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Résumé 
 

Le cancer est récemment devenu la principale cause de décès dans les pays les plus développés. 

On estime à 3,9 millions le nombre de nouveaux cas de cancers et à 1,93 million le nombre de décès 

en 2018 en Europe. Parmi les procédures de traitement les plus répandues, les ablations thermiques des 

tumeurs (ou thermothérapie) présentent l’avantage de cibler précisément les zones à traiter tout en 

évitant le plus possible d’endommager les tissus sains environnants. La thermothérapie est souvent 

combinée à une méthode d’imagerie telle que la tomodensitométrie, l'échographie ou l'imagerie par 

résonance magnétique (IRM). Ce suivi par l’imagerie est nécessaire car il permet au radiologue de 

repérer les lésions, de décider d’une stratégie de traitement et de veiller au bon déroulement de la 

procédure. L’IRM est une modalité permettant d’étudier avec précision les tissus mous, fournissant des 

images avec un meilleur contraste comparées à celles obtenues par scanner ou échographie. De plus, il 

s’agit d’une technique d’imagerie non invasive et non ionisante permettant d’imager des organes 

profonds en trois dimensions et selon n’importe quelle orientation. 

Le suivi des ablations thermiques par IRM a deux objectifs spécifiques : 1) le suivi en temps 

réel de l’évolution de la température dans la région traitée, afin de contrôler la quantité d’énergie 

déposée 2) l’évaluation en temps réel des effets du traitement sur les tissus. La thermométrie IRM 

(TRM) est couramment utilisée pour contrôler le dépôt d’énergie thermique et estimer les dommages 

infligés aux tissus au cours des ablations thermiques guidées par IRM. Plus récemment, l’élasticité ou 

la rigidité des tissus, pouvant être mesurée par élastographie IRM (ERM), a fait l’objet d’une attention 

croissante en tant que biomarqueur complémentaire de la température. 

Bien que le suivi de l’évolution de la température et de l'élasticité des tissus soit une technique 

récente largement exploitée dans le domaine de la recherche, cette technique n'est pas encore adoptée 

en tant que standard clinique pour le suivi des thermothérapies. Sa limitation à certains types de tissus 

et son faible taux de rafraichissement d’images ne répondent pas encore aux conditions d'utilisation 

clinique standard. 

Cette thèse de doctorat présente un ensemble de méthodes développées pour la thermométrie 

et l’ERM interventionnelle. 

La première partie de ce travail est consacrée au développement d'une séquence ERM 

multicoupe rapide permettant une meilleure couverture spatiale de la région concernée par la 

thermothérapie. Un système d’ablation HIFU (ultrasons focalisés de haute intensité) compatible IRM 

a été utilisé dans le cadre de cette thèse. En effet, une couverture spatiale 3D complète de la zone 

d'ablation est privilégiée à un simple mode d'imagerie 2D pour deux raisons. Premièrement, les images 

2D peuvent se retrouver décentrées par rapport à la région d’observation et ne pas rendre compte 
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précisément de l’échauffement réel subi par les tissus au point focal, de sorte que les évaluations de 

l’augmentation maximale de la température et de la localisation exacte du point focal peuvent être 

faussées. Deuxièmement, seule l’imagerie tridimensionnelle peut fournir avec précision la structure de 

la zone d'ablation, déterminée par la structure locale des tissus (flux sanguin, dépôt de chaleur, 

physiologie des tissus, etc.) que seule l’imagerie tridimensionnelle peut fournir. Le premier projet vise 

à proposer l'utilisation d’une séquence à double écho (« Simultaneous Echo Refocusing », SER) qui 

peut permettre l'encodage simultané ERM et l'acquisition de 2 coupes par TR, et à démontrer la 

faisabilité d'un suivi multi-coupe des changements de température et d'élasticité au cours des ablations 

thermiques. La validation de notre méthode s’est effectuée en trois étapes : une première expérience 

réalisée sur fantôme a d’abord permis de confronter notre nouvelle séquence d’ERM à la méthode 

standard. La deuxième expérience a eu pour but de valider l'utilisation de la méthode SER pour le suivi 

des changements de température et d'élasticité pendant une ablation HIFU. Troisièmement, 

l'expérience HIFU dans le tissu musculaire du poulet a eu pour but d´évaluer les variations de volume 

subies par le tissu pendant l'ablation HIFU. 

La deuxième partie de cette thèse présente une nouvelle stratégie d'acquisition IRM rendant 

possible la thermométrie et l’élastographie simultanées pour le suivi des ablations thermiques dans tous 

les tissus mous, y compris en présence de graisse. D'un côté, la thermométrie PRFS référencée à la 

graisse permet de mesurer la température tout en corrigeant la dérive du champ magnétique principal. 

D'autre part, l’ERM permet de mesurer les propriétés mécaniques des tissus qui sont liées à des 

dommages structuraux tissulaires durant les ablations. La stratégie proposée offre une amélioration de 

la surveillance combinée ERM/TRM en temps réel des ablations thermiques, en élargissant sa précision 

dans les tissus mous, y compris les tissus contenant des graisses, tout en maintenant le temps 

d'acquisition similaire. Pour la validation, trois expériences sont effectuées. Premièrement, une mesure 

précise de la température est validée dans une expérience fantôme en utilisant des couples thermiques 

à fibres optiques. La deuxième expérience est effectuée pour valider les cartes d'élasticité obtenues 

comparées à celles reconstruites par la séquence d’ERM de référence. Troisièmement, des expériences 

HIFU dans du muscle de porc avec des fractions adipeuses homogènes sont menées pour évaluer la 

faisabilité clinique. 

Dans cette thèse de doctorat, deux travaux différents auront un impact important sur les 

ERM/TRM interventionnelles en fournissant : 1) des ERM/TRM multicoupes rapides pour contrôler 

précisément le dépôt d’énergie; 2) une évaluation des lésions tissulaires dans les tissus mous en prenant 

en compte la présence de graisse. 

 

Mots clés: imagerie par résonance magnétique (IRM), élastographie par résonance magnétique (ERM), 

ablation thermique, IRM interventionnelle 
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Abstract 
 

In 2018, the cancer burden in Europe is estimated to 3.9 million of new cases and 1.93 million 

of cancer deaths. Thermal therapy has been adopted in the treatment of localized tumors over the last 

decade. Thermal energy is delivered in order to treat cancer tissue while minimizing normal tissue 

damage as much as possible. Thermal therapy is often performed in combination with Computed 

Tomography (CT), Ultrasound (US), and Magnetic Resonance Imaging (MRI). Radiologists rely on 

such real-time guidance in order to monitor the treatment response and avoid complications. MRI 

provides rich soft tissue contrasts compared to CT and US. Furthermore, MRI can take an image in any 

scan orientation and employs non-ionizing and non-invasive measures. 

MR Imaging for thermal therapy has two specific aims: 1) real-time temperature monitoring 

that can control energy deposition. 2) assessment of tissue damage that can provide the treatment 

response. MR Thermometry (MRT) is commonly used to control heat deposition and to estimate tissue 

damage during MR-guided thermal ablations. Recently, tissue elasticity, which can be measured by 

MR Elastography, has received increasing attention as a biomarker that would be complementary to 

temperature because thermal tissue damage can affect the mechanical properties of tissue, for example, 

through tumor necrosis or protein coagulation. 

Although temperature-elasticity monitoring for thermal ablation is already developed, this 

technique has not yet reach clinical use. This Ph.D. thesis applies a set of different developments 

dedicated to interventional MRE/MRT.  

The first part of this thesis is dedicated to the development of fast multislice MRE sequence 

for improved spatial coverage during thermal therapy. MR-compatible High Intensity Focused 

Ultrasound (HIFU) device is used for this Ph.D. work. Full spatial coverage of the ablation area is 

desirable compared to 2D imaging for two reasons. First, the 2D images may not be properly centered 

on the heated zone, hence maximum temperature increase and exact heat localization may be missed. 

Second, the geometry of the ablation area is shaped by local tissue configuration (blood flow, spatially 

varying heat deposition, tissue physiology, etc.), that only 3D coverage can provide. The first project 

aims to propose the use of simultaneous echo refocusing (SER) that can permit simultaneous MRE 

encoding and acquisition of 2 slices in a single acquisition, and to demonstrate the feasibility of 

multislice monitoring of temperature and elasticity changes during thermal ablations. For the validation, 

three experiments are conducted: First, a phantom experiment is prepared for comparison with regular 

MRE sequence. The second experiment is conducted to validate the use of the SER method for 

monitoring temperature and elasticity changes during HIFU ablation. Third, HIFU experiment in 

chicken muscle tissue is carried out to monitor the volumetric change of tissue structure during HIFU 

ablation. 
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The second part of this thesis presents a new acquisition strategy for simultaneous fat referenced 

PRFS thermometry and MRE, in order to monitor thermal ablations for all types of soft tissues, 

including fat containing tissues. On one side, fat referenced PRFS thermometry makes it possible to 

measure temperature while enabling field-drift correction. On the other side, MRE enables measuring 

the mechanical properties of the tissue that are related to tissue structural damage during ablations. The 

proposed strategy offers a refinement of the combined MRT/MRE real-time monitoring of thermal 

ablations, extending its accuracy in soft tissues including fat containing tissues, while keeping the 

acquisition time similar. For the validation, three experiments are conducted: First, accurate 

temperature measurement is validated in a phantom experiment by using fiber optic thermal couples. 

The second experiment is conducted to validate elasticity maps as compared to those reconstructed 

with the regular MRE sequence. Third, HIFU experiments in pig rib tissue with homogenous fat 

fractions are conducted to evaluate the clinical feasibility. 

In this Ph.D. thesis, two different works will have substantial impact on interventional 

MRE/MRT by providing: 1) Fast multislice MRE/MRT to control precise energy deposition. 2) 

Assessment of tissue damage in all types of soft tissues.  

 

 

Keywords: Magnetic resonance imaging, MR Elastography, thermal ablation, interventional MRI 
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1.1 Cancer 
1.1.1 Cancer epidemiology 

As reported by (Ferlay et al., 2018) in 2018, Europe accounts for 9 % of the total world 

population while representing 25 % of the global detected cancer cases. More specifically, the cancer 

burden in Europe is estimated to 3.9 million of new cases and 1.93 million of cancer deaths. As shown 

in Figure 1.1, the most common cancers in males were prostate (450,000 cases), lung (312,000 cases), 

and colorectal (274,000 cases) cancers. Causes of the death in males were lung (267,000 cases), 

colorectal (130,000 cases), and prostate (107,000 cases) cancers. The most frequently diagnosed cancer 

in females was breast cancer (523,000 cases), followed by colorectal (228,000 cases) and lung (158,000 

cases) cancers. The causes of the death from cancer in females were breast (138,000 cases), lung 

(121,000 cases), and colorectal (113,000 cases) cancers.  

 

 
Figure 1.1 Chart of the estimated incidence and death from cancers in males (a) and females (b) in 

Europe in 2018. Reproduced from (Ferlay et al., 2018). 
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1.1.2 Cancer treatment 

 Cancer management is continuously under progress. Various strategies for cancer treatment can 

be used depending on cancer type and size (Figure 1.2).  

One of the most common treatments is surgical resection, which is obviously highly invasive 

and requires large incisions. Currently, minimally invasive interventions that require small incisions 

about 1 cm in diameter are also used in specific cases in order to reduce the side effects of conventional 

surgical resection.  

Chemotherapy can be used as a primary and/or adjuvant therapy. Its goal is to treat all cancerous 

cells in the body (systemic therapy) and to restrain the cancer recurrence. Conventional chemotherapeutic 

agents are cytotoxic, i.e. they interfere with cell division via mitosis. Other systemic therapies are 

immunotherapy and hormonal therapy. Generally, immunotherapy helps the immune system recognize 

and attack cancer cells by using checkpoint inhibitors (Pardoll, 2012). Recently, immunotherapy 

combined with chemotherapy has shown a great potential in many cancer types (Lake and Robinson, 

2005). Hormonal therapy is usually used for hormonally responsive tissues such as breast, prostate, 

endometrium, and adrenal cortex. Gene expression in certain cancer cells is sensitive to the levels of 

certain hormones. Hence, the change in the levels or activity of hormones can stop cancer growth or can 

even cause cell death (Decruze and Green, 2007).  

Radiation therapy is used to treat localized cancer through the use of ionizing radiation that can 

damage the DNA of cancerous tissues leading to cell death. Radiation beams with different angles are 

geometrically combined to cross each other over the target in order to provide a much larger absorbed 

dose in cancer tissue than in the surrounding, healthy tissue (Nutting et al., 2000).  
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Figure 1.2 Diagram of common cancer treatments. 

 

  



Chapter 1. Introduction 

5 
 

1.2 Thermal therapy in cancer 
Thermal therapy has been increasingly used for treating localized tumors over the last decade. 

This approach relies on transferring thermal energy for the destruction of cancerous tissue, eradication 

or reduction of benign tumors and targeted tissue modification (Diederich, 2005). Many different types 

of ablation can be used, such as radiofrequency ablation, microwave ablation, laser ablation, 

cryoablation, and high intensity focused ultrasound. This chapter provides more details concerning the 

following aspects of thermal therapies: thermal bioeffects and heat or cold-delivery technologies. 

 

1.2.1 Mechanisms of thermal therapy  

Since its beginning, thermal therapy has been classified according to temperature range. 

Temperature below -20 ℃ can cause freezing injury in living cells. This approach is usually called 

cryoablation. On the contrary, heat-based thermal therapy is often referred to as hyperthermia (HT) or 

mild HT if applied in temperature ranges (39-45℃) and defined as thermal ablation if the applied 

temperature exceeds 45℃. Table 1.1 details typical physiological changes in soft tissues in response to 

temperature increases.  

Cell damage can be achieved at temperature below -20 ℃, while temperatures below -40 ℃ will 

destroy all cells as a result of intracellular ice (Aarts et al., 2019; Baust et al., 2014). This is the basic 

principle of cryotherapy. Generally, cryotherapy employs a strategy including repeated freeze-thaw 

cycles in order to generate ice crystals in cells and/or in the extracellular space. A combination between 

direct rupture and destruction of the cell membrane, and cell death through dehydration resulting from 

osmotic effects, allows the destruction of cancerous cells.  

In the range of temperature 39~45℃, living cells are affected by changes in their environment 

(Jain and Ward-Hartley, 1984; Tempel et al., 2016; Vaupel and Kallinowski, 1987). First, blood flow 

increases in response to heat (Vaupel et al., 1989). The vascular system of tumors has abnormal structure 

and function, which restrain tumors from meeting the requirements for oxygen level necessary to survive 

excessive heat (oxygenation). This temperature range can cause cell necrosis or cell death. Secondary, 

tumor vessels become more permeable. High temperature causes the fatty acid tails of the phospholipids 

to loosen and increases protein mobility within the membrane (Vígh and Maresca, 2002). The resulting 

increased vessel permeability results in higher chemotherapy-drug uptake in cancer cells (Lande et al., 

1995; Tempel et al., 2016). Furthermore, heated tumor cells release exosomes and heat shock proteins, 

which makes them become more sensitive to NK cells and T cells. A recent study has proven that 

hyperthermia can contribute to the activation of the immune system (Toraya-Brown and Fiering, 2014).  
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Higher temperature (>45℃) causes ischemia, hypoxia, and microvascular thrombosis to tumor 

tissues (Brace, 2011). Protein denaturation is generated over 60℃, while temperatures over 100℃ 

vaporize tissue water, and carbonization occurs in tissues over 300℃. 

 

Table 1.1 Physiological changes in response to temperature (Brace, 2011; Tempel et al., 2016). 

Temperature range (℃) Physical & Biological effects 

≤-40 • Intracellular ice 

39 – 45 

• Blood flow ↑ 

• Vessel permeability ↑ 

• Drug uptake ↑ 

• Activation of the immune system ↑ 

45-100 
• Protein denaturation (>60℃) 

• Coagulation, ablation 

100-300 • Vaporization 

>300 • Carbonization 

 

 

1.2.2 Clinical devices 

1) Radiofrequency ablation (RFA)  

RFA was first introduced in 1891 by d’Arsonval (d’Arsonval, 1891). Currently, there are many 

examples of clinical RFA devices for treating tumors in liver, lung, kidney, bone, and glandular tissue, 

etc. (Brace, 2009; Hayashi et al., 2003; McGahan and Dodd, 2001). RFA relies on Joule heating by high 

RF current with frequencies ranging from 375 to 480 kHz (Clasen and Pereira, 2008).  

Monopolar RFA device use an insulated needle (electrode) and a grounding pad placed on the 

tissue. This device may induce thermal injuries caused by an electrical current flowing from the 

electrode to the grounding pad. To overcome the potential side effects, a bipolar RFA device uses two 

electrodes on a single probe which allows for limited current pathway within the treatment area (Figure 

1.3) (Osaki et al., 2013).  
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Figure 1.3 An example of the bipolar RFA system. The applicator has two electrodes near its tip. 

