the worm algorithm can be summarized in few steps:

• Starting from a configuration without worldlines we try to perform the
open update shown in Fig. A.5(a) until it is accepted. This update con-
nects between configurations in the 𝒵 sector and configurations in the
𝒢 sector.

• While the two discontinuities are present in the configuration updates
defined in the 𝒢 sector are proposed and carried out if accepted. These
updates include moving heads in imaginary time (see Fig. A.5(b)), cre-
ating and deleting hopping terms while moving heads in space (see
Figs. A.5(c) and A.5(d)), and removing (closing) the two discontinu-
ities (see Fig. A.5(a)).

• If it is chosen to delete the pair of discontinuities, we transition from the
𝒢 sector to 𝒵 sector. Here we can measure the expectation value of the
desired observables (see Appendix A.2.2) and then start the procedure
again.
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A.2.2 Observables
In this subsection we list the different kind of observables which can be

directly measured in PIMC methods.

Density The expectation value of diagonal operators such as the density 𝑛𝑗

on a single site 𝑗 can be easily computed on each configuration 𝐶𝑛 as

𝑛𝑗(𝐶𝑛) =
1
𝛽

𝑛
∑
𝑘=1

⟨𝑖𝑘∣𝑛𝑗∣𝑖𝑘⟩ (𝑡𝑘 − 𝑡𝑘−1) (A.17)

where we defined, for simplicity 𝑡−1 = 𝑡𝑛.

Energy The energy of a single configuration 𝐶𝑛 is defined as the sum of
potential energy andkinetic energy𝐸 = ⟨𝐻⟩ = 𝐾+𝑈. While the kinetic energy
is obtained by counting the number of hopping terms in a configuration (𝑛
for a configuration 𝐶𝑛), the potential energy is obtained as

𝑈(𝐶𝑛) =
1
𝛽

𝑛
∑
𝑘=1

⟨𝑖𝑘∣𝐻0∣𝑖𝑘⟩ (𝑡𝑘 − 𝑡𝑘−1) (A.18)

Superfluid density Estimators for the superfluid density 𝜌𝑠 strongly depend
on the form of the hopping part of the Hamiltonian 𝐻1 and on the dimension-
ality of the system. Different estimators are derived in detail in Ref. [9]. In the
cases extensively studied in Chapters 1 and 2 , for two-dimensioal systems
with nearest-neighbor uniform hopping of strength 𝑡, the superfluid density
is defined as

𝜌𝑠 =
1

4𝑡𝛽 ⟨𝑊2
𝑥 + 𝑊2

𝑦⟩ , (A.19)

where 𝑊𝑥 and 𝑊𝑦 are the winding numbers along the two spatial dimensions
of the system.

Correlation functions Density-density correlation functions of the form 𝑆𝑖𝑗 =
⟨𝑛𝑖𝑛𝑗⟩ have the estimator, given a single configuration 𝐶𝑛

𝑆𝑖𝑗(𝐶𝑛) =
1
𝛽

𝑛−1
∑
𝑘=0

⟨𝑖𝑘∣𝑛𝑖∣𝑖𝑘⟩ ⟨𝑖𝑘∣𝑛𝑗∣𝑖𝑘⟩ (𝑡𝑘 − 𝑡𝑘−1) (A.20)
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τ τtI tM

τ τtM tI

open

close

open

close

(a) Examples of worm pair creation and deletion in the worm algorithm.

τ τ

τ τ

move

move

move

move

tnew

tnew

tM tI

tM tI

(b) Examples of time shifting of the two discontinuities to the new time
𝑡𝑘.

τ τ

τ τ

tk

tk

insert

delete

insert

delete

tM tI

tM tI

(c) Examples of kink creation and deletion on the left (at time 𝑡𝑘) of the
moving head. Both heads don’t change their time position.

τ τ

τ τ

tk

tk

insert

delete

insert

delete

tM tI

tM tI

(d) Example of kink creation and deletion on the right (at time 𝑡𝑘) of the
moving head. Both heads don’t change their time position.

Figure A.5.: Example updates of the worm algorithm. Black arrow between config-

urations on the left and on the right name each each update and its inverse. In pan-

els (b) to (d) top panels show updates involving Masha while bottom panels show

updates involving Ira.
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Green’s function While measuring the single particle Green’s function may
be difficult in the majority of PIMC update schemes, in context of the worm
algorithm this observable can be easily accessed. In this scheme the single
particle Green’s function in imaginary time is measured by evaluating the
expectation value

𝐺(𝑖, 𝑗, 𝑡1, 𝑡2) = − ⟨𝒯(𝑏𝑖(𝑡1)𝑏†
𝑗 (𝑡2))⟩ (A.21)

which can be easily obtained as the worm algorithm naturally samples in the
extended configuration space 𝒢.