Reproduced from (Osaki et al., 2013). 

 

 

2) Microwave ablation (MWA) 

MWA uses electromagnetic waves applied at high frequencies (915 MHz or 2.45 GHz) (Brace, 

2009). The dipole moment of polar molecules, such as H2O, is rotated by aligning to the alternating 

electromagnetic field. Thus, the localized EM field results in Dielectric heating inside tumors.  

MWA can be a more efficient heat source than RFA in certain tissues with low or zero 

conductivity such as lung or bone (Lubner et al., 2010; Simon et al., 2005), because materials with low 

conductivity inhibit RF current flow while allowing EM wave propagations. In addition, MWA can treat 

larger tissue volume, typically faster than RFA, and does not require any grounding pads.  

 

3) Laser-induced interstitial tumor therapy (LITT) 

When high powered short-wavelength laser interacts with materials, the absorbed light is 

converted into heat. LITT relies on thermal effects of lasers, transmitted to tissue through an optical 

fiber. The size of active heating depends on the size of the optical fiber tip, laser wavelength, and thermal 

and optical properties of the tissue (Brace, 2011; Garnon et al., 2013). LITT treatment is reserved for 
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the treatment of small focal lesions (less than 9 mm in diameter), while multiple fibers can be used 

simultaneously to treat larger tumors (Wu et al., 2018). 

LITT is easily compatible with imaging modalities, especially with MRI because of fiber 

materials, consisting of glass and plastic. Currently, LITT has been used in particular for the treatment 

of brain (Carpentier et al., 2012), prostate (Oto et al., 2013), liver (Dick et al., 2003), and bone (Hibst, 

1992).  

 

4) Cryoablation 

During cryoablation, the tip of the probe reaches a temperature as low as -75 ℃, and then tissue 

is allowed to thaw. The freezing and thawing process is repeated several times in order to result in the 

formation of intracellular ice (Baust et al., 2014). The typical size of the inner core of the ice ball 

(reaching temperatures below -40°C) is 2 cm (Shah et al., 2016). One strong advantage of cryoablation 

is that multiple cryoprobes can be combined in order to treat larger tumors, the ice ball being shaped to 

cover the morphology of the lesion. 

Imaging modalities such as CT and MRI are generally used to control cryoablations in order to 

evaluate the ice growth during the treatment. Figure 1.4 shows the MR-guided cryoablation system at 

the University hospital of Strasbourg. Low-signal area in T2-weighted images corresponds to the 

presence of the ice ball (Figure 1.4c, white arrow).  
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Figure 1.4 (a) Interventional MR with cryoablation system (right) at University hospital of Strasbourg, 

France, (b) T2-weighted image for verification of the probes position, (c) monitoring of ice-ball during 

cryotherapy (white-arrow). Reproduced from (Tsoumakidou et al., 2012).  

 

 

5) High intensity focused ultrasound (HIFU) 

Wood et al. first observed the biological effect of high-intensity ultrasound on ex-vivo tissues 

(Wood and Loomis, 1927). Fry et al. made thermal lesions within the central nervous system in several 

animal experiments (Fry et al., 1955). Clinical use of HIFU emerged in the 1990s thanks to progress in 

medical imaging that allowed better targeting and monitoring. 

 

• HIFU transducer 

A typical HIFU transducer is made of a piezoelectric array that can be concave for a natural pre-

focusing as shown in Figure 1.5. Each piezoelectric element generates mechanical stress when an 

electric field is applied. The mechanical stress results in an ultrasound (US) wave propagating through 

the body. Typically, the HIFU transducer can be operated with acoustic compression pressures up to 70 

MPa, peak rarefaction pressures of up to 20 MPa, and intensities of 100-10000 W/cm2 (Dubinsky et al., 

2008; Napoli et al., 2013a). In contrast, the pressure and the intensity of the diagnostic ultrasound 

transducer is generally used within the 0.001-0.003 MPa and 0.1-100 W/cm2 ranges, respectively. 

Biological effects of ultrasound can be classified into two categories, depending on the ultrasonic 

waveform and the intensity range: Mechanical effects and thermal effects. 
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• Mechanical effects 

Several mechanical phenomena resulting from intense ultrasonic fields have been observed 

(Dubinsky et al., 2008): 1) cavitation, 2) microstreaming, and 3) radiation forces. At very high pressures, 

ultrasonic wave rarefaction can result in the formation of an air bubble. These air bubbles obtained 

through cavitation will keep oscillating if the US propagation is continued. Stable cavitation occurs 

when such oscillations are stable and oscillate at specific modes. Unstable cavitation can be seen as an 

uncontrolled oscillation that can result in bubble expansion and tissue damage through implosion, 

yielding extremely high, localized pressure and heat. Fluid microstreaming can also occur under high 

amplitude acoustic oscillations. The fluid velocity due to microstreaming is associated with shear 

stresses that can have a biological effect. Fluid microstreaming can also occur around oscillating 

microbubbles. Lastly, radiation forces result from the interaction between the US wave and an absorbing 

medium. The radiation force can ‘push’ inside the medium, which can also have a biological effect.  

 

• Thermal effects 

High energy density can cause heat over a small volume. Such temperature increase is associated 

with the following parameters in the Bio-Pennes equation (Pennes, 1948): 

 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= ∇(𝑘∇𝑇) + 𝑞𝑝 + 𝑞𝑚 − 𝑤𝐶𝑏(𝑇 − 𝑇𝑏) Equ. 1.1 

 

Where 𝜌 is tissue density (≈1000 kg/m3), T is temperature (℃), 𝑇𝑏 is the temperature of blood (℃), 𝐶𝑝 

is specific heat, 𝐶𝑏 is the blood specific heat, w is the local blood perfusion rate (kg/m3/s), 𝑘 is the tissue 

thermal conductivity (W/m/℃ ), 𝑞𝑝  is the energy deposition (W/m3), and 𝑞𝑚  is the heat due to 

metabolism, which is often negligible compared to 𝑞𝑝 in cases of hyperthermia. In the case of HIFU 

heating, qp depends on tissue acoustic absorption 𝛼 and ultrasound intensity I: 𝑞𝑝 = 2𝛼𝐼 
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Figure 1.5 (a) photo and (b) illustration of a 256-element HIFU transducer (Image Guided Therapy, Inc., 

Pessac, France). A HIFU transducer consists of phased-array elements disposed so that the transducer 

can focus within a given spatial zone. Degassed water is used for ultrasound transmission. 

  

 

• MR-guided HIFU ablation 

Thermal ablations are often performed under Computed Tomography (CT), Ultrasound (US), 

or Magnetic Resonance Imaging (MRI) guidance. This guidance is essential for ensuring treatment 

safety and efficiency. MRI provides intrinsically rich soft tissue contrast compared to CT and US. It 

enables image acquisition in any scan orientation and employs non-ionizing radiation. Additionally, 

MRI can offer functional and metabolic imaging as well as quantitative assessment of temperature 

changes induced by thermal ablations. Owing to these advantages, MR-guided thermal therapy systems 

have been used in clinical practice as an alternative to conventional surgical ablation (Jolesz, 2009). In 

particular, MR-guided HIFU is particularly relevant, due to the fact that US HIFU technology can be 

made compatible with MR with relative ease, and that MR thermometry provides essential information 

in real time for ablation monitoring.  
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Figure 1.6 (a) MR-guided HIFU system (Image Guided Therapy, Inc., Pessac, France) at University 

hospital of Strasbourg, France, (b) an illustration of HIFU setup 

 

 

1.3 MR monitoring of thermal therapy 
MR Imaging for thermal therapy has two specific aims: 1) real-time temperature monitoring to 

control the energy deposition; 2) assessment of tissue damage that can provide information on treatment 

response.  

MR Thermometry (MRT) is commonly used for temperature monitoring during thermal therapy. 

Several MR parameters are sensitive to temperature, such as proton density, T1 and T2 relaxation times, 

diffusion coefficient, and the water proton resonance frequency shift (PRFS). In particular, PRFS-based 

MRT is the most commonly used method for monitoring thermal therapy because of its high sensitivity 

to temperature changes obtained during thermal therapies, and its high temporal resolution on the order 

of a few seconds (Rosenberg et al., 2013; Zhu et al., 2017). More details of the mechanisms of PRFS 

and other temperature-sensitive parameters will be described in Chapter 2 (page 22).  

 

1.3.1 Biomarkers reliable for thermal tissue damage 

In 1984, Sapareto and Dewey proposed the thermal dose model for damages from temperature-

time history (Sapareto and Dewey, 1984). The cumulative Equivalent Minutes at 43 ℃ (CEM43) model 

is defined to estimate a thermal isoeffect dose through the exposure time (Sapareto and Dewey, 1984; 

van Rhoon et al., 2013): 
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 𝐶𝐸𝑀43 = ∑𝑅(43−𝑇𝑖) ∙ ∆𝑡

𝑖∙∆𝑡

𝑖=1

 Equ. 1.2 

 

𝑤𝑖𝑡ℎ 𝑅 =  {
 0.25   𝑇𝑖 < 43℃
 0.50   𝑇𝑖 ≥ 43℃

 

 

Where ∆𝑡  is the time interval, i is the measurement number, and Ti is the temperature of the ith 

measurement.  

Therefore, the cumulative thermal dose (TD) represents an integration of temperature over time 

and has been shown to be a reliable marker of tissue damage. For example, if mild temperature ranges 

(~45℃) are maintained for a few minutes, it can induce protein coagulation (Figure 1.7). Recent studies 

have proposed improved thermal dose models including tissue characteristics such as tissue thickness, 

heat diffusion, and local blood perfusion rates, etc. (MacLellan et al., 2018; Napoli et al., 2013b). 

However, fundamental limitations when using TD alone for monitoring thermal ablations over time 

need to be mentioned, such as the fact that TD thresholds are still tissue-dependent (van Rhoon et al., 

2013), and that TD is particularly sensitive to any uncertainty or bias due to its cumulative property 

(Vappou et al., 2018). TD has also been shown to be poorly correlated to non-perfused volume (NPV), 

a reliable marker of post-ablation tissue damage, showing potential errors of MR Thermometry due to 

long-term heat accrual (Bitton et al., 2016). In addition, PRFS thermometry in fat-containing tissues 

may result in significant temperature errors depending on echo time, fat fraction, and extent of 

temperature increase because the temperature dependent electron-screening constant in fat is negligible 

compared to the one of water protons (Rieke and Pauly, 2008a; Taylor et al., 2011). 
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Figure 1.7 Thermal dose depending on temperature and exposure time. Reproduced from (Napoli et al., 

2013b). 

 

MRI can provide additional biomarkers for tissue damage complementary to temperature. Table 

1.2 shows several biomarkers that relate to thermal tissue damage. The measurement of T1 or T2 

relaxation times can provide accurate temperature information in fat containing tissues and reflect the 

degree of tissue damage (Baron et al., 2014; Todd et al., 2014). Magnetization transfer ratio has also 

been shown to describe thermal damage through its analysis of protein levels (Peng et al., 2009). As 

reported by (Kwon et al., 2014), MR Electrical impedance tomography can be used for measuring the 

change in electrical conductivity of the ablated tissue. 
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Table 1.2 Biomarkers for thermal tissue damage. 

Reference Biomarkers 
Field 

strength 
[T] 

Tissue type Application Temperature↑ vs. 

(Todd et al., 2014) 
T1 (for fat), PRFS 

(for water) 
3.0 Ex-vivo porcine 

muscle HIFU T1↑ 

(Baron et al., 2014) T2 (for fat) 1.5 In-vivo porcine 
liver HIFU T2↑ 

(Peng et al., 2009) Magnetic transfer 
ratio, PRFS 3.0 Ex-vivo porcine 

muscle HIFU Magnetic transfer 
ratio↑ 

(Kwon et al., 2014) Electrical 
conductivity 3.0 Ex-vivo bovine RFA 𝜎 ↑ 

(Kruse et al., 2000) Elasticity 1.5 Ex-vivo bovine 
skeletal muscle 

Themally 
regulated 

holder 
Shear modulus↓ 

(Wu et al., 2001) Elasticity 1.5 Ex-vivo bovine HIFU 
Shear modulus ↓ 
(Shear modulus ↑ 

over 60℃) 

(Chen et al., 2014) Elasticity 1.5 In-vivo porcine 
liver Laser Shear modulus ↑ 

(Corbin et al., 
2016a) Elasticity, PRFS 1.5 In-vivo porcine 

liver Laser Shear modulus ↑ 
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1.3.2 Mechanical properties as biomarker 

Thermal tissue damage can induce changes in the mechanical properties of tissues, for example, 

through tumor necrosis or protein coagulation. In 1998, Stafford et al. first investigated the use of US 

elastography to distinguish the extent of thermal damage in several lesions (Figure 1.8) (Stafford et al., 

1998). Mariani et al. investigated thermal lesions in pig liver using US shear wave elastography (Mariani 

et al., 2014). RFA was performed for thermal ablation and the thermal lesion was visualized under 

combined shear wave elastography with B-mode imaging (Figure 1.9).  

 

 

 

Figure 1.8 Young’s modulus as a function of the strain of laser ablation applied in ovine kidney. Position 

1 (pos 1) is in the center of the lesion. Position 2 is in an intermediate position in the lesion. Position 3 

(pos 3) is in the border of the lesion. Position 4 (pos 4) is in the normal tissue. Reproduced from (Stafford 

et al., 1998). 
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Figure 1.9 Shear waves elastography (top) and B-mode image (bottom). The ablated lesion has higher 

Young’s modulus than the surrounding normal tissues. Reproduced from (Mariani et al., 2014). 

 

In the field of MRI, MR Elastography (MRE) offers the possibility to measure the mechanical 

properties of soft tissues non-invasively. Such measurements are quantitative as they rely on the 

estimation of the velocity of shear waves propagating within the tissue. Wu et al. established a 

relationship between temperature and elasticity changes measured with MRE in ex-vivo bovine muscle 

tissue (Wu et al., 2001). They observed that the shear modulus of ex-vivo bovine tissues decreased in 

the temperature range from 20 ℃ to around 60 ℃, which can be explained by protein unfolding during 

heating. Over 60 ℃, protein structural changes started to become irreversible. Thus, the shear modulus 

increased and did not go back to its original value during cooling down (Figure 1.10).  
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Figure 1.10 Shear modulus of ex-vivo bovine tissue measured with MRE at various temperature. The 

arrow indicates increasing experimental time. This graph illustrates tissue shear modulus changes during 

the heating and cooling process. Reproduced from (Wu et al., 2001). 

 

More recently, Chen et al.(Chen et al., 2014) have demonstrated the feasibility of monitoring 

changes in elasticity of porcine liver in-vivo as a result of laser ablations. Liver elasticity was found to 

increase significantly after ablations.  

Corbin et al.(Corbin et al., 2016a, 2016b) proposed an interventional MRE protocol and method 

that allows for simultaneous PRFS temperature and elasticity monitoring within a few seconds (Figure 

1.11). This interventional MRE system was developed in our laboratory. It includes a needle MRE driver, 

a respiratory triggered gradient-echo sequence with motion encoding and an online reconstruction 

method that provides elasticity and temperature measurements in real-time. Changes in elasticity and 

temperature occurring during laser thermal ablation are successfully measured in-vivo over 20 minutes 

thanks to this interventional MRE system (Corbin et al., 2016a). 

Hofstetter et al. (Hofstetter et al., 2019) proposed a new MR-shear wave elastography approach 

that can measure elasticity within an in-plane area of ~5 × 5 cm, using multiple acoustic radiation force 

pushes. Ex-vivo HIFU experiment in bovine liver was performed and MR-shear wave elastography 

showed the evolution of shear wave speed in the ablated zone (Figure 1.12). This technique allows for 

monitoring changes in shear wave speed due to HIFU ablation.  
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Figure 1.11 Evolution of the shear modulus (red) and the temperature during a laser ablation in swine 

liver in-vivo. 

 

 

Figure 1.12 Ex-vivo HIFU experiment. Shear wave speed maps measured before (A) and after (B) 

ablation. Temperature map (C) and corresponding thermal dose (D). The thermal dose threshold of 240 

CEM43 is overlaid as a black line in (B). Reproduced from (Hofstetter et al., 2019). 
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1.4 Research objective 
As previously mentioned, tissue elasticity has received increasing attention as a biomarker for 

assessing therapy response during thermal ablation. Recent studies have demonstrated the possibility of 

using both MR Elastography and MR Thermometry simultaneously in order to monitor tissue damage.  

This Ph.D. thesis applies a set of different developments dedicated to interventional MRE/MRT 

for the monitoring of hyperthermia. The first part of this thesis is dedicated to the development of a fast 

multislice MRE sequence for improved spatial coverage during thermal therapy. Full spatial coverage 

of the ablation area is desirable compared to 2D imaging for two reasons. First, the 2D images may not 

be properly centered on the ablation area. Second, the geometry of the ablation area is shaped by local 

tissue configuration (blood flow, spatially varying heat deposition, tissue physiology, etc.), that only 3D 

coverage can provide. The first project aims to propose the use of simultaneous echo refocusing (SER) 

(Feinberg et al., 2002) for the acquisition of 2 slices sharing a single MRE gradient encoding in a single 

TR, and to demonstrate its use for multislice monitoring of temperature and elasticity changes during 

thermal ablations.  

The second part presents a new acquisition strategy for simultaneous fat referenced PRFS 

thermometry and MRE, in order to monitor thermal ablations for all types of soft tissues, including fatty 

tissues. On one side, fat referenced PRFS thermometry makes it possible to measure temperature while 

enabling field-drift correction (Hofstetter et al., 2012). On the other side, MRE enables measuring the 

mechanical properties of the tissue that are related to tissue structural damage during ablations. The 

proposed strategy offers a refinement of the combined MRT/MRE real-time monitoring of thermal 

ablations, extending its accuracy in soft tissues including fat containing tissues, while keeping the 

acquisition time similar. 
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1.5 Outline 
This PhD dissertation is organized as follows: 

Chapter 2 introduces the basic principles of PRFS-based MR Thermometry and MR 

Elastography, including a historical review. The purpose of this chapter is to provide a theoretical 

background for the understanding of chapters 3 and 4. 

Chapter 3 describes the use of simultaneous echo refocusing (SER) for accelerating the 

multislice MRE acquisition. The proposed method is demonstrated in three experiments: First, a 

phantom experiment is prepared to compare with regular MRE sequences. A second experiment is 

conducted to validate the use of the SER method for monitoring temperature and elasticity changes 

during HIFU ablation. Third, a HIFU experiment in chicken muscle tissue is carried out to monitor the 

volumetric change of tissue temperature and elasticity during HIFU ablation. 

Chapter 4 provides a new framework for simultaneous fat referenced PRFS Thermometry and 

MRE. Accurate temperature measurement is validated in a phantom experiment by using fiber optic 

thermal sensors. In addition, elasticity maps are compared to those reconstructed with regular MRE-

GRE sequence. Then, HIFU experiments in pig rib muscle tissue with homogenous fat fractions are 

conducted to evaluate the feasibility to extend into clinical practice.  

Chapter 5 provides a general discussion about this Ph.D. thesis and the field of interventional 

MRE. 
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2.1 Magnetic Resonance Imaging 
This summarizes some of the basic principles of magnetic resonance imaging (MRI) that are 

required to understand the following chapters. Additional mathematical details will be found in 

(Bernstein et al., 2004). 

 

2.1.1 NMR signals and image reconstruction 

For the sake of simplicity, let us consider a 2D image acquired in the x-y plane. The microscopic 

magnetization of each hydrogen nucleus processes at the Larmor angular frequency 𝜔 around the axis 

of the main magnetic field 𝐵0 as follows:  

 

 𝜔 = 𝛾𝐵0 Equ. 2.1 

 

Where the gyromagnetic ratio of the hydrogen nuclei 𝛾 is 267.522 × 106 rad/s/T. At thermal equilibrium, 

the macroscopic magnetization of a spin system within a static magnetic field is aligned with the axis of 

this static magnetic field. When a radio-frequency excitation pulse oscillating at the Larmor frequency 

is applied, the direction of the macroscopic magnetization is tilted way from the main magnetic field, 

towards the transverse plane perpendicular to the main magnetic field axis. In the transverse plane, the 

magnetization 𝑀⊥ is detected in receive coils as a complex signal oscillating with the precession of spins 

at the Larmor frequency. 

MRI exploits three gradients in orthogonal directions in order to encode spatial information in 

the NMR signal: a slice selection gradient, a frequency encoding gradient, and a phase encoding gradient. 

First, the slice selection gradient induces a linear spatial variation of the Larmor frequency (in this 

example applied along the z-direction) so that a radio-frequency pulse centered at its central frequency 

can tip the magnetization away from the main magnetic field direction in a given slice. Second, the 

phase encoding gradient (in this example applied along the y-direction) provides each row of pixels in 

the image with a given phase. Third, the frequency encoding gradient (in this example applied along the 

x-direction) relates the precession frequency of the spin to its position along each line of pixels, during 

signal acquisition.  

This signal is recorded in the dataset, called ‘k-space’ (Figure 2.1). An MR sequence is 

performed for each phase encoding step and is repeated in order to fill all rows in the k-space. The NMR 

signal measured in the receive coil contains the sum of all spins having different frequencies. Therefore, 

the k-space data can be written as: 
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 𝑆(𝑘𝑥, 𝑘𝑦) = ∫∫𝑀⊥(𝑥, 𝑦)𝑒−𝑖2𝜋∙𝑥∙𝑘𝑥𝑒−𝑖2𝜋∙𝑦∙𝑘𝑦𝑑𝑥

 

 

𝑑𝑦 Equ. 2.2 

Where 𝑆(𝑘𝑥, 𝑘𝑦) can represent a full k-space dataset in the spatial frequency domain, x and y are the 

spatial coordinates along the 𝑂𝑥 and 𝑂𝑦 axes respectively, 𝐺𝑥 is a frequency encoding gradient, 𝑘𝑥 is 

equal to (𝛾/2𝜋) ∫ 𝐺𝑥(𝑡)𝑑𝑡
𝑇𝑥

0
, 𝐺𝑦(𝑡)  is a phase encoding gradient, and 𝑘𝑦  is equal to (𝛾/

2𝜋) ∫ 𝐺𝑦(𝑡)𝑑𝑡
𝑇𝑦

0
 where 𝑇𝑥 is the duration of the prephasing gradient and 𝑇𝑦 is the duration of the 𝐺𝑦 

lobe.  

The transverse magnetization 𝑀⊥(𝑥, 𝑦) can be reconstructed by the inverse Fourier transform 

of 𝑆(𝑘𝑥, 𝑘𝑦). From this complex image, magnitude and phase images can be derived as shown in Figure 

2.1. The magnitude image indicates the intensity of the NMR signal and the phase image includes a 

frequency information of the NMR signal. 

 

 

Figure 2.1 An example of k-space (magnitude) and corresponding magnitude and phase images, that 

can be reconstructed by the inverse Fourier transform of the complex k-space data. 
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2.2 MR Thermometry 
2.2.1 Temperature dependent MR parameters 

1) Proton density 

The proton density can be derived from the Boltzmann distribution (Abragam, 1961) at thermal 

equilibrium. Therefore, the temperature can be estimated by the proton density as follows: 

 

 𝑝𝑟𝑜𝑡𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∝  𝜒0𝐵0 Equ. 2.3 

𝜒0 ∝ 1/𝑇 

 

Where the susceptibility 𝜒0  is inversely proportional to the temperature 𝑇 . The relative change in 

temperature is calculated by the change in proton density, but the temperature sensitivity is about -

0.3 %/℃, requiring high Signal-to-Noise Ratio (SNR) (Rieke and Pauly, 2008b). In addition, the change 

in the proton density depends on the change in the susceptibility related to thermal damage, not 

temperature alone. Therefore, it is not clinically used to measure temperature during thermal therapy. 

 

2) T1 relaxation time 

As reported in (Kahn and Busse, 2012), the temperature-dependence of the longitudinal 

relaxation time T1 was first modeled by: 

 

 𝑇1  ∝  𝑒−𝐸𝑎(𝑇1)/𝑘𝑇 Equ. 2.4 

 

Where 𝐸𝑎(𝑇1) is the activation energy of the relaxation time and 𝑘  is the Boltzmann constant. 𝑇1 

increases with an increase in temperature. Recently, the hybrid T1- and PRFS- based MR Thermometry 

was developed for monitoring temperature in fatty and aqueous tissues, simultaneously (Todd et al., 

2014). Its temporal resolution is 3.8 s, which might be sufficient for the monitoring of clinical thermal 

therapy. The temperature dependence of T1 was found to be 8 ms/℃ in the adipose breast tissue. 

However, additional T1 variations occur when irreversible changes are induced in tissue structure. Hence 

the tissue temperature dependence of T1 does no longer follow a linear relationship when irreversible 

changes occur. 
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3) T2 relaxation time 

 The transverse relaxation time T2 is not receiving much interest in the field of MR Thermometry 

because of its nonlinear relationship with temperature in aqueous tissues. Recently, several studies 

proposed to use T2 for measuring the temperature in adipose tissues and bone marrow (Baron et al., 2014; 

Ozhinsky et al., 2016). Their findings are that T2 in fat is linearly proportional to temperature. Its 

temperature sensitivity is about 5-7 ms/℃.  

 

4) 𝑅2
∗ relaxation rate 

The transverse relaxation rate 𝑅2
∗ is defined as the inverse of 𝑇2

∗.  

 

 𝑅2
∗ =

1

𝑇2
∗ =

1

𝑇2
+ 𝛾∆𝐵0 Equ. 2.5 

 

Where ∆𝐵0 is the field inhomogeneity and 𝛾 is the gyromagnetic ratio. 

𝑅2
∗ can be usually estimated using a multi-echo dataset. (Lorenzato et al., 2014) reported that 

the multi-echo gradient echo sequence can be used for temperature monitoring with 𝑅2
∗  change. In 

addition, PRFS temperature can be estimated from the multi-echo dataset. As shown in Equ. 2.5, 𝑅2
∗ 

reflects the change in the field inhomogeneity, which can be affected by the change in susceptibility 

induced by temperature change. Therefore, it is possible to estimate temperature change through 𝑅2
∗ 

change. The temperature sensitivity was found to be about 0.35 s-1/℃ in porcine muscle (Lorenzato et 

al., 2014). 

 

5) Diffusion 

Diffusion imaging allows for measuring the Brownian-motion of the water molecules. The 

relationship between diffusion and temperature was summarized by (Le Bihan et al., 1989) as follows: 

 

 𝐷 ∝  𝑒−𝐸𝑎(𝐷)/𝑘𝑇 Equ. 2.6 

 

Where D is diffusion coefficient, 𝐸𝑎(𝐷) is the activation energy of the diffusion of water molecules, 

and 𝑘 is the Boltzmann constant. As reported by (Rieke and Pauly, 2008b), the temperature sensitivity 
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is about 2%/℃, which is acceptable in clinical practice. However, the relationship between temperature 

change and diffusion change is highly dependent on tissue characteristic and condition (Bleier et al., 

1991). 

 

2.2.2 Proton Resonance Frequency Shift based MR Thermometry 

Proton Resonance Frequency shift (PRFS) -based MR Thermometry is the most commonly used 

method for monitoring thermal ablations thanks to its high sensitivity to temperature (≈ −0.01 𝑝𝑝𝑚/℃) 

within the temperature range encountered during hyperthermia. The sensitivity of PRFS to temperature 

was first established by (Hindman, 1966). In 1995, Ishihara et al. proposed PRFS-based MR 

Thermometry in a gradient echo sequence (Ishihara et al., 1995). The resonance frequency in a molecule 

in the main magnetic field 𝐵0 is given by the Larmor frequency (Equ. 2.1). However, hydrogen bonds 

in water molecules come loose as temperature increases, leading to increased electron screening of 1H 

nucleus, and therefore to lower proton resonance frequency (Ishihara et al., 1995). This phenomenon is 

called the water proton resonance chemical shift (PRFS) with temperature. The local magnetic field can 

be expressed as: 

 

 𝐵𝑙𝑜𝑐 = (1 + 𝑠)𝐵0 Equ. 2.7 

 

Where 𝑠 is the electron-screening constant or shielding constant of the water proton. Hence, Equ. 2.1 

becomes: 

 

 𝜔 = 𝛾(1 + 𝑠)𝐵0 Equ. 2.8 

 

The temperature dependent electron-screening constant of the water proton is expressed as: 

 

 𝑠(𝑇) = 𝛼𝑇 Equ. 2.9 

 

Where 𝛼 is the PRFS coefficient of the water proton about -0.0103 ± 0.0002 ppm/℃ (Hindman, 1966). 

As shown in Figure 2.2, it is possible to estimate relative temperature changes by monitoring local 

resonance frequency variations in hydroxide.  



Chapter 2. General background 
 

28 
 

 

Figure 2.2 Temperature dependent PRFS in -OH and -CH2. The temperature increase is related to PRFS 

in hydroxide, but not to PRFS in methylene. Reproduced from (Taylor et al., 2011). 

 

 

In gradient echo sequences, relative phase shifts are proportional to temperature, and hence can 

be converted to temperature changes as follows: 

 

 ∆𝑇 =
𝜙(𝑇) − 𝜙(𝑇0)

𝛾𝛼𝐵0𝑇𝐸
 Equ. 2.10 

 

Where ∆𝑇 is the temperature difference relative to the reference image, 𝜙(𝑇) is the current phase image, 

𝜙(𝑇0)  is the reference phase image, γ  is the gyromagnetic ratio, α  is the temperature sensitive 

coefficient, 𝐵0  is the main magnetic field, 𝑇𝐸 is the echo time. The reference phase image (before 

heating) is subtracted to the current phase image (during heating). Finally, the temperature calculated 

from Equ. 2.10 is accumulated in order to estimate tissue damage via the CEM43 model as described in 

chapter 1.3 (Figure 2.3). 
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Figure 2.3 Temperature (top row) and thermal dose (bottom row) images of the liver during HIFU 

ablation. The region exceeding the 240CEM43 is shown in red in the thermal dose image. MR images 

are obtained by a single-shot gradient-recalled echo planar imaging (EPI) sequence with multislice 

acquisition. Reproduced from (Quesson et al., 2011). 

  



Chapter 2. General background 
 

30 
 

2.3 MR Elastography 
2.3.1 Introduction 

MRE is already being used clinically for the assessment of liver fibrosis. The extent of liver 

fibrosis can be assessed by measuring the mechanical properties of the liver (Taouli et al., 2009). As 

shown in Figure 2.4, stiffness increases together with the degree of fibrosis.  

 

 

Figure 2.4 Stiffness increase in the liver corresponds to increasing fibrosis level (F1 to F4). The 

wavelength increases along with fibrosis level. Reproduced from (Venkatesh Sudhakar K. et al., 2013).  

 

Additionally, MRE can detect many pathological changes due to cancer. For example, breast 

and liver cancers are stiffer than healthy tissues (Figure 2.5) (Pepin et al., 2015). The stiffness of lesions 

may be increased due to abnormal vasculature and high interstitial fluid pressure. In the brain, the 

stiffness of meningioma appears to be softer than the surrounding brain tissue (Murphy et al., 2013). As 

reported by (Murphy et al., 2011), Alzheimer disease results in significantly softer stiffness than healthy 

brain tissue. Also, MRE has shown potential to evaluate other diseases, such as renal parenchymal 

disease (Rouvière et al., 2011), lung parenchyma disease (Mariappan et al., 2011), cardiac amyloidosis 

(Arani et al., 2017), etc. 
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Figure 2.5 Evaluation of breast cancer in human, obtained by MRE. Stiffness of the cancerous tissue is 

significantly higher than that of healthy glandular tissue. White dashed line points out the cancer lesion. 

Reproduced from (Pepin et al., 2015). 

 

 

2.3.2 Principle of MRE 

Measuring tissue elasticity using MRE requires three main elements listed as follows: 

1) Applying displacements 

The first step is the generation of shear waves within the region of interest using an internal or 

external acoustic exciter. The most common MRE mechanical excitation source consists in using an 

external pneumatic driver. As shown in Figure 2.6, the acoustic source is an active driver that is placed 

outside of the MRI scanner, and the acoustic wave is transmitted to an MR-safe passive driver, placed 

in contact with the body. A flexible membrane on the surface of the passive driver transmits the vibration 

to the body, resulting in the propagation of shear waves (Venkatesh Sudhakar K. et al., 2013). 

Other technologies for excitation have been used, such as electromechanical or piezoelectric 

actuators (Sack et al., 2008; Uffmann et al., 2002; Vappou et al., 2007). Generating waves directly within 

the organ of interest has also been proposed, through the use of percutaneous instruments transmitting 

the vibration induced by a piezoelectric actuator (Corbin et al., 2016b; Yin et al., 2007). As reported by 

(Corbin et al., 2016b), an MR-compatible piezoelectric stack driver is used to make the tip of a needle 

vibration in the longitudinal direction and directly creates the acoustic wave to propagate away from the 

needle shaft in the transverse direction. Alternatively, the displacement can be also induced by acoustic 

radiation force from HIFU excitation (Hofstetter et al., 2019; Souchon et al., 2008; Wu et al., 2000).  
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Figure 2.6 Illustration of a pneumatic MRE driver system. Reproduced from (Venkatesh Sudhakar K. 

et al., 2013). 