74 Guido Masella – Ph. D. thesis



B
Energy extensivity in quantum

long-range interacting systems:
effects on plasmon modes and the

case 𝛼 = 0

In this chapter we extend the results obtained in Chapter 3 by showing, in
Appendix B.1 that the plasmonmode of a 𝑑-dimensional systemof long-range
interacting fermions (or hard-core bosons) is suppressedwhen using the Kac
prescription in the strong long-range regime 𝛼 ≤ 𝑑. Also, in Appendix B.2,
we solve the extreme case 𝛼 = 0 exactly using amean-field approach showing
that the system is in a free fermion phasewith a charge gapΔ ∼ (𝑉+2𝜋𝑡)/𝐿 →
0 for 𝐿 → ∞, which is not described by the Luttinger liquid theory.

As specified in Chapter 3 this work has been carried out in collaboration with Thomas

Botzung, David Hagenmuller and all the other co-authors of the publication: T. Botzung, D.

Hagenmüller, G. Masella, J. Dubail, N. Defenu, A. Trombettoni, and G. Pupillo. “Effects of

Energy Extensivity on the Quantum Phases of Long-Range Interacting Systems”. Submitted

to: Phys. Rev. Lett. (2019). arXiv: 1909.12105 , and it is also subject of T. Botzung’s Ph.

D. Thesis (Strasbourg, December 2019).
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Appendix B. Energy extensivity in quantum long-range interacting systems:
effects on plasmon modes and the case 𝛼 = 0

B.1 Effect of energy extensivity on plasmon

modes
B.1.1 One-dimensional Luttinger liquid

We consider a one-dimensional system of length 𝐿 containing 𝑁 fermions
interacting via the long-range potential

𝑉𝛼(𝑥) =
𝑉

(𝑥2 + 𝑎2)𝛼/2 0 < 𝛼 ≤ 1. (B.1)

Here, 𝑎 denotes a short-distance cutoff that can be identified with, e.g., the
lattice spacing. In the vicinity of the Fermi level, the low-energy Hamiltonian
can be decomposed into the contributions of left (L) and right (R) movers as

𝐻 = ∑
𝑘

∑
𝑟=L,R

ℏ𝑣F (𝜂𝑟𝑘 − 𝑘F) 𝑐†
𝑟,𝑘𝑐𝑟,𝑘 +

1
2 ∫d𝑥d𝑥′𝜌(𝑥)𝑉𝛼(𝑥 − 𝑥′)𝜌(𝑥′), (B.2)

where 𝑣F is the Fermi velocity, 𝑘F the Fermi wave vector, 𝜂R = +1, 𝜂L = −1,
and 𝜌(𝑥) = ∑𝑟=L,R 𝜌𝑟(𝑥) with 𝜌𝑟(𝑥) = 1

𝐿 ∑𝑘,𝑞 𝑒𝑖𝑞𝑥𝑐†
𝑟,𝑘+𝑞𝑐𝑟,𝑘. Bosonization as-

sumes that the low-energy properties of the Hamiltonian Eq. (B.2) are gov-
erned by the long-wavelength fluctuations of the density 𝜌(𝑥). Using the stan-
dard techniques described in Ref. [163], 𝐻 can be approximately written (for
𝐿 → ∞) in the quadratic form

𝐻 =
1

2𝜋 ∑
𝑞

𝑢(𝑞)𝐾(𝑞)𝜋2Π(𝑞)Π(−𝑞) +
𝑢(𝑞)
𝐾(𝑞)𝑞2𝜙(𝑞)𝜙(−𝑞), (B.3)

where 𝑢(𝑞) denotes the velocity of the excitations and 𝐾(𝑞) is the Luttinger
parameter governing the decay of correlations at long distances. The latter
satisfy the relations

𝑢(𝑞)𝐾(𝑞) = 𝑣F (B.4)
𝑢(𝑞)
𝐾(𝑞) = 𝑣F [1 +

𝑉(𝛼)(𝑞)
𝜋𝑣F

] . (B.5)

The Fourier transform of the interaction potential reads

𝑉𝛼(𝑞) = ∫d𝑥 𝑉𝛼(𝑥)𝑒−𝑖𝑞𝑥 = 𝑉
2√𝜋

Γ (𝛼
2) 2

𝛼−1
2

(
∣𝑞∣
𝑎 )