 

2) Measuring displacements 

The harmonic oscillation 𝜉(𝑡) induced by the propagating shear wave can be described as: 

 

 𝜉(𝑡) = 𝜉0
⃗⃗ ⃗⃗ ∙ 𝑠𝑖𝑛(2𝜋𝑓 ∙ 𝑡 − �⃗⃗� ∙ 𝑟) Equ. 2.11 

   

Where 𝜉0
⃗⃗ ⃗⃗  is the motion amplitude, 𝑓 is the frequency of the applied harmonic wave, �⃗⃗� is the 

wave number and 𝑟 is the position vector. 

The second step of MRE consists in encoding the shear wave using MRI. If Equ. 2.1 is expressed 

as a function of time, then the resonance frequency can be written as:  

 

 
𝑑𝜙

𝑑𝑡
= 𝛾𝐵(𝑡) Equ. 2.12 

 

Let us assume that an additional bipolar gradient �⃗�  is applied while the tissue undergoes a 

harmonic wave motion. The bipolar gradient �⃗� consists of two trapezoidal lobes (each with the same 

gradient area, and with opposite polarity). As shown in Figure 2.7, the first lobe of the gradient �⃗� and 

the mechanical wave results in phase shifts and the second lobe of the gradient �⃗� and the mechanical 

wave accumulates the same phase shifts because both the polarity of the gradient and the displacement 
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are inverted together. The MRE encoding gradient �⃗� is usually called the motion sensitive gradient 

(MSG) and is applied in a specific direction in which it encodes the spatial component of the shear wave. 

Therefore, the local magnetic field 𝐵(𝑡) in the presence of the bipolar gradient �⃗� and harmonic 

shear wave 𝜉(𝑡) becomes:  

 

 𝐵(𝑡) =  𝐵0 + �⃗�(𝑡) ∙ (𝑟0⃗⃗⃗⃗ + 𝜉(𝑡)) Equ. 2.13 

 

Where 𝑟0⃗⃗⃗⃗  is the initial position vector of tissue at time 𝑡 = 0.  

 

 

Figure 2.7 Chronogram of the MSG and the mechanical wave. t1 is the period of the MSG and the 

mechanical shear wave. 

 

Equ. 2.11 becomes: 

 

 
𝑑𝜙

𝑑𝑡
= 𝛾[𝐵0 + �⃗�(𝑡) ∙ (𝑟0⃗⃗⃗⃗ + 𝜉(𝑡))] Equ. 2.14 

 

Hence, the phase of the MR image contains information about the tissue motion as follows: 

 

 𝜙 = 𝛾 ∫[𝐵0 + �⃗�(𝑡) ∙ (𝑟0⃗⃗⃗⃗ + 𝜉(𝑡))]𝑑𝑡

𝑡

0

 Equ. 2.15 

 

The phase of the MR image described in Equ. 2.15 can also be written as: 
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 𝜙 = 𝜙0 + 𝜙𝑚 Equ. 2.16 

 

Where 𝜙0 stands for the background phase and 𝜙𝑚 reflects the phase accumulation resulting 

from the shear wave encoding. Two strategies can be adopted in order to remove the static background 

phase reflecting B0 field inhomogeneities. A background phase image (𝜙0) can be acquired prior to the 

shear wave propagation so that it can be subtracted to the following phase images acquired during shear 

wave propagation, under the assumption that the background phase remains constant during the 

acquisition.  

The most commonly adopted strategy consists in acquiring two-phase images with opposed 

MSG polarities, so that Equ. 2.16 translates into: 

 

 {    
𝜙+ = 𝜙0 + 𝜙𝑚

𝜙− = 𝜙0 − 𝜙𝑚
 Equ. 2.17 

 

Where 𝜙+  and 𝜙−  are phase values acquired from MSG+/− , respectively. Subtracting the phase 

images one to another results in the suppression of the static background phase 𝜙0, while the motion-

induced phase shift 𝜙𝑚 is doubled (Equ. 2.18): 

 

 𝜙𝑚 = (𝜙+ − 𝜙−)/2 Equ. 2.18 

Although that approach doubles the acquisition time compared to a unique reference scan, the 

strong gain obtained in terms of Phase-to-Noise Ratio (PNR) makes it the current state-of-the-art for 

diagnostic MRE. 

Phase encoding can be seen as a convolution between an MSG and a mechanical wave, which 

means that frequencies other than the main excitation frequency can also be encoded. In order to extract 

the fundamental frequency of the motion, the wave propagation is captured at different time points by 

varying the time offset between the MSG and the mechanical wave. Theses phase difference images 

(𝜙𝑚1, 𝜙𝑚2, 𝜙𝑚3, … ) are processed by applying a temporal Fourier transform in order to isolate the 

motion at the fundamental frequency. The phase offsets are typically evenly spaced across a mechanical 

period. Estimating the mechanical properties (Next section) is performed on the resulting filtered wave 

image. 
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Figure 2.8 shows the chronograms of typical gradient echo- and spin echo-MRE sequences 

including the MSG.  

 

Figure 2.8 Chronograms of typical gradient echo MRE sequence (a) and spin echo MRE sequence (b). 

In general, those sequences are implemented with interleaved acquisitions varying the polarity of MSG 

(solid line: MSG+, dashed line: MSG-). 𝜏𝑚 is the period of the MSG, here different from the period of 

the mechanical shear wave. 

 

3) Estimating the mechanical properties 

For estimating the mechanical properties, several inversion algorithms have been used to 

transform the wave images into elasticity maps. Before applying any algorithm on MRE data set, the 

biomechanical behavior of the tissue must be correctly modeled. Several assumptions can be made about 

tissue biomechanical behavior, such as simple linear elasticity, viscoelasticity (Sack et al., 2008; Sinkus 

et al., 2005; Vappou et al., 2007), anisotropy (Chatelin et al., 2016) or poroelasticity (McGarry et al., 

2015). In this work, we will assume pure linear elasticity, which is a common assumption in clinical 

practice. It results in the following expression between the shear modulus and shear wave velocity: 
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 𝜇 = 𝜌𝑐2 = 𝜌(𝜆𝑓)2 Equ. 2.19 

 

Where 𝜌  is the density of soft tissues, 𝑐  is the shear wave speed, and 𝑓  and 𝜆  are the mechanical 

frequency and the wavelengh in tissue, respectively.  

 One of the methods for estimating the shear modulus is to evaluate the wavelength 𝜆 from the 

wave images. Manduca et al. proposed a way to estimate the local frequency using the combination of 

several lognormal filters, namely local frequency estimation (LFE) algorithm (Manduca et al., 1996). 

This approach can produce a robust estimate of the shear modulus in the presence of noise and 

heterogeneous geometry. 

 Another way to estimate the shear modulus is solving the differential equation of motion, 

namely, a direct inversion (Oliphant et al., 2001). Since the computation is performed on the basis of 

the equations of motion in a small region, its spatial resolution is better than the LFE algorithm and it is 

possible to measure the viscoelastic properties of tissue (Sack et al., 2008; Sinkus et al., 2005). However, 

a direct inversion approach is typically sensitive to noise, while the LFE algorithm is relatively robust 

to noise. An alternative method is based on an optimization process between computed and experimental 

displacement fields (Van Houten et al., 1999). However, this method requires particularly long 

computational time. 

In this Ph.D. thesis, the LFE algorithm was used because of its robust and fast estimate of the 

shear modulus. We will focus mainly on this inversion method for the following sections.  

Figure 2.9 shows a summary of the MRE process, illustrated in a gelatin phantom made of two 

halves with different stiffness. In summary, the MR phase image represents the shear wave displacement 

field, encoded by the bipolar gradients (MSG) as formalized in Equ. 2.15. A 2D phase unwrapping 

algorithm (Goldstein et al., 1988) is applied to the phase images. The two-phase images with opposite 

MSG polarities are subtracted from one another. It allows for the suppression of the static background 

phase and increasing motion sensitivity by a factor of 2. In addition, several phase offsets between the 

MSG and the wave propagation are used in order to extract the motion at the fundamental excitation 

frequency thanks to a temporal Fourier transform. Note that the difference in wavelength between both 

halves of the phantom in Figure 2.9 is visible in the real part of the Fourier transformed wave image: 

the shorter wavelength on the left corresponds to the softer half. Lastly, the LFE algorithm is applied to 

the filtered wave image, providing the local spatial frequency of the shear wave in the image domain. 

This wavelength is used in Equ. 2.19 for the shear modulus estimation. 
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Figure 2.9 Flow chart of the MRE processing. 𝜙𝑖  (i=1,2,3,4) is the phase offset. In step 2, phase 

difference images correspond to the subtraction of a pair of phase images acquired with opposite MSG 

polarities. In step 3, because temporal Fourier transform generates complex wave values, real parts of 

the result are shown in this figure. In step 4, the local frequency of the shear wave obtained in step 3 is 

used in Equ. 2.19 to evaluate the shear modulus. 

 

  



Chapter 2. General background 
 

38 
 

2.4 Simultaneous MR Thermometry and MR Elastography 
 As previously mentioned, temperature and elasticity should be measured in real time for 

accurate monitoring of thermal therapy. Thanks to a particular data processing method, it is possible to 

extract both PRFS thermometry and elasticity from the same sequence without additional acquisition 

time. 

Le et al. first proposed this simple method to derive PRFS data from gradient echo MRE datasets 

(Le et al., 2006), in which two phase images are acquired with opposed MSG polarity for each 

mechanical phase offset. Each phase image consists of temperature-dependent PRF phase shift 𝜙𝑇, the 

background phase 𝜙0 (including the static background phase and the 𝐵0 field drift), and motion-induced 

MSG encoded phase shift 𝜙𝑚 as follows: 

 

 {    
𝜙+ = 𝜙0 + 𝜙𝑇 + 𝜙𝑚

𝜙− = 𝜙0 + 𝜙𝑇 − 𝜙𝑚
 Equ. 2.20 

 

Where 𝜙+ and 𝜙− are phase values acquired with MSG+/−, respectively. Hence, the motion-induced 

phase shift 𝜙𝑚 can be calculated by subtracting the two-phase images (Equ. 2.18), while the temperature 

dependent phase shift can be recovered by canceling out 𝜙𝑚 through averaging of both phase images: 

 

 𝜙0 + 𝜙𝑇 = (𝜙+ + 𝜙−)/2 Equ. 2.21 

 

Equ. 2.18 and Equ. 2.21 are applied for the reconstruction of elasticity and temperature maps, 

respectively. In PRFS calculation (Equ. 2.10), the reference phase acquired before heating (𝜙0) is 

subtracted to the current phase image (𝜙0 + 𝜙𝑇). Hence, the temperature dependent PRF phase shift 𝜙𝑇 

can be estimated. Finally, both PRFS-based MRT and MRE can be processed from a regular gradient 

echo MRE sequence with MSG+/− interleaved acquisitions without any additional acquisition. Those 

repeated high amplitude bipolar MSG gradients may induce eddy currents. For PRFS-based MRT, 

repeated bipolar gradients could make further global field drift during the acquisition. The field 

correction should be therefore used to remove that error induced by the field drift. Image artifacts caused 

by time varying gradients are expected to be compensated through active shielding. 
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Figure 2.10 Simultaneous PRFS thermometry and MRE. Phase images 𝜙+  and 𝜙−  acquired with 

opposed MSG polarities (a), and phase subtraction (𝜙𝑚) and summation (𝜙0 + 𝜙𝑇) images (b). By using 

this method, the background phase and PRF phase shift can be separated from the motion-induced phase 

shifts.  

 

2.5 Interventional MRE/MRT in the ICube laboratory 
This section describes the custom-made interventional MRE/MRT framework used for real-time 

monitoring during thermal therapies in the ICube laboratory. 

Hardware set-up 

This work was conducted in a 1.5 T open bore MRI (MAGNETOM Aera, Siemens Healthcare). 

All MR sequences developed in this thesis were modified using the Siemens IDEA sequence 

programming framework. As defined in the MRE pulse sequence code, the MR console generates an 

optical trigger signal for the mechanical wave to start. The time when that trigger is played during TR 

varies in order to adjust the MRE phase offset 𝜃 between the onset of the mechanical wave and the MSG; 

such phase offsets are typically evenly spaced over one cycle of the mechanical wave. 
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Figure 2.11 Left side: Custom-made MRE pneumatic MRE passive driver on the table of the 1.5 T MRI 

scanner (MAGNETOM Aera, Siemens). The mechanic exciter is connected to a subwoofer speaker with 

a plastic hose. Right side: detailed view of the 3D-printed pneumatic MRE passive driver. 

 

The acoustic amplifier generates the wave once the trigger signal input is received. The 

pneumatic MRE passive driver was manufactured with bi-material polymer 3D printer (Figure 2.11). 

The MRI console was connected to a personal computer (a 64-bit window OS with a 2.5 GHz Intel dual-

core i7 processor) for post-processing. As shown in Figure 2.12, all newly reconstructed phase and 

magnitude images are transferred from the MR console to the connected personal computer through 

TCP/IP connection. Received images are processed online with Matlab (Mathworks, Natick, USA). 
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Figure 2.12 Diagram of the interventional MRE system. 

 

MR sequence 

All MRE sequences used in this Ph.D. study are based on a gradient recalled echo (GRE) MRE 

sequence. Typical GRE-MRE sequence have the MSG period equal to the period of the mechanical 

wave. To reduce both the acquisition time and the TE, we use fractional MRE encoding in order to 

increase the temporal resolution (Rump et al., 2007): the repetition time (TR) is equal to one period or 

two periods of the mechanical wave as shown in Figure 2.13. Fractional encoding consists in encoding 

the mechanical wave with an MSG with a frequency higher than the mechanical wave frequency; hence 

it becomes possible to use a TR equal to one mechanical period. Rump et al. (Rump et al., 2007) 

investigated that the encoding efficiency is determined by the ratio between the period of the MSG (𝑓𝑔) 

and the mechanical wave (f). Their finding shows that the maximum efficiency occurs for 𝑓 ≈ 0.82𝑓𝑔. 

This fractional encoding method allows faster acquisition time by allowing fitting the whole acquisition 

of one line within one cycle of mechanical excitation.  
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Figure 2.13 Chronogram of the fractional encoding GRE-MRE sequence developed for interventional 

MRE/MRT system. GRE 1-period MRE sequence (a) has TR period equal to the period of the 

mechanical wave. GRE 2-periods MRE sequence (b) has TR period equal to two periods of the 

mechanical wave. The motion is encoded in only one direction. 

 

 

MSG+/− interleaved images are acquired before the phase offset is shifted by the phase offset 

step ∆𝜃 (Figure 2.14). As previously mentioned, MRE reconstructions require a full dataset including 

different phase offsets between mechanical wave and the MSG. Subsequent elastogram can be 

reconstructed with every newly obtained pair of phase images with opposite MSG, i.e., using a sliding 

window approach (Corbin et al., 2016b). Therefore, PRFS temperature and elasticity maps can be 
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updated simultaneously once a pair of phase images is obtained from the MR console through TCP/IP 

connection (Figure 2.12). 

 

 

Figure 2.14 Image acquisition scheme. The phase offset is shifted by Δ𝜃 for the acquisition of each pair 

of MSG+/- phase images, until the maximum (𝑛 − 1) ∙ Δ𝜃 is reached. 

 

 

  



 

44 
 

 

Chapter 3 
 

 

3. Fast multislice MR Elastography 
and MR Thermometry using 

Simultaneous Echo Refocusing 
 

 

 

Contents 
 

3. Fast multislice MR Elastography and MR Thermometry using Simultaneous Echo Refocusing

 .........................................................................................................................................................44 

3.1 Introduction ............................................................................................................................45 

3.2 Methods ..................................................................................................................................47 

3.2.1 Simultaneous Echo Refocusing (SER) ...........................................................................47 

3.2.2 SER simultaneous MR Elastography and MR Thermometry ........................................48 

3.2.3 Comparison experiment in a phantom ............................................................................49 

3.2.4 HIFU-ablation experiment in a phantom ........................................................................51 

3.2.5 HIFU-ablation experiment in ex-vivo chicken tissue .....................................................52 

3.3 Results ....................................................................................................................................54 

3.3.1 Comparison experiment in a phantom ............................................................................54 

3.3.2 HIFU-ablation experiment in a phantom ........................................................................58 

3.3.3 HIFU-ablation experiment in ex-vivo chicken tissue .....................................................61 

3.4 Discussion ..............................................................................................................................63 

 

  



Chapter 3. Fast multislice MR Elastography 
 

45 
 

3.1 Introduction 
The MRE acquisition is inherently slow due to the high number of images acquired in order to 

reconstruct a single elastogram. The number of acquired images results from both the acquisition of 

images with several phase offsets between the mechanical wave and MSG, and the acquisition of two 

images per phase offset with opposite MSG polarities (MSG+/-) in order to double the PNR. In addition, 

specifically for GRE-MRE sequences, MSGs induce strong lengthening of the minimum TE, which 

results in a subsequent minimum TR increase hence increasing the acquisition time in GRE-MRE 

sequences. The “MRE” TR is also typically expressed as a multiple of the mechanical wave period in 

GRE MRE sequences. For example, with the typical 60 Hz mechanical wave frequency used in 

diagnostic MRE in the liver, the TR of GRE MRE sequences is equal to two mechanical periods (33.33 

ms with a mechanical period of 16.67 ms). In other words, the minimum “GRE MRE” TR is both fixed 

by the minimum TE and the mechanical wave period.  

The principle of fractional motion encoding was developed in order to use the MSG with higher 

frequency than the mechanical excitation frequency (Garteiser et al., 2013; Rump et al., 2007), so that 

the MSG period is shorter than the mechanical wave period and hence the related TE increase is reduced. 

In GRE-MRE sequence, fractional encoding can therefore shorten the acquisition time through a 

reduction of the minimum TR.  

However, despite this acceleration technique, the acquisition time may still be too long in several 

applications. Several acceleration techniques have been developed in MRE. Recently, (Guenthner et al., 

2019) proposed the Ristretto MRE acquisition scheme using a multislice GRE-MRE sequence with very 

high fractional encoding. It allows for having acceleration factor of 2 to 4.5 compared to conventional 

multislice GRE-MRE acquisition, at the expense of strongly decreased MSG encoding. Faster k-space 

readout strategies, such as echo-planar imaging (EPI) or spiral trajectories, have also been proposed for 

3D MRE reconstruction (Guenthner and Kozerke, 2018; Shi et al., 2015). In addition, the simultaneous 

multislice (SMS) technique was proposed for multislice 3D coverage in brain MRE (Guenthner et al., 

2017; Johnson et al., 2016). Recently, multiband RF pulse and controlled aliasing in parallel imaging 

(CAIPIRINHA) (Setsompop et al., 2011) was used to develop SMS-EPI MRE sequence (Sui et al., 

2019). It allows for imaging the whole brain within 3.5 min with sufficient SNR for reconstructing the 

elastograms. Lastly, (Ebersole et al., 2018) introduced a new MRE reconstruction method from highly 

undersampled data. Like compressed sensing MRI, the proposed method has a sparsity data unique to 

MRE reconstruction according to the MSG polarity and phase offset. This undersampled data 

acquisition allows for having acceleration factor of up to 6. 

Interventional MRE/MRT has sought to achieve high spatial coverage, which is key in properly 

monitoring the extent and effects of the ablation in both targeted and surrounding healthy tissue. The 
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objective of this study is to introduce another acceleration option for multislice interventional 

MRE/MRT, through the use of simultaneous echo refocusing (SER) (Feinberg et al., 2002). The SER 

technique applies two consecutive RF excitation pulses and their respective slice selection gradients. 

Combined with adequate pre-dephasing readout gradients, two echoes, one per slice, can be sequentially 

acquired in a single image acquisition (Figure 3.1).  

There are two main reasons for the use of the SER technique in our application: First, it enables 

to acquire MRE datasets with an acceleration factor of 2 without any higher fractional encoding. The 

RISTRETTO multi-slice GRE-MRE sequence employs a multi-shot approach in one mechanical wave 

period (Guenthner et al., 2019). It has led to high fractional encoding at the expense of sensitivity to 

motion. In contrast, the use of the SER technique can keep high motion sensitivity with an acceleration 

factor of 2. Second, as compared to the SMS technique using multiband RF pulse, the SER technique 

does not require any MR environment with additional coils (Borman et al., 2016; Johnson et al., 2016; 

Sui et al., 2019). Using additional RF coils that are necessary for SMS is always particularly challenging 

in an interventional MR environment. 

The proposed sequence was evaluated in three experimental setups: first, SER-GRE was 

compared to standard GRE-MRE sequences in phantoms. Second, high intensity focused ultrasound 

(HIFU)-ablation was performed in a phantom to evaluate the potential of SER-GRE MRE/MRT for fast 

multislice monitoring. Third, similar experiments were conducted in ex-vivo tissue to evaluate the 

ability of monitoring the changes induced in biomechanical properties during HIFU ablation. These 

experiments aimed at evaluating whether the SER method could be used for the acceleration of 

multislice interventional MRE/MRT for the monitoring of thermal ablations.  
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3.2 Methods 
3.2.1 Simultaneous Echo Refocusing (SER) 

Feinberg et al. (Feinberg et al., 2002) first introduced multi-slice imaging technique in a single 

echo train, without multi-frequency RF excitation. In Figure 3.1, two consecutive excitation pulses and 

their respective slice selection gradients create magnetization in two non-contiguous slices. Adequate 

pre-dephasing readout gradients make it possible to sequentially acquire two echoes, one per slice. More 

specifically, gradients applied between the two RF pulses only affect the magnetization excited by the 

first RF pulse, while gradients applied after the second RF pulse affect both slices. Net area of readout 

pre-dephasing gradients corresponds to half and quarter of the area of the rephasing readout gradient, 

for echoes 2 and 1 (i.e. RF pulse 1 and 2), respectively. Thus, echo formations are generated at different 

times during the readout period (Feinberg et al., 2002) and slice 1 is acquired with a longer TE than slice 

2. 

 

 

Figure 3.1 Multislice magnetization and phase status on readout direction. Net area of readout pre-

dephasing gradients, colored in light/dark gray color, is equal to the net area of the rephasing readout 

gradient with light/dark gray color. ADC 1 and ADC 2 correspond to the acquisition of slices 1 and 2 

excited by the first and second RF pulses, respectively. RF: RF excitation, SS: Slice Selection, PE: Phase 

Encode, RO: Readout, Data Acq: data acquisition. 
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This technique is of interest when long TE is sought for 𝑇2 /𝑇2
∗ weighting, but also more 

importantly when phase encoding gradients (diffusion, velocity encoding, etc.) strongly lengthen the 

“native” (i.e. regular one slice acquisition) minimum TE. 

 

3.2.2 SER simultaneous MR Elastography and MR Thermometry  

As shown in Figure 3.2b, the SER method was implemented in an MRE GRE sequence, so that 

2 slices are acquired in a single TR, sharing a single MSG for mechanical wave encoding.  

Experiments were conducted in a 1.5 T MR scanner (MAGNETOM Aera, Siemens Healthcare, 

Erlangen, Germany). A pneumatic exciter (Resoundant, Rochester, MN, USA) was used for mechanical 

wave generation, and was triggered to adjust the phase-offset (𝜃 ) between MSG and mechanical 

excitation. Two images with opposite polarities of MSG (MSG+/−) were obtained at each phase-offset. 

This pair of phase images was used for both MRE reconstruction (difference between phase images) 

and for PRFS thermometry (average between phase images) (Le et al., 2006) as detailed in Chapter 2.4. 

For MRE reconstruction, the filtered phase difference image was processed after temporal Fourier 

transform using a local frequency estimation based algorithm in order to estimate the local wavelength 

(Manduca et al., 1996). The shear modulus was then calculated by 𝜇 = 𝜌(𝜆𝑓)2 under the assumption of 

linear elasticity and uniform tissue density (𝜌=1000 kg/m3) where 𝑓 is the applied mechanical frequency. 

PRFS-thermometry was calculated from the average of each pair of phase images, which 

contains temperature information but no wave information. In PRFS calculation, further phase addition 

images were subtracted from the references corresponding to the same phase offset (Figure 3.2b).  

 

 ∆𝑇 =
[𝜙𝑝 − 𝜙𝑝

0] − [𝜙𝑝,𝐶 − 𝜙𝑝,𝐶
0 ]

𝛾𝛼𝐵0𝑇𝐸
 Equ. 3.1 

 

Where 𝜙𝑝 and 𝜙𝑝
0 are the current and reference phase images per phase-offset, respectively. For field 

drift correction, 𝜙𝑝,𝐶 and 𝜙𝑝,𝐶
0  are respectively the current and reference average values of phase 

measured in a non-heated region-of-interest (ROI) (Rieke and Pauly, 2008b). 𝛾 is the gyromagnetic ratio 

of the hydrogen nuclei, 𝐵0  is the main magnetic field, 𝛼 is the temperature coefficient (≈-0.01 ppm/℃), 

and 𝑇𝐸 is echo time across the selected slice. 
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3.2.3 Comparison experiment in a phantom 

The first experiment consists in a comparison between SER-GRE MRE and two conventional 

GRE-MRE sequences with different levels of fractional encoding. Two GRE-MRE sequences with high 

and optimal fractional encoding, respectively, were used to study the tradeoff between motion encoding 

efficiency and acquisition time (Table 3.1). The GRE-MRE sequence with high fractional encoding 

(GRE 1-period) had a shorter TR equal to one acoustic wave period, while the GRE sequence with 

optimal fractional encoding (Rump et al., 2007) (GRE 2-periods) had a longer TR equal to two acoustic 

wave periods. In other words, the GRE 2-periods offers optimal MRE motion encoding at the cost of a 

two-time-longer acquisition time compared to the GRE 1-period, the latter resulting in lower motion 

encoding efficiency although it has a higher temporal resolution. 

 

Table 3.1 MR acquisition parameters of GRE and SER-GRE MRE sequences 

 TR (ms) TE (ms) 
Vibration 
frequency 

(Hz) 

MSG 
frequency 

(Hz) 

Acquisition time 
for 2 slices (sec) 

GRE 1-period 8 6.26 125 220 1.24 

GRE 2-periods 16 8.6 125 152 2.48 

SER-GRE 16 
8.6 (slice 2) 

/11.4 (slice 1) 
125 152 1.24 

FOV 300 mm × 300 mm, matrix 128×128, parallel imaging GRAPPA factor 2, partial Fourier 7/8, 

phase resolution 90 %, slice thickness 7 mm, read-out bandwidth 950 Hz/Px, Flip angle 15°, MRE 

encoding direction Readout, MRE phase offsets 4, amplitude of MSG 20 mT/m. 

 

Spine coils and a 4-element surface coil were used. The pneumatic exciter was placed below the 

gel phantom (half-7% gelatin and half-9% gelatin) to generate acoustic waves at 125 Hz. Two slices 

were acquired with a slice gap of 100%. A total of 10 successive elastograms were reconstructed. 
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Figure 3.2 (a) Illustration of the gelatin phantom (left-7% and right-9% gelatin), (b) Chronogram of 

SER-GRE MRE and (c) GRE-MRE sequences, integrating MSG and time-harmonic motion generated 

by an external acoustic exciter. 1/fMSG is the MSG period. ∆𝜃 is the step of phase-offset, spaced equally 

over a vibration cycle. 
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3.2.4 HIFU-ablation experiment in a phantom 

To evaluate the ability of the SER-GRE sequence to monitor both temperature and elasticity, 

HIFU ablation was performed in an 8% gelatin-milk phantom (1.3% fat milk 1 L and water 1.4 L). The 

spin coil was used as the only receive coil in order to mimic the condition of the clinical MR-guided 

intervention (Sedaghat and Tuncali, 2018). 

As shown in Figure 3.3, two interleaved acquisitions were employed to cover the whole volume 

of the focal spot with 4 contiguous slices. Each acquisition provided two slices with a slice gap of 100%, 

the two acquisitions being set-up one slice apart. The slice acquisition order was slice 3, 1, 4 and 2, with 

slices 1 and 2 acquired with TE 14.6 ms and slices 3 and 4 acquired with TE 11.1 ms. The 4 contiguous 

slices were positioned around the HIFU focal spot, positioned in slice 2. The temporal sequence of 

events in the experiment was defined as Rest 0-76 s, HIFU heating 77-256 s, and cooling 257-480 s.  

 

 

Figure 3.3 (a-b) Illustration and photo of the experimental setup. Acoustic exciter is placed on the bottom 

of the phantom, and HIFU transducer is placed on the top, immersed in degassed water. (c) Image 

acquisition scheme. 𝜃0 is an initial phase-offset between MSG and mechanical wave. ∆𝜃 is the step of 

phase-offset, spaced equally over a vibration cycle. n is the number of phase-offset. 
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The SER-GRE MRE sequence was applied with parameters as follows: mechanical excitation 

frequency 100 Hz, MSG frequency 122 Hz, MSG amplitude 20 mT/m, MRE encoding direction Readout, 

3 phase offsets for temporal Fourier transform, TR 20 ms, TE 14.6 ms/11.1 ms, FOV 350 mm × 350 

mm, slice thickness 7 mm, 128 × 128 matrix size, Partial Fourier 7/8, Phase resolution 90 %, 15° flip 

angle and bandwidth 590 Hz/pixel. The acquisition time for 2 slices is 2 secs, i.e. the total acquisition 

time for all 4 slices is 4 secs. A HIFU ablation of power 220 W was operated with a single point. 

 

 

3.2.5 HIFU-ablation experiment in ex-vivo chicken tissue 

To monitor the changes in biomechanical properties with the SER-GRE MRE sequence, a HIFU 

ablation of power 150 W was performed in an 8% gelatin phantom containing a chicken breast sample. 

The same image acquisition as the previous HIFU experiment in a phantom was performed. As shown 

in Figure 3.4, all slices are sequentially obtained from the top of a chicken tissue and a HIFU target is 

defined between slices 2 and 3 (slice1: gelatin, slice 2: gelatin and tissue, slice 3: tissue, slice 4: tissue). 

The temporal sequence of events in the experiment was defined as Rest 2 min, HIFU heating 3 min, and 

cooling 8 min. 

 

Figure 3.4 (a) T2-weighted BLADE images before HIFU ablation, (b) scheme of the experimental setup. 

White-x symbols show the location of the HIFU focus (slice1: gelatin, slice 2: gelatin and tissue, slice 

3: tissue, slice 4: tissue). 
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The SER-GRE MRE sequence was applied with parameters as follows: mechanical excitation 

frequency 125 Hz, MSG frequency 152 Hz, MSG amplitude 23 mT/m, 3 MRE phase offsets (𝜃) for 

temporal Fourier transform, Slice selection MSG encoding direction, TR 16 ms, TE 13.5 ms/10.2 ms, 

FOV 350 mm × 350 mm, thickness 6 mm, matrix 128 × 128, 15° flip angle and bandwidth = 690 

Hz/pixel. The acquisition time for 2 slices is 2048 ms, i.e. the acquisition time for all 4 slices is 4096 

ms. T2-weighted images were acquired for the evaluation of HIFU ablations, using a turbo spin-echo 

sequence with BLADE acquisition. Parameters are used as follows: TR 2000 ms, TE 179 ms, Echo train 

length 58, FOV 350 mm × 350 mm, slice thickness 6 mm, matrix 192 × 192, 121° flip angle, and 

bandwidth = 605 Hz/pixel.  
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3.3 Results 
3.3.1 Comparison experiment in a phantom 

Figure 3.5 shows elastograms obtained with the SER-GRE MRE sequence and the 1- and 2- 

period GRE MRE sequences. In the case of the SER-GRE sequence, slices 1 and 2 were obtained with 

TE = 11.4 / 8.6 ms, respectively. The 2 different halves of the gel can be distinguished through their 

stiffness in both slices for all three acquisition schemes. 

 

 

Figure 3.5 (a) Elastograms and (b) phase difference image (phase-offset #1) in slices 1 and 2 obtained 

from GRE and SER-GRE sequences on measurement #2. The difference of shear modulus in 7% and 

9% gelatin parts are visible, as reflected by differences in wavelength. 
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The mean and standard deviation of the shear modulus in ROIs 1 and 2 for all 10 measurements 

are shown in Table 3.2.  

 

Table 3.2 Mean and standard deviation of the shear modulus in 7% and 9% gelatin parts. 

 7% gelatin 9% gelatin 

 Slice 1 Slice 2 Slice 1 Slice 2 

GRE 1-period 6.2±0.7 kPa 6.1±0.9 kPa 8.2±1.3 kPa 7.6±1.4 kPa 

GRE 2-periods 6.7±0.7 kPa 6.6±0.8 kPa 8.9±1.2 kPa 8.7±1.2 kPa 

SER-GRE 6.3±1.0 kPa 6.5±0.9 kPa 8.6±1.5 kPa 8.7±1.4 kPa 

 

Figure 3.6 shows the horizontal centerline profiles (1-pixel width, averaged across 4 phase 

difference images with phase offset #1) of the phase difference images acquired in slices 1 and 2 with 

all three acquisition sequences. This line is represented in Figure 3.5b, GRE 2-periods, Slice 1. As 

expected, the phase motion encoding of SER-GRE and GRE 2-periods are similar and higher than the 

one of the GRE-1 period sequence. 
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Figure 3.6 Horizontal centerline profiles of phase difference image in slices 1 (a) and 2 (b) (Figure 3.5-

white dashed line). In the case of the SER-GRE, slices 1 and 2 are acquired with different echo times 

(slice 1: 11.4 ms, slice 2: 8.6 ms). 