𝛼−1
2

𝒦𝛼−1
2

(𝑎∣𝑞∣), (B.6)
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and the two fields Π(𝑞) = ∫d𝑥 Π(𝑥)𝑒−𝑖𝑞𝑥 and 𝜙(𝑞) = ∫d𝑥 𝜙(𝑥)𝑒−𝑖𝑞𝑥 are the
Fourier transforms of the canonically conjugate fields Π(𝑥) = 1

𝜋÷𝜃(𝑥) and
𝜙(𝑥) with

𝜙(𝑥) = −(𝑁R + 𝑁L)
𝜋𝑥
𝐿 −

i𝜋
𝐿 ∑

𝑞≠0

1
𝑞𝑒−𝛽∣𝑞∣/2−i𝑞𝑥 (𝜌R(𝑞) + 𝜌L(𝑞)) (B.7)

𝜃(𝑥) = (𝑁R − 𝑁L)
𝜋𝑥
𝐿 +

i𝜋
𝐿 ∑

𝑞≠0

1
𝑞𝑒−𝛽∣𝑞∣/2−i𝑞𝑥 (𝜌R(𝑞) − 𝜌L(𝑞)) . (B.8)

Here, 𝛽 is a (small) cutoff regularizing the theory, 𝑁𝑟 = ∑𝑘 𝑐†
𝑟,𝑘𝑐𝑟,𝑘 − ⟨𝑐†

𝑟,𝑘𝑐𝑟,𝑘⟩,
and 𝜌𝑟(𝑞) = ∑𝑘 𝑐†

𝑟,𝑘+𝑞𝑐𝑟,𝑘. The plasmondispersion relation follows fromEq. (B.4)
and reads

𝜔(𝑞) = 𝑢(𝑞)∣𝑞∣ = 𝑣F∣𝑞∣√1 +
𝑉(𝛼)(𝑞)

𝜋𝑣F
. (B.9)

Thepotential Eq. (B.6) exhibits a long-wavelengthdivergence (𝑞 → 0), namely
𝑉𝛼(𝑞) ∼ ∣𝑞∣𝛼−1 for 0 < 𝛼 < 1 and 𝑉𝛼(𝑞) ∼ log ∣𝑞∣ for 𝛼 = 1. In the latter case,
Eq. (B.9) provides the 1D plasmon dispersion 𝜔(𝑞) ∼ ∣𝑞∣√log ∣𝑞∣ stemming
from Coulomb interactions [144]. When rescaling the interaction potential
by the Kac’s factor Λ𝛼(𝐿) = 𝐿1−𝛼 for 0 ≤ 𝛼 < 1 and Λ𝛼(𝐿) = log(𝐿) for 𝛼 = 1,
it is easy to check that the long-wavelength divergence of the potential is re-
moved by considering the limit 𝑞 = 2𝜋

𝐿 → 0. As a consequence, one recovers
the sound wave dispersion relation 𝜔(𝑞) ∼ ∣𝑞∣ of a metal with short-range
interactions. This result is confirmed by looking at the upper bound of the
excitation spectrum Ω(𝑞) = 𝐸(𝑞)/𝑆(𝑞) in the Feynman approximation [173]
represented in Fig. B.1, where 𝐸(𝑞) = (𝑡/𝐿) [1 − cos(𝑞)] ⟨∑𝑖 𝑎†

𝑖 𝑎𝑖+1 +h.c.⟩ and
𝑆(𝑞) is the structure factor defined by Eq. (3.14) .

B.1.2 Generalization to higher dimensions
This result can be easily generalized to higher dimensions 𝑑 = 2, 3 by look-

ing at the zeros of the dielectric function in the framework of the random
phase approximation (RPA):

𝜖(q, 𝜔) = 1 − 𝜒(q, 𝜔)𝑉𝛼(q) = 0, (B.10)

where
𝜒(q, 𝜔) =

1
𝒱

∑
k

𝑛k − 𝑛k+q

ℏ𝜔 + 𝐸k − 𝐸k+q + i𝜂 (B.11)
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Ω
(q
)

(a) (b)

Figure B.1.: Upper bound of the excitation spectrum Ω(𝑞) (in units of 𝑡) in the Feyn-

man approximation (colored lines) computed at half-filling for 𝑉 = 0.5 in the strong

long-range regime 𝛼 = 0.5 panel (a), and in the short-range case 𝛼 = 3 panel (b). The

dispersion relation Eq. (B.9) after Kac’s rescaling, namely 𝜔(𝑞) = 𝑣F𝑞√1 + 𝑉/𝜋 for