 

A Bland-Altman analysis was plotted to evaluate agreement with the GRE-2 period sequence, 

defined as the gold standard (Figure 3.7). The mean of the shear modulus of each measurement was 

used for the analysis. The difference of shear modulus between GRE 1-period and GRE 2-periods was 

found to be -0.3±0.2 kPa / -0.7±0.4 kPa (region 1 /region 2) in slice 1 and -0.4±0.1 kPa / -1.2±0.3 kPa 

(region 1 /region 2) in slice 2. The difference between SER-GRE and GRE 2-periods was found to be -

0.4±0.1 kPa / -0.5±0.3 kPa (region 1 /region 2) in slice 1 and 0±0.03 kPa / 0.1±0.1 kPa (region 1 

/region 2) in slice 2. 
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Figure 3.7 For comparison with GRE 2-periods, Bland-Altman plots obtained using the average of the 

shear modulus of each measurement in 7% gelatin (region 1) and 9 % gelatin parts (region 2). The mean 

95 % confidence interval for ∆𝜇 is plotted as a dashed line. 

 

The SER method allows two slices to have different TE values, which means each slice has 

different SNR. The SNR is proportional to PNR that can directly affect the noise of the displacement 

image. Figure 3.6 shows that the displacement of slice 2 (TE: 8.6 ms) is in better agreement with that of 

GRE-2 period than that of slice 1 (TE: 11.4 ms).  

The PNR is proportional to TE and the tissue-dependent T2* relaxation time (Guenthner and 

Kozerke, 2018).  

 

 𝑃𝑁𝑅 ∝  𝑒
−

𝛥𝑇𝐸
𝑇2

∗
∙
𝜙

𝜋
 Equ. 3.2 

 

Where 𝜙 denotes the encoded motion phase (radian) and ΔTE is the echo time. The slice excited by the 

first RF pulse has a lower PNR value than the slice excited by the second RF pulse that has a shorter TE. 

For example, if a SER GRE sequence is used for liver imaging (T2* of normal liver= ~20 ms (Anderson 

et al., 2001)) and echo time difference between the two slices ΔTE = ~3.5 ms, PNR of the slice by the 
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first RF excitation would be 84 % of the PNR of the slice acquired with the second RF pulse and shorter 

TE. Therefore, for further experiments in certain organs, the selection of TE and readout bandwidth 

should take T2* values into consideration.  

In Figure 3.6, the SER GRE displacement profile in slice 2 (TE: 8.6 ms) appears to be in better 

agreement with the one of GRE-2 periods, when compared to the ones in slice 1 (TE: 11.4 ms). However, 

this decrease in SNR in one slice due to its longer TE may have a limited effect on elasticity estimates, 

as the LFE algorithm estimates the spatial periodicity of the displacement profile. In contrast, low phase 

encoding efficiency with high fractional encoding (GRE 1-period) results in much noise in the 

displacement image (phase difference), and in poor wave-to-noise ratio, which is directly linked to the 

quality of elastogram (Figure 3.5). In MRE, poor PNR is acceptable as long as wave to noise ratio is 

high enough for proper elasticity estimation with LFE. In other words, high fractional encoding allows 

decreasing TE, at the expense of wave encoding. Inversely, optimal fractional encoding allows high 

wave to noise, at the expense of longer TE. In our phantom experiments, the latter case was clearly 

better, as seen by the fact that SER-MRE outperformed 1-period GRE-MRE in terms of wave to noise 

ratio. 

 

3.3.2 HIFU-ablation experiment in a phantom 

In Figure 3.8, the changes in temperature (Δ𝑇) are clearly visible in all 4 slices. The focal spot 

appears to be located in slice 2 and the effect of heat diffusion is observed in slices 1, 3, and 4. 

Corresponding changes in shear modulus (𝜇 and ∆𝜇) and wave are found in the 4 contiguous slices. ∆𝜇 

corresponds to the elasticity difference compared to the reference image acquired before heating. The 

first elastogram and temperature map were reconstructed 24 s after MR acquisition started and used as 

the reference. Both elastogram and temperature map can be then updated every 8 s based on the sliding 

window scheme (Corbin et al., 2016b).  
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Figure 3.8 Results of HIFU ablation in the phantom. From left to right, Δ𝑇, 𝜇, Δ𝜇 and wave images 

overlaid with the magnitude image, before (time 48 s), after the HIFU shot (time 256 s) and during the 

cooling time (time 448 s). s1-4 in the figure correspond to slices 1 to 4, respectively. Temperature maps 

showed a local temperature increase resulting from the HIFU heating. Corresponding changes in shear 

modulus (Δ𝜇) were observed in the heated zone, corresponding to wavelength decreasing locally. 

 

 

Figure 3.9 shows time-dependent profiles of ∆𝑇, 𝜇, and ∆𝜇 calculated by averaging within an 

ROI of 2×7 pixels, selected around the focal spot. The temperature was found to increase by about 7 ℃, 

12 ℃, 7 ℃, and 2 ℃ in slices 1 to 4 respectively, at the end of HIFU heating (peak temperatures). This 

led to gel softening in which shear modulus decreased by 1.1 kPa, 1.9 kPa, 1.1 kPa, and 0.7 kPa from 

an initial shear modulus of about 8 kPa, 8.5 kPa, 8.7 kPa, and 8 kPa, in slices 1 to 4, respectively. After 

HIFU heating, shear modulus continued decreasing down to 6.0 kPa, 5.9 kPa, 6.6 kPa, and 6.6 kPa (448 

s) until a steady state was reached. The shear modulus in the 4 slices had different dynamic behaviors 

over time (Figure 3.9). The elasticity in slice 2 started to decease first since the focal spot was centered 

in slice 2. In slice 4, the effect of HIFU ablation on elasticity appeared about 132 s after HIFU heating 

started since it was about 14 mm away from the focal spot.  
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Figure 3.9 Time-dependent profiles of Δ𝑇, 𝜇, and Δ𝜇 calculated by averaged value within an ROI of 

2×7 pixels. The ROI is depicted in the temperature map of slice 2 at 256 s (top left). The faded red color 

in three plots represents the HIFU heating phase. 

 

Gel-softening first occurred in slices 1-3, while shear modulus in slice 4 started to decrease after 

a few seconds. This delay was most certainly due to thermal diffusion, as slice 4 is the furthest one from 

the focus. Furthermore, this experiment was designed to be realistic compared to MR-guided 

interventions in terms of RF coils: no additional RF receive coils were used. Despite this restriction, it 

was shown that monitoring tissue elasticity and temperature continuously in 4 contiguous slices was 

possible using the SER-MRE sequence.  
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3.3.3 HIFU-ablation experiment in ex-vivo chicken tissue 

Figure 3.10 illustrates temperature and elasticity maps obtained in 4 contiguous slices after 

HIFU heating ended (300 s). The focal spot was supposed to be centered between slices 2 and 3, however, 

heat-affected zones are visible in 4 slices as shown in Figure 3.10a. The first elastogram was 

reconstructed 24.5 s after MR acquisition started, and then updated every 8.2 s based on the sliding 

window scheme. Similarly, temperature maps were displayed every 8.2 s after acquiring the reference 

phase image.  

 

 

Figure 3.10 Results of HIFU ablation in ex-vivo chicken tissue. From left to right, Δ𝑇, 𝜇, Δ𝜇 and wave 

images overlaid with the magnitude image, before (time 100 s), after the HIFU shot (time 300 s) and 

during the cooling time (time 700 s). s1-4 in the figure correspond to slices 1 to 4, respectively. 

Temperature maps showed a local temperature increase resulting from the HIFU heating. Corresponding 

changes in shear modulus (Δ𝜇) were observed in the heated zone, corresponding to local wavelength 

decrease. 
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As shown in Figure 3.11, the profiles of shear modulus (𝜇) and temperature change (∆𝑇) are 

calculated through averaging value within an ROI of 2 x 2 pixels, selected at the center of the focal spot. 

Before heating, the shear modulus was measured to 8.6±0.3 kPa, 8.1±0.1 kPa, 11.6±1.3 kPa, 13.0±1.4 

kPa for slices 1 to 4 respectively. At the end of heating, shear modulus decreased to 4.1±0.1 kPa, 

4.0±0.2 kPa, 4.3±0.3 kPa, 4.9±0.8 kPa for a temperature increase ∆𝑇 of 32℃ to 46℃, and then after 

cooling down, the shear modulus reached 3.6±1.3 kPa, 3.6±1.7 kPa, 4.4±0.8 kPa, 8.2±1.5 kPa for 

slices 1 to 4 respectively. 

 

 

Figure 3.11 Time-dependent profiles of Δ𝑇, 𝜇, and Δ𝜇 calculated by averaged value within an ROI of 

2×2 pixels as shown in Figure 3.4a. 

 

The observed tissue softening during heating could be explained by reversible protein 

denaturation during heating, as already observed in vitro in muscle tissue (Wu et al., 2001). However, 

this phenomenon has been observed at low temperature elevation, which is not the case here. An 

explanation of the results reported here is that we measured changes of elasticity in voxels containing 
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chicken and gelatin. This is clearly visible in slices 1 and 2, in which the shear modulus seems to be 

predominantly changed by gel-softening, with an irreversible softening. The shear modulus in slices 3 

and 4 seems to increase back after HIFU heating, suggesting this could be due to predominant 

contribution of chicken tissue in the global response. Additional experiments would be needed to fully 

understand these observations. However, from a methodological point-of-view, we showed it was 

feasible to measure elasticity and temperature changes in 4 contiguous slices using the proposed SER 

MRE/MRT method.  

 

 

3.4 Discussion 
This study proposes the use of the SER method as an acceleration means for multi-slice 

interventional MRE/MRT monitoring of thermal ablations. As previously mentioned, GRE MRE 

sequence with EPI can be used for fast multislice acquisition. However, the increased echo train length 

and TE result in a decrease in SNR that can have an impact on the quality of the elastogram 

(Weidensteiner et al., 2003). Spiral readout acquisition has also received much interest in 3D imaging 

but still remains difficult to implement because the reconstruction depends upon gradient performance 

(Fielden et al., 2018). Another approach is the use of parallel imaging with simultaneous multislice 

excitation (SMS) (Breuer et al., 2005; Feinberg and Setsompop, 2013; Larkman et al., 2001; Setsompop 

et al., 2011; Zhang et al., 2015). SMS combined with sensitivity-encoding (SENSE) has been 

investigated for PRFS thermometry. Borman et al (Borman et al., 2016) evaluated temperature 

measurement of SENSE, SMS, and SMS/SENSE and concluded that SMS with the acceleration factor 

2 was comparable to the reference measurement. However, the SMS method is potentially limited by 

the g-factor that depends on the number and location of coils. Currently, most MR-guided interventions 

are conducted with limited additional coils and rely on the built-in-spine coils only or the body coils. 

The g-factor is hence high for parallel imaging, and certainly too high for the SMS method (Borman et 

al., 2016; Sedaghat and Tuncali, 2018). Additionally, this limitation is even more critical in 

interventional MRE because the mechanical driver adds further spatial constraints. In this situation, GRE 

MRE sequence combined with the SER method holds potential for accelerated multislice MRE/MRT 

acquisition. The SER GRE MRE sequence brings the same temporal resolution as the GRE 1-period 

sequence while allowing for optimal wave to noise ratio similar to the GRE 2-period acquisition. 

A major limitation of the SER method may be that the slice-selection gradients of the second 

RF excitation (for slice 2 - Figure 3.2b) could have an MSG-like effect as it could encode motion into 

phase images obtained with ADC1 in Figure 3.2b. However, this effect should not impact temperature 

estimates: in PRFS calculation, phase-added images are subtracted from the references corresponding 
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to the same phase-offset (Figure 3.1). Therefore, motion-induced phase errors in phase-added images 

can be canceled by this difference with respect to the reference images bearing the same errors.  

Finally, partial volume effects are a well-known problem in all kind of thermal ablations, and 

particularly in HIFU ablations, which justifies the need for multislice acquisitions. This preliminary 

study has shown that the SER method holds potential for being a good accelerating option in 

interventional MRE sequences. The SER-GRE MRE sequence enables to acquire elastograms and 

temperature maps of contiguous slices, within a shorter acquisition time than regular GRE-MRE 

sequences as well as keeping good sensitivity to motion. Two slices are acquired within each single TR, 

sharing a single MSG to encode the mechanical motion. Thus, it is feasible to monitor simultaneously 

the wave propagation and temperature changes in different slices. This technique will provide another 

acceleration option for fast multislice acquisition in MR-guided interventions. 

 In this chapter, 4 contiguous slices can be acquired using two interleaved acquisitions. However, 

alternative strategy should be investigated if more than 4 slices are required. For example, the SMS 

technique can be used with the SER technique in order to acquire 4 slices in a single TR period. 

Alternatively, a third RF pulse and a third echo can be added in the sequence, but further study should 

be led to find out the effect of TE difference across 3 slices on temperature maps. 
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Chapter 4 
 

4. Simultaneous fat referenced PRFS 
Thermometry and MR Elastography 
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4.1 Introduction 
MR Thermometry based on the Proton Resonance Frequency Shift (PRFS) is the most 

commonly used method for the monitoring of thermal therapies because it offers high temperature 

sensitivity within the temperature range of interest and allows fast acquisitions in the order of a few 

seconds (Rosenberg et al., 2013). 

 

4.1.1 Limits of PRFS MR Thermometry 

Fundamental limitations of PRFS thermometry need to be considered when applying this 

method for thermal ablation monitoring. First, PRFS temperature information provides temperature 

changes through the difference between the current phase and a baseline phase image. Hence, time-

varying field drift and motion between successive scans can result in temperature errors, if not corrected 

for. Second, PRFS provides an instantaneous parameter, namely, temperature changes, which does not 

directly relate to tissue damage. The cumulative thermal dose (TD) represents an integration of 

temperature over time and has been shown to be a reliable marker of tissue damage (Sapareto and Dewey, 

1984). However, fundamental limitations when using TD alone for monitoring thermal ablations over 

time need to be mentioned, such as the fact that TD thresholds are tissue-dependent (van Rhoon et al., 

2013), and that TD is particularly sensitive to any uncertainty or bias due to its cumulative property 

(Vappou et al., 2018). TD has also been shown to be poorly correlated to non-perfused volume (NPV), 

a reliable marker of post-ablation tissue damage, showing potential errors of MR Thermometry due to 

long-term heat accrual (Bitton et al., 2016). Third, PRFS thermometry in fat-containing tissues may 

result in significant temperature errors depending on echo time, fat fraction, and extent of temperature 

increase because the temperature dependent electron-screening constant in fat is negligible compared to 

the one of water protons (Rieke and Pauly, 2008a; Taylor et al., 2011). 

 

4.1.2 State of the art of temperature mapping using water/fat separation 

  The PRFS method using chemical shift water/fat separation has been investigated to tackle some 

of these limitations (Hofstetter et al., 2012; Lam et al., 2015; Soher et al., 2010; Taylor et al., 2008; 

Wyatt et al., 2010). Table 4.1 summarizes previous works for temperature mapping with the use of 

water/fat separation. The first improvement is that water-fat separation makes it possible to measure the 

temperature-induced PRFS from the phase of the water fraction, and no longer from the global phase of 

mixed water and fat protons in fatty tissues.  

Signal models for water/fat separation must be carefully chosen to avoid inaccurate 

quantification of fat (Yu et al., 2008). Several fat peaks are present within the spectrum of living tissues. 
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These fat spectral peaks are present in the spectrum from 0.9 to 5.3 ppm, and they differ from the water 

peak at 4.7 ppm. Fat and water also differ in terms of T2 decay. Hence in tissues with both fat and water 

components, the actual 𝑇2 decay can be modelled with a double exponential decay reflecting both the 

decays of fat and water. 

As reported in a comparative study (Hernando et al., 2010), there are clear trade-offs between 

the choices of the model: (1) a single peak vs. multipeak fat model and (2) no decay vs. a single decay 

(𝑅2
∗) vs. two decay model (𝑅2,𝑤

∗ , 𝑅2,𝑓
∗ ). A multi-peak spectral fat model is generally superior to a single-

peak fat model although the simplified 6-peak fat model cannot completely describe the complex nature 

of fat signal.  