𝛼 = 0.5 and 𝜔(𝑞) = 𝑣F𝑞√1 + 𝑉/(√𝜋Γ(3/2)𝑣F) for 𝛼 = 3 is represented as a black dot-

ted line in the long-wavelength regime 𝑞 → 0. The proximity of the Mott transition

(𝑉 = 2 for 𝛼 → ∞) in the short-range case is responsible for the more pronounced

minimum at 𝑞 = 𝜋 (charge density wave).

denotes the one-spin density-density response function (Lindhard function),
𝒱 the volume, and 𝑛k the occupation number of a statewithwave vector k and
energy 𝐸k = ℏ2∣k∣2

2𝑚 (𝑚 is the particle mass). For 𝛼 = 1, the Fourier transform
of the Coulomb potential is

𝑉1(𝑞) ∼ log ∣𝑞∣ 𝑑 = 1

𝑉1(q) ∼
1
∣q∣ 𝑑 = 2

𝑉1(q) ∼
1

∣q∣2
𝑑 = 3. (B.12)

In the dynamical limit 𝜔 ≫ ∣q∣𝑣F, the Lindhard function can be approximated
by 𝜒(q, 𝜔) = 𝜌0|q|2

𝑚𝜔2 with 𝜌0 the average fermion density. Using this expression
together with Eq. (B.12) into Eq. (B.10), one finds the plasmon energies

𝜔 ∼ ∣𝑞∣√log ∣𝑞∣ 𝑑 = 1 (B.13)

𝜔 ∼ √∣q∣ 𝑑 = 2 (B.14)

𝜔 ∼ cst 𝑑 = 3. (B.15)
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When using the Kac’s prescription, namely dividing the potential by the fac-
tor 𝐿𝑑−1, the long-wavelength divergence (𝑞 = 2𝜋

𝐿 → 0) is removed and one
recovers the sound wave dispersion relation 𝜔 ∼ |q| for 𝑑 = 1, 2, 3.

B.2 The extreme case 𝛼 = 0
The particular case 𝛼 = 0 can be solved exactly using amean field approach

on the Hamiltonian Eq. (3.1) . For convenience, we use fermions instead of
hard-core bosons since the results are equivalent in both cases. We start from
the Hamiltonian

𝐻 = −𝑡
𝐿−1
∑
𝑖=0

(𝑐†
𝑖 𝑐𝑖+1 + h.c.) +

𝑉
2 ∑

𝑖≠𝑗
𝑛𝑖𝑛𝑗, (B.16)

where 𝑐𝑖 (𝑐†
𝑖 ) annihilates (creates) a fermion on site 𝑖 = 1, ⋯ , 𝐿, and 𝑛𝑖 = 𝑐†

𝑖 𝑐𝑖

is the local density. Writting the density-density interaction as 𝑛𝑖𝑛𝑗 ≈ 𝑛𝑖⟨𝑛𝑗⟩ +
𝑛𝑗⟨𝑛𝑖⟩ − ⟨𝑛𝑖⟩⟨𝑛𝑗⟩, the mean-field Hamiltonian reads

𝐻mf = ∑
𝑘

[(𝑁 − 1) 𝑉 − 2𝑡 cos (𝑘)] 𝑐†
𝑘𝑐𝑘 −

𝑁 (𝑁 − 1) 𝑉
2 , (B.17)

with𝑁 = 𝐿/2 the number of fermions (at half-filling), and 𝑐𝑘 = 1
√𝐿

∑𝐿−1
𝑗=0 𝑐𝑗𝑒−2i𝜋𝑘𝑗/𝐿.

The energy of the ground state for, e.g., 𝑁 even, is derived from Eq. (B.17)
with anti-periodic boundary conditions as

𝐸0(𝑁) =
𝑁 (𝑁 − 1) 𝑉

2 −2𝑡
𝐿/4−1
∑

𝑘=−𝐿/4
cos [

2𝜋𝑘
𝐿 + (

𝜋
𝐿 )] =

𝑁 (𝑁 − 1) 𝑉
2 −2𝑡 csc(

𝜋
𝐿 ) .