A single decay model, matching the decay of the main component, leads to a stable estimate 

although the model does not closely match the actual 2-component decay. In contrast, a two-decay 

model allows a more accurate estimate but increases the noise sensitivity. Hernando et al. (Hernando et 

al., 2010) suggested that a single-decay model performed best in the case of low SNR or fat fraction 

close to 0 % or 100 %, while a two-decay model is more appropriate for high SNR or fat fraction close 

to 50 %. Taylor et al. (Taylor et al., 2008) exploited an iterative Steiglitz-McBride (SM) algorithm to 

find the frequency of water and fat signals (single fat peak) and their respective T2* values. Lam et al 

(Lam et al., 2015) introduced another model to directly obtain the frequency difference between water 

and fat for temperature calculation. It therefore allowed avoiding phase wrapping, which causes 

discontinuities in the phase image. Their approach also provided T2* values of water and fat. 

Wyatt et al. (Wyatt et al., 2010) proposed to use fixed values for the complex amplitude of water 

and fat signals (𝜌𝑤, 𝜌𝑓) as determined via a pre-scan before heating; ∆𝑇 and 𝜓 were then estimated by 

the fitting algorithm. Fat-Referenced PRFS MR thermometry (FRPRFS) was also proposed using water-

fat separation with multi-peak fat model but no 𝑇2
∗ decay (Hofstetter et al., 2012; Soher et al., 2010). 

Time-varying field drifts can be estimated from the phase of the fat fraction because, as previously 

mentioned, temperature induced changes are negligible in fat. While the approach from Soher et al. 

could only correct for field drift in fat containing tissues, Hofstetter et al. extended this correction to all 

tissues through the calculation of the global field correction map fitted to the phase of fat in fat 

containing tissues. Hence, water proton only PRFS temperature estimation can be obtained while 

correcting for time-varying field drifts in all soft tissues (Hofstetter et al., 2012).  
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Table 4.1 Comparison between different studies for temperature mapping using chemical shift water-fat 

separation. With t: echo time, 𝜌𝑤  : the complex-valued water signal, 𝜌𝑓 : the complex-valued fat signal, 

𝜔𝑤: the angular frequency of water signal, 𝜔𝑓: the angular frequency of fat signal (p is multipeak fat 

frequencies), 𝑅2,𝑤
∗ : relaxation rates of T2

∗ of water, 𝑅2,𝑓
∗ : relaxation rates of T2

∗ of fat, 𝜓: off-resonant 

precession, ΔT: temperature change, 𝛼: the electron screening thermal coefficient, Δ𝑓(T): frequency 

difference between water and fat signal according to temperature. MGRE: multi gradient recalled echo 

sequence.  

Author Lists Contents 
(Taylor et 
al., 2008) 

Type of thermometry Fat referenced 
Signal model 𝑆(𝑡) = 𝜌𝑤𝑒−𝑅2,𝑤

∗ ∙𝑡𝑒−𝑖𝜔𝑤∙𝑡 + 𝜌𝑓𝑒−𝑅2,𝑓
∗ ∙𝑡𝑒−𝑖𝜔𝑓∙𝑡 

Unknown parameter 𝜌𝑤, 𝜌𝑓, 𝜔𝑤, 𝜔𝑓, 𝑅2,𝑤
∗ , 𝑅2,𝑓

∗  
Pre-scan required? No 
Fat peak spectrum 
/R2* decay 

single-/multi- 

Sequence/TR/TE MGRE/68 ms/3 ms; 16 echos, ∆TE = 3.5 ms 
(Wyatt et 
al., 2010) 

Type of thermometry Reference less 
Signal model 

𝑆(𝑡) = (𝜌𝑤𝑒−𝑅2,𝑤
∗ ∙𝑡𝑒−𝑖𝜔𝑤∙𝑡∙𝛼∙∆𝑇 + 𝜌𝑓𝑒

−𝑅2,𝑓
∗ ∙𝑡 ∑ 𝛼𝑝 ∙ 𝑒−𝑖𝜔𝑓,𝑝∙𝑡

𝑃

𝑝=1

)𝑒−𝑖2𝜋𝜓∙𝑡 

Unknown parameter ∆𝑇,  𝜓 
Pre-scan required? Yes 
Fat peak spectrum 
/R2* decay 

multi-/multi- 

Sequence/TR/TE MGRE/50 ms/15.4, 21.8, 28.2 ms 
(Hofstette
r et al., 
2012) 
(Soher et 
al., 2010) 

Type of thermometry Fat referenced 
Signal model 

𝑆(𝑡) = (𝜌𝑤𝑒−𝑖𝜔𝑤∙𝑡 + 𝜌𝑓 ∑ 𝛼𝑝 ∙ 𝑒−𝑖𝜔𝑓,𝑝∙𝑡

𝑃

𝑝=1

) ∙ 𝑒−𝑖2𝜋𝜓∙𝑡 

Unknown parameter 𝜌𝑤, 𝜌𝑓  
Pre-scan required? Yes 
Fat peak spectrum 
/R2* decay 

multi-/no- 

Sequence/TR/TE MGRE/15.7 ms/10.9, 12.5, 14.1 ms 
(Lam et 
al., 2015) 

Type of thermometry Fat referenced 
Signal model 𝑆(𝑡)

= √|𝜌𝑤|2𝑒−2𝑅2,𝑤
∗ ∙𝑡 + |𝜌𝑓|

2
𝑒−2𝑅2,𝑓

∗ ∙𝑡 + 2|𝜌𝑤||𝜌𝑓|𝑒
−(𝑅2,𝑤

∗ +𝑅2,𝑓
∗ )𝑡

∙ 𝑐𝑜𝑠 (2𝜋∆𝑓(𝑇) ∙ 𝑡) 
Unknown parameter 𝜌𝑤, 𝜌𝑓, ∆𝑓(𝑇) 
Pre-scan required? Yes 
Fat peak spectrum 
/R2* decay 

single-/multi- 

Sequence/TR/TE MGRE/52.5 ms/1.4 ms;32 echos, ∆TE = 1.3 ms 
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4.1.3 Hierarchical IDEAL 

Iterative Decomposition of water and fat with Echo Asymmetry and Least (IDEAL) is usually 

used for the water/fat separation because of robustness in the field inhomogeneity but requires additional 

phase information in order to perform an iterative process (Reeder et al., 2004; Yu et al., 2008). Tsao et 

al (Tsao and Jiang, 2013) first introduced the hierarchical IDEAL method to perform more time effective 

computation than conventional IDEAL. It is based on the assumptions of a 6 fat peak model with a 

single 𝑅2
∗-decay. This section explains the IDEAL algorithm and how it can be used in the fat referenced 

PRFS thermometry. 

The measured signal can be expressed in terms of the water and fat components as follows: 

 

 𝑠(𝑇𝐸𝑛) = (𝜌𝑤 + 𝜌𝑓 ∑ 𝛼𝑝 ∙ 𝑒−𝑖2𝜋𝑓𝑝𝑇𝐸𝑛

𝑃

𝑝=1

) ∙ 𝑒−(𝑅2
∗+𝑖2𝜋𝛹)𝑇𝐸𝑛 Equ. 4.1 

 

Where 𝑠(𝑇𝐸𝑛) is the complex signal of the nth echo time 𝑇𝐸𝑛, 𝜌𝑤 and 𝜌𝑓 are the complex-valued water 

and fat signals, 𝑓𝑝 is the difference of spectral peaks between fat and water (-3.8, -3.4, -2.6, -1.94, -0.39, 

and 0.6 ppm)(Yu et al., 2008) and 𝛼𝑝 is the relative amplitude of each spectral peak (0.087, 0.694, 0.128, 

0.004, 0.039, and 0.048) (Yu et al., 2008), 𝑅2
∗ is the global transversal relaxation rate (𝑅2

∗ = 1/𝑇2
∗), and 

𝛹 is the off-resonance precession frequency.  

Equ. 4.1 can be transformed in a matrix representation: 

 

 𝑆 = 𝐷 𝐴 𝜌 Equ. 4.2 

 

𝑆 = [

𝑠(𝑇𝐸1)
𝑠(𝑇𝐸1)

⋮
𝑠(𝑇𝐸𝑛)

] , 𝐴 =

[
 
 
 
 
 
 
 
 
 
1 ∑ 𝛼𝑝 ∙ 𝑒−𝑖2𝜋𝑓𝑝𝑇𝐸1

𝑃

𝑝=1

1 ∑ 𝛼𝑝 ∙ 𝑒−𝑖2𝜋𝑓𝑝𝑇𝐸2

𝑃

𝑝=1

⋮

1 ∑ 𝛼𝑝 ∙ 𝑒−𝑖2𝜋𝑓𝑝𝑇𝐸𝑛

𝑃

𝑝=1 ]
 
 
 
 
 
 
 
 
 

 , 𝐷 = 𝑑𝑖𝑎𝑔 [

𝑒−(𝑅2
∗+𝑖2𝜋𝛹)𝑇𝐸1

𝑒−(𝑅2
∗+𝑖2𝜋𝛹)𝑇𝐸2

⋮

𝑒−(𝑅2
∗+𝑖2𝜋𝛹)𝑇𝐸𝑛

] , 𝜌 = [
𝜌𝑤

𝜌𝑓
]  
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The water-fat separation is achieved by determining the pure water and fat signals (𝜌) from the 

images S acquired with multiple TEs. Hence, an estimate �̂� for the water and fat signals can be 

calculated if the field map D(𝑅2
∗, 𝛹) is known (Yu et al., 2005): 

 �̂� = 𝐴+𝐷−1𝑆 Equ. 4.3 

 

Where the superscript ‘+’ indicates the Moore-Penrose inverse. The field map D(𝑅2
∗, 𝛹) can be estimated 

by finding a minimum value for the residue R, where 𝑅 = 𝑆 − �̂�𝐴�̂�. This approach is associated with a 

linear least-square estimation of �̂�. Thus, the cost function can be written as (𝐷−1)𝑇(𝐼 − 𝐴𝐴+)𝐷−1𝑆 by 

using the substitution in optimal expression for the coefficient vector. The minimized error can be 

expressed in a simpler manner as (Lu and Hargreaves, 2008): 

 

 ‖𝜀‖2 = ‖(𝐴𝐴+ − 𝐼)𝑑𝑖𝑎𝑔(𝑑)𝑆‖2 Equ. 4.4 

 

𝑑 = [

1
𝑒(𝑅2

∗+𝑖2𝜋𝛹)(𝑇𝐸2−𝑇𝐸1)

⋮

𝑒(𝑅2
∗+𝑖2𝜋𝛹)(𝑇𝐸𝑛−𝑇𝐸1)

] 

 

Where the diagonal matrix 𝑑 is equivalent to the inverse matrix of D including the time difference with 

the first echo time. The inverse matrix 𝐷−1(𝑅2
∗, 𝛹) can be replaced with D(−𝑅2

∗,−𝛹) using the property 

of diagonal and complex exponentials. Equ. 4.4 can be expanded to effectively compute the algebraic 

formulation: 

 

 ‖𝜀‖2 = ∑{(𝐼 − 𝐴𝐴+) ∘ (𝑆𝑆𝐻)∗ ∘ (𝑑𝑑𝐻)∗} Equ. 4.5 

 

The symbol ‘∘’ indicates the Hadamard product for the matrix N × N. The minimized error directly 

provides the best-fitted value for the term 𝑑. Briefly, the IDEAL algorithm estimates the field map D. 

Then, the matrix 𝐴+𝐷−1 is used for the extraction of pure water and fat signal from the measured image 

S (Equ. 4.3).  
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Finding minimum error 

In the Equ. 4.4, a local minima of 𝜀 is found by a multiresolution approach and the Nelder-Mead 

simplex algorithm (Nelder and Mead, 1965). In Figure 4.1a, the error 𝜀 depending on 𝑅2
∗ and 𝛹 shows 

several local minimum regions. Finding optimal 𝑅2
∗  and 𝛹 in the full resolution image causes large 

computational cost. Under the assumption that the field map varies smoothly, the multiresolution 

optimization was proposed (Tsao and Jiang, 2013); the optimum on a low-resolution image can predict 

the optimum on a high-resolution image because the spatial information of the field map is kept in the 

low-resolution image (Lu and Hargreaves, 2008). 

 

 

Figure 4.1 (a) An example of the error across the values of R2
∗  and  Ψ,  (b) an illustration of 

multiresolution optimization. Gray rectangular box indicates the subdivided region. As reported in (Tsao 

and Jiang, 2013), 4096 regions at the finest image are used and the coarser image is made with a zoom 

factor of 67 %. 

 

Figure 4.1b shows the procedure of the multiresolution optimization. At the finest level, 4096 

subdivided regions are used to estimate the field map, and the result is applied as a starting point in the 

subsequent level. The Nelder-Mead simplex algorithm is applied to find the minimum value of 𝜀 at each 

level (Nelder and Mead, 1965). Bilinear interpolation is carried out to make the coarser image with a 
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zoom factor of 67 %. After obtaining the final field map at the coarsest level, it is interpolated by using 

a Hanning window to reconstruct the full-resolution field map.  

Here, we would like to acknowledge the use of the hierarchical IDEAL toolbox resulting from 

the fat-water toolbox initiative in the 2012 ISMRM Workshop on Fat-water Separation. In this Ph.D. 

thesis, this toolbox was used in its original implementation in order to derive the field map D(𝑅2
∗, 𝛹). 
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4.1.4 Objective of this study 

Current interventional MRE/MRT systems have used PRF thermometry, which is restricted to 

aqueous tissues only, and their use in fat-containing tissues may lead to significant errors in temperature 

estimation. The general objective of this chapter is to improve the accuracy of the PRFS thermometry 

of the interventional MRE/MRT method in all soft tissues, including fat-containing tissues. In this study, 

a time-efficient strategy is proposed that allows for simultaneous real-time FRPRFS thermometry with 

chemical shift water/fat separation and MRE. Compared to PRFS alone, FRPRFS will enable 

temperature estimation in fat-containing tissues while improving the overall accuracy of temperature 

estimation thanks to fat-reference B0 drift correction. On one hand, an iterative least square fitting 

algorithm (IDEAL) is used for fast and robust water-fat separation in a dataset acquired with several 

varying TEs (Tsao and Jiang, 2013; Yu et al., 2008). On the other hand, MRE reconstructions require 

the acquisition of several images with varying phase offsets between the mechanical wave and the 

motion sensitive gradients (MSG), in order to capture the shear wave at different propagation times. The 

strategy described here takes advantage of the acquisition of several phase offsets in order to obtain the 

several echo times required for water-fat separation. Echo times and phase offsets are jointly 

incremented to enable water-fat separation for FRPRFS thermometry along with MRE. The number of 

MRE phase offsets and the number of TE used to solve the IDEAL algorithm are the same; hence, 

elastogram and FRPRFS temperature map are updated at the same time. Therefore, this method offers 

the opportunity to record chemical shift information into a single MRE dataset.  

 

 

4.2 Theoratical framework 
4.2.1 Pulse sequence 

As shown in Figure 4.2, a GRE MRE sequence is modified in order to obtain varying echo times 

for water/fat separation: each pair of images with opposite MSG was acquired at a specific TE and its 

corresponding MRE phase offset. MRE phase offset 𝜃 corresponds to the trigger delay between the 

mechanical shear wave and the MSG. Unidirectional MSG encoding was used in order to keep the 

temporal resolution compatible with thermal ablation monitoring. The acquisition scheme consists of 

interleaved acquisitions with opposite MSG polarities (MSG+/−) and identical TE/phase offset; hence, 

both TE and phase offset change every two images. 
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Figure 4.2 (a) Schematic chronogram of the GRE MRE sequence for simultaneous MRE and FRPRFS 

thermometry. For clarity, the main elements of the GRE MRE sequence are represented in a single line 

(RF pulse, MSG and read out gradient). TE and MRE phase offsets are shifted by ∆TE  and ∆𝜃 , 

respectively. (b) Summarized acquisition scheme, with 𝑛 being the number of phase offsets and TEs. 

Images are acquired with alternating the polarity of MSG. Each pair of images is acquired with the same 

specific TE and phase offset. 

 

 

Elastograms are reconstructed as described in chapter 2.5. Fat-referenced PRFS maps with fat-

water separation are reconstructed as described in the following subchapter 4.2.2. Figure 4.3 shows the 

flow chart of temperature and elasticity reconstruction. If 4 phase offsets are used for the experiment, 

the first elastogram and temperature map are obtained once a full dataset including 4 phase offsets / 4 

TEs is obtained (corresponding to the acquisition of 8 images, i.e. 4 pairs of opposite MSG polarity 

phase images); subsequent ones can be reconstructed with every newly obtained pair of phase images 

with opposite MSG (Corbin et al., 2016b). 
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Figure 4.3 Flow chart of temperature and elasticity reconstruction. Once a full dataset is acquired, 

different combinations of each pair of phase images with opposite MSG polarities are used either for 

MRE elastogram reconstruction (difference) or for FRPRFS thermometry (average). The FRPRFS 

processing is detailed in the next subchapter. 
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4.2.2 Fat-referenced PRFS Thermometry 

When temperature changes, it yields a significant phase variation in the complex water term 

𝜌𝑤 = 𝜌𝑤
0 𝑒𝑖𝜙𝑇, where 𝜙𝑇 is the phase shift caused by temperature and 𝜌𝑤

0  is the complex water signal in 

the absence of temperature change. The field map D(𝑅2
∗, 𝛹) is estimated once before the ablation starts 

with the hierarchical IDEAL algorithm. This field map estimate is then used to extract both water and 

fat complex signals in all latter datasets acquired during the ablation, following Equ. 4.3. This approach 

aims at reducing the computational complexity during the ablation by avoiding the optimization step of 

the IDEAL algorithm (Figure 4.3).  