(B.18)
One then has to consider periodic boundary conditions for 𝑁 ± 1 fermions,
which leads to

𝐸0(𝑁 + 1) =
(𝑁 + 1) 𝑁𝑉

2 − 2𝑡
𝐿/4
∑

𝑘=−𝐿/4
cos(

2𝜋𝑘
𝐿 )

=
(𝑁 + 1) 𝑁𝑉

2 − 2𝑡 cot(
𝜋
𝐿 ) (B.19)

𝐸0(𝑁 − 1) =
(𝑁 − 1) (𝑁 − 2) 𝑉

2 − 2𝑡
𝐿/4−1
∑

𝑘=−𝐿/4+1
cos(

2𝜋𝑘
𝐿 )

=
(𝑁 − 1) (𝑁 − 2) 𝑉

2 − 2𝑡 cot(
𝜋
𝐿 ) . (B.20)

The charge gap thus reads Δ ≡ 𝐸0(𝑁 + 1) + 𝐸0(𝑁 − 1) − 2𝐸0(𝑁) = 𝑉 +
4𝑡 tan ( 𝜋

2𝐿), and becomes Δ ∼ (𝑉 + 2𝜋𝑡) /𝐿 → 0 for 𝐿 → ∞ when using the
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Appendix B. Energy extensivity in quantum long-range interacting systems:
effects on plasmon modes and the case 𝛼 = 0

Kac’s prescription 𝑉 → 𝑉/𝐿. The Luttinger parameters 𝑢/𝐾 and 𝑢𝐾 can be
related to the first derivative of the single-particle charge gap as 𝜕Δ

𝜕(1/𝐿) = 𝜋 𝑢
𝐾 ,

and to the charge stiffness [163] as

𝐷 = 𝜋𝐿 ∣∣∣∣
𝜕2𝐸0(𝑁, Φ)

𝜕Φ2
∣∣∣∣Φ=0

= 𝑢𝐾. (B.21)

Here, Φ = 2𝜋𝜙/𝜙0 denotes a flux threading the (circular) chain in units of
the flux quantum 𝜙0 = ℎ/𝑒. This flux can be taken into account bymultiplying
the hopping energy by an Aharonov-Bohm phase phase 𝑒±iΦ/𝐿 as

𝐻(Φ) = −𝑡
𝐿−1
∑
𝑖=0

(𝑒iΦ/𝐿𝑐†
𝑖 𝑐𝑖+1 + h.c.) +

𝑉
2 ∑

𝑖≠𝑗
𝑛𝑖𝑛𝑗. (B.22)

The energy of the Hartree-Fock ground state is derived as

𝐸0(𝑁, Φ) =
𝑁 (𝑁 − 1) 𝑉

2 − 2𝑡 csc(
𝜋
𝐿 ) cos(

Φ
𝐿 ) , (B.23)

which provides 𝐷 = 2𝑡 = 𝑣F for 𝐿 → ∞. The Luttinger parameters extracted
from the charge gap and from the charge stiffness thus read

𝑢𝐾 = 𝑣F (B.24)
𝑢
𝐾 = 𝑣F [1 +

𝑉
𝜋𝑣F

] , (B.25)

and coincide exactly with the analytic prediction Eq. (3.11) . Since the mean-
field Hamiltonian Eq. (B.17) corresponds to that of free fermions up to a con-
stant shift ∝ 𝑉, it is straightforward to calculate the Luttinger parameter 𝐾
from the single-particle correlation function

⟨𝑐†
𝑖 𝑐𝑗⟩ =

1
𝐿 ∑

𝑘
𝑒i𝑘(𝑖−𝑗)𝑛𝑘 =

1
2i𝜋

𝑒i𝑘F(𝑖−𝑗)

𝑖 − 𝑗 ∼ (𝑖 − 𝑗)−1, (B.26)

and from the long-wavelength limit of the static structure factor

𝑆(𝑞) ≡
1
𝐿 ∑

𝑖,𝑗
𝑒i𝑞(𝑖−𝑗) (⟨𝑛𝑖𝑛𝑗⟩ − ⟨𝑛𝑖⟩ ⟨𝑛𝑗⟩) =

=
1
𝐿 ∑

𝑘,𝑘′
(⟨𝑐†

𝑘𝑐𝑘−𝑞𝑐†
𝑘′𝑐𝑘′+𝑞⟩ − ⟨𝑐†

𝑘𝑐𝑘−𝑞⟩ ⟨𝑐†
𝑘′𝑐𝑘′+𝑞⟩) →𝑞→0

1
𝐿.

(B.27)

Note that the only non-vanishing contribution to the last equation stems from
the term ∝ ⟨𝑐†

𝑘𝑐𝑘′+𝑞⟩⟨𝑐𝑘−𝑞𝑐†
𝑘′⟩, which is finite only at the two edges of the Fermi
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B.2. The extreme case 𝛼 = 0

sea where 𝑛𝑘 = 1/2. Comparing Eqs. (B.26) and (B.27) to the predictions
⟨𝑐†

𝑖 𝑐𝑗⟩ ∼ (𝑖 − 𝑗)− 𝐾+(1/𝐾)
2 (for fermions) and 𝐾 = 𝐿𝑆(𝑞 → 0) of the Luttinger

liquid theory, we thus find 𝐾 = 1 for all 𝑉 in disagreement with the result
𝐾 = 1/√1 + 𝑉/(𝜋𝑣F) obtained from Eq. (B.24). This suggests a breakdown
of the Luttinger liquid theory in the extreme case 𝛼 = 0.
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C
Extended-range interactions with

Rydberg atoms

Excited atoms, with high principal quantum number 𝑛 are known as Ry-
dberg atoms. The main peculiar properties of Rydberg atoms have been de-
scribed inmany books and reviews (see, e.g. [174]) but herewe are interested
in the large polarizability ∼ 𝑛7 which ultimately leads to strong interactions
between such atoms, and long lifetimes scaling as 𝑛3 whichmakes them ideal
for exploring many-body physics. In absence of external electric field the in-
teractions between Rydberg atoms is of van der Waals type ∼ 𝐶6/𝑟6 [175, 176],
where the characteristic coupling constant 𝐶6 scales as ∼ 𝑛11.

The large number of application of Rydberg atoms in the fields of quan-
tum simulation [177, 178, 179, 180], or quantum computing [181], relies on
an interesting phenomenon occurringwhen optically excitingmultiple atoms
from their ground state ∣𝑔⟩ to an excited Rydberg state |𝑒⟩. If two atoms are
in their Rydberg states (e.g. |𝑒𝑒⟩) they interact via van der Waals forces and
the energy levels shift with respect to the non interacting case (i.e., for very
large distance 𝑟 → ∞ between the two atoms). When the interaction energy
becomes large enough (i.e., for small 𝑟) the laser used to drive the excitation
becomes off-resonant with the transition coupling the singly with the doubly
excited state (e.g., ∣𝑔𝑒⟩ → |𝑒𝑒⟩) and only one excitation is allowed in the sys-
tem [see, Fig. C.1]. This phenomenon is known as dipole blockade or asRydberg
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Appendix C. Extended-range interactions with Rydberg atoms

Figure C.1.: Representation of the dipole blockade: due to the shift cause by the (van

derWaals) interaction between two Rydberg-excited atoms, the formation of a doubly

excited pair is forbidden. The blockade effect extends within a blockade radius, that

depends on the parameters of the excitation process.

blockade in the case of Rydberg atoms [181, 182, 183, 184, 175]. A minimal
distance at which two excitation can be created with a resonant laser radia-
tion can be defined as a function of the parameters of the excitation process,
namely the Rabi frequency Ω and reads

𝑟𝑏 = (
∣𝐶6∣
Ω )

1
6

(C.1)

In the case of far off-resonant regime, where the excitation laser radiation
is detuned by Δ ≫ Ω, atoms can be engineered in a weak admixture of the
ground state and the excited Rydberg state. These so called Rydberg-dressed
states, which can be written as

∣𝑔⟩ + 𝛼 |𝑒⟩ 𝛼 =
Ω
2Δ (C.2)

have different properties with respect to the Rydberg excited states |𝑒⟩, e.g., a
longer lifetime (𝜏Dressed/𝜏Rydberg ∼ 𝛼−2). Here we are interested in the pecu-
liar shape of the interaction between Rydberg dressed atoms. It can be shown
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Figure C.2.: Interaction potential between Rydberg-dressed atoms as a function of

the distance 𝑟.

[71, 114, 73] that the potential between two Rydberg-dressed atoms takes the
form

𝑉𝑑𝑑(𝑟) =
𝑉0

1 + ( 𝑟
𝑟𝑐

)
6 𝑉0 =

Ω4

8Δ3 , 𝑟𝑐 = (
𝐶6
2∣Δ∣)

1
6
. (C.3)

As shown in Fig. C.2, the potential Eq. (C.3) is characterized by a flat plateau
up to the distance 𝑟𝑐 and by a tail ∼ 1/𝑟6.
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