This simplification is possible for two reasons. First, temperature induced 𝑅2
∗  changes are 

neglected because they only affect the magnitude of both water and fat signals, and hence have no effect 

on temperature estimates. Second, time-varying B0 field drifts affect both the phases of water and fat; 

the B0 field drifts can therefore be estimated from the fat phase so that they are corrected for in the water 

phase map (Figure 4.4). For that purpose, the field drift correction map is estimated with spatial 

polynomial fitting of the fat phase map in fat-containing tissues (Equ. 4.6-7). 

 

 𝜙𝑐(𝑎, 𝑥, 𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥
2 + 𝑎4𝑦

2 + 𝑎5𝑥𝑦 + ⋯ Equ. 4.6 

 min
 

‖𝜙𝑐(𝑎, 𝑥, 𝑦) − 𝜙𝑓(𝑥, 𝑦)‖
2 Equ. 4.7 

 

Therefore, temperature changes, ∆𝑇 (℃), can be estimated from the phase of water protons, with 

field drift correction using FRPRFS, following (Hofstetter et al., 2012): 

 

 ∆𝑇 =
[𝜙𝑤 − 𝜙𝑤

0 ] − [𝜙𝐶 − 𝜙𝐶
0]

𝛾𝛼𝐵0𝑇𝐸
 Equ. 4.8 

 

Where 𝜙𝑤  and 𝜙𝑤
0  are respectively the current and reference water phase maps, 𝜙𝐶 and 𝜙𝐶

0  are 

respectively the current and reference field drift correction maps, 𝛾 is the gyromagnetic ratio of the 

hydrogen nuclei, 𝐵0 is the main magnetic field, 𝛼 is the temperature dependent water chemical shift (≈-

0.01 ppm/℃), and 𝑇𝐸 is the average of the echo times used.  
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Figure 4.4 Scheme of FRPRFS Thermometry. The water phase map 𝜙𝑤  is used for temperature 

dependent PRFS and the fat phase map is used to estimate the correction map representing the B0 field 

drift. For example, the data for polynomial fitting is selected in a binary image, which represents the 

region with a fat fraction over 80%. 

 

 

4.2.3 MRE and water-fat separation 

MRE coupled with water-fat separation was proposed for diagnostic in liver pathologies 

(Numano, T et al., 2017; Trzasko, J et al., 2015). Trzasko et al. combined 3D MRE acquisitions, varying 

MRE encoding directions and TEs together in order to obtain the 3D MRE displacement field and water-

fat separation based on the IDEAL method (Trzasko, J et al., 2015). Numano et al. proposed the use of 

multi-echo GRE MRE sequence with 2 point-Dixon for water-fat separation (Numano, T et al., 2017). 

The proposed method was developed specifically for real-time monitoring of thermal ablations, and as 

such, is based on a third time-efficient combination of the acquisitions for MRE and IDEAL based fat-

water separation allowing for FRPRFS. 
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4.3 Methods 
4.3.1 TE selection for MRE and IDEAL processing 

For the combination between MR Elastography and hierarchical IDEAL, it is essential to 

investigate the selection of echo times in order to obtain adequate sampling for fat-water separation 

while preserving the PNR for MRE. Indeed, the MSG encoding necessary for MRE determines the 

minimum TE of the phase images, while the TE increments necessary for chemical shift fat-water 

separation further degrade the PNR in phase images used for the elastrogram reconstruction. 

Reeder et al. (Reeder et al., 2004) determined the optimal TE increment for IDEAL fat-water 

separation at 1.5 T to be 1.5 ms and 1.1 ms for three and four equally spaced echoes, respectively. 

Experiments were conducted in order to adapt such results to our specific combined MRE-fat/water 

separation framework. The phantom is made of 7% gelatin background and pure cream with different 

fat fractions (10%, 20%, and 30% fat fractions). Results obtained with IDEAL in 4 fat/water chemical 

shift acquisition protocols including 4 TEs each, varying in both 𝑇𝐸1 and Δ𝑇𝐸  are compared to a 

reference 2-point DIXON chemical shift fat/water separation (detailed parameters given in Table 4.2). 

The initial TEs, 𝑇𝐸1, were chosen in the range of TEs to be expected due to MRE constraints on 

minimum TE in GRE sequences. The fat fraction is calculated as |𝜌𝑓|/(|𝜌𝑤| + |𝜌𝑓|) × 100 (%). 

 

Table 4.2 MR acquisition parameters. 

Sequence 
type Method No. 

Echo 
TE1 
(ms) 

∆TE 
(ms) 

TR 
(ms) 

Bandwidth 
(Hz/Px) Matrix Flip 

angle 
FOV 

(mm2) 

GRE IDEAL 1 4 8.2 1 20 500 128×128 15° 300 

GRE IDEAL 2 4 8.2 1.5 20 500 128×128 15° 300 

GRE IDEAL 3 4 11 1 20 500 128×128 15° 300 

GRE IDEAL 4 4 11 1.5 20 500 128×128 15° 300 

GRE Dixon 2 2.38 2.38 15 500 128×128 15° 300 

 

Figure 4.5 shows fat fraction maps reconstructed with 2-point Dixon and the 4 IDEAL protocols. 

Cream inclusions are clearly visible in fat fraction maps for all methods.  
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Figure 4.5 Water/fat separation with 2-point DIXON and 4-point IDEAL with different TEs: IDEAL 1 

(TE1 8.2 ms, ∆TE 1 ms), IDEAL 2 (TE1 8.2 ms, ∆TE 1.5 ms), IDEAL 3 (TE1 11 ms, ∆TE 1 ms), 

IDEAL 4 (TE1 11 ms, ∆TE 1.5 ms), and 2-pt Dixon (TE 2.38 ms and 4.76 ms). 

  

 

 Figure 4.6 shows the means and standard deviations calculated in the 3 cream inclusions. 

Datasets with a short initial echo time (IDEAL 1 and 2) are in better agreement with the expected fat 

content of the cream (based on fat content provided by the manufacturer) and 2-point Dixon estimates, 

than the datasets with a longer initial echo time (IDEAL 3 and 4). When the initial echo time is 8.2 ms, 

the echo time increment 1 or 1.5 ms makes no significant difference, while when the initial echo time is 

11 ms, the shorter echo time increment (1 ms) is in better agreement with reference values than the 

longer echo time increment (1.5 ms), reflecting the loss in SNR due to 𝑇2
∗ decay with longer TEs. In 

conclusion, these experimental results show the influence of the SNR of images on the quality of the 

water/fat separation with 4-point IDEAL.  
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Figure 4.6 Mean and standard deviation calculated in 10 %, 20 %, and 30 % cream inclusions with 2pt-

Dixon and 4 different IDEAL parameters. 

 

Following this initial study, the initial echo times were kept within the range 8 to 10 ms, and TE 

increments were within the range of 1 to 1.5 ms. 
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4.3.2 Experiment 1: Temperature validation 

The proposed method was first demonstrated in a phantom experiment with hot water circulation, 

mimicking a thermal ablation in fatty tissues. The phantom was made of 8% gelatin in water and 

contained a water/fat cylindrical inclusion (2% gelatin in milk cream, 20% fat). As shown in Figure 4.7, 

a cylindrical plastic tube chamber connected to a water circuit was placed inside the inclusion for hot 

water circulation. A syringe was used for the manual circulation of hot water (about 90°C). After 

baseline imaging for 100 s, hot water was circulated between 100 s and 220 s, and a second time between 

370 s and 417 s. The pneumatic MRE exciter was positioned below the phantom. Relevant acquisition 

parameters include: 4 TEs = 8.2/9.7/11.2/12.7 ms; TR 16 ms; Flip angle 15°; FOV 300 × 300 mm; 

Matrix 128×128; Slice thickness 6 mm; Bandwidth 800 Hz/pixel; MSG frequency 162 Hz; mechanical 

wave frequency 125 Hz; MRE phase offsets 4; Readout MSG encoding direction. Images were acquired 

in the axial plane, 5 mm away from the hot water tube in the head-foot direction. An optical fiber 

thermometer (LumaSense Technologies, Inc.) was used in order to validate FRPRFS temperature 

measurements. The two optical fiber probes were placed on the image plane, one at the level of the 

center of the hot water tube, the other 1.5 cm laterally (left-right direction). The field correction maps 

were obtained using a second order polynomial fitting of the fat phase in the cream. 

 

Figure 4.7 (a) Experimental setup, (b) Schematic axial (top) and sagittal views (bottom) of the 

experimental setup, and (c) the axial magnitude image (top) and its corresponding fat fraction map 

(bottom) obtained before heating. The two optical fiber thermometers are positioned 15 mm apart in the 

image plane located 5 mm away from the hot tube side. The pneumatic exciter was placed below the 

phantom. ROI 1 and 2 indicate the position of the tips of the two optical fibers.  
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4.3.3 Experiment 2: Comparison with single TE dataset 

A second phantom experiment was investigated to study how T2 modulation affects elastograms 

obtained with varying echo times, compared to those reconstructed with a single TE dataset. The 

phantom (8% gelatin in water) containing a water/fat cylindrical inclusion (2% gelatin in milk cream, 

20% fat) was used here (Figure 4.8). Relevant acquisition parameters are: TR 16 ms; TE 

8.2/9.7/11.2/12.7 ms; Flip angle 15°; FOV 300 mm × 300 mm; Matrix 128 × 128; Slice thickness 6 

mm; Bandwidth 800 Hz/px; MSG frequency 162 Hz; mechanical wave frequency 125 Hz; MRE phase 

offsets 4; Readout encoding direction. A MR-compatible HIFU system (Image Guided Therapy, Inc., 

Pessac, France) was used in order to generate heat inside the phantom, and a 256-element transducer 

was driven at 1MHz/60W acoustic power. A multifocal, cylindrical region (10 mm height, 12 mm 

diameter) was heated during 5.5 s using a spiral trajectory. Heating pattern was repeated 20 times, 

leading to a total heating time of 110 s.  

 

 

Figure 4.8 Experimental setup: cream-gelatin inclusion (2% gelatin in milk cream, 20% fat, i), 

background 8 % gelatin (ii), HIFU transducer (iii), degassed-water (iv), 100% sunflower oil (v), and 

pneumatic MRE exciter (vi). 

 

 

4.3.4 Experiment 3: Ex-vivo HIFU experiment 

A third experiment was performed to evaluate the proposed framework during High Intensity 

Focused Ultrasound (HIFU) ablation ex-vivo. Two porcine rib muscle tissue samples obtained from a 

local butchery were enclosed in a gel made of 7 % gelatin for the background and two lateral 2% gelatin 

in milk cream inclusions (Figure 4.9). The experiment was carried out in two different locations for each 

sample, for a total of 4 experiments. A 128-element HIFU transducer (Imasonic, Voray sur l’Ognon, 
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France) was positioned on the top of the tissue using a degassed water layer for acoustic coupling. A 

pneumatic MRE exciter was placed below the container. MR parameters identical to those used for the 

gel phantom experiment were used in sample 1 (experiments #1 and #2). Due to substantial differences 

in terms of tissue elasticity, the mechanical wave frequency was changed to 100 Hz for the second 

sample (experiments #3 and #4), yielding a different value of TR (20 ms); images were acquired in the 

sagittal plane with through slice MSG encoding direction.  

An MR-compatible multi-channel HIFU generator (Image Guided Therapy, Inc., Pessac, France) 

was used for this experiment with the 128-element transducer being driven at 1MHz. HIFU ablation was 

performed using a 5-point focusing pattern, following a circular trajectory (4 mm in diameter, 2 seconds 

per point) at an acoustic power of 45 W. The total scanning time was 10 minutes with successively 2 

min baseline, 2 min HIFU heating and 6 min cooling period. The field correction maps were obtained 

using a second order polynomial fitting of the fat phase in the cream. 

 

 

Figure 4.9 Experimental setup and fat fraction map (|𝜌𝑓|/(|𝜌𝑤| + |𝜌𝑓|) × 100) before HIFU ablation. 

White-dashed line delineate different areas of the phantom: 1. Degassed water, 2. Pig rib muscle tissue, 

3. 7% gelatin, 4. 2% gelatin in milk cream, 5. HIFU transducer, 6. Pneumatic exciter. 
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4.4 Results 
4.4.1 Experiment 1: Temperature validation 

A fat fraction value of 20.42±1.4% was measured before heating in the cream-gelatin inclusion, 

using the IDEAL algorithm; this result is consistent with the fat content of the cream (20% as provided 

by the manufacturer) used for this experiment (Figure 4.7c, bottom). Figure 4.10 shows temperature 

changes (Δ𝑇), elasticity changes (∆𝜇), and wave images measured at times 40 s (resting state), 200 s 

(first heating), and 400 s (second heating). The temperature increase (∆𝑇) was found to be accompanied 

by cream softening that corresponds to a decrease in the shear modulus, and a local decrease of the shear 

wavelength.  

 

 

 

Figure 4.10 From left to right, magnitude image overlaid with temperature changes (Δ𝑇), elasticity 

changes (∆𝜇), elasticity maps (𝜇), and wave images, obtained before (time 40 s) and during heating 

(times 200 s and 400 s). During heating phases (200 s and 400 s), a localized increase in temperature is 

observed. It results in gel softening in the inclusion, as reflected by the relative decrease in the shear 

wavelength. Note that this axial view correspond to a slice position 5 mm away from the side of the 

water tube (refer to Fig. 4.7.b bottom view).  
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Two ROIs (2×2 pixels) were selected at the tips of the optical fiber sensors. Time-dependent 

profiles of temperature and elasticity measured in these ROIs are plotted in Figure 4.11. The 

measurements of optical fiber sensors were in good agreement with those of the FRPRFS thermometry. 

The mean absolute deviation between temperature changes measured with the optical fiber sensor and 

FRPRFS in ROI 1 and 2 were 1.5±1.3 ℃  and 0.9±0.7 ℃ , respectively. Over the course of the 

experiment, the shear modulus in ROI 1 was found to decrease from 21.6±1.2 kPa (0-100 s) to 

10.53±0.3 kPa (500-600 s), while the shear modulus in ROI 2 decreased from 20.6±0.7 kPa to 15.4±0.7 

kPa. 

 

 

Figure 4.11 Time-dependent profiles of the shear modulus (a) and temperature changes ∆𝑇 (b) in ROI 

1 and ROI 2 (2×2 pixels, shown in Figure 4.7). Solid lines correspond to optical fiber measurements 

(ROI 1 in blue, ROI 2 in red). Blue and red circles indicate measurements of the FRPRFS in ROI 1 and 

2, respectively. The faded-orange regions in the graph indicate heating phases. 

 

 

4.4.2 Experiment 2: Comparison with single TE dataset 

No significant difference in wave pattern is found between phase difference images obtained 

from standard single TE and multiple TE datasets (Figure 4.12). The difference in absolute error results 

from the lengthened TE, however such low spatial frequency phase variation is filtered out during the 

MRE processing. 

Corresponding elastograms (Figure 4.13) show excellent agreement with relative error equal to 

4.7±1.8 % over the whole phantom. Thus, using multiple TE datasets appears to result in similar 

elastograms as single TE standard MRE. 
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Figure 4.12 Comparison between Phase Difference (PD) images obtained with standard single TE (PDs, 

center row) and multiple TE (PDm, top row) datasets. Wave patterns appear to be similar. The difference 

in absolute error (bottom row) results from the lengthened TE, however such low spatial frequency 

phase variation is filtered out during the MRE processing. 

 

 

 

Figure 4.13 Elastograms reconstructed with multiple TE (EmTE) and single TE (EsTE) datasets. Relative 

error is calculated by |EmTE − EsTE|/EsTE × 100. The mean and standard deviations of relative error 
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are measured as 4.7±1.8 % in the whole region of the phantom. Hence, GRE MRE with IDEAL provides 

elastograms that are similar to those obtained by conventional GRE MRE. 

 

During HIFU ablation, the temperature rise at the focal spot is accompanied by a decrease of 

the shear modulus within the inclusion, as seen through local changes in shear wavelength (Figure 4.14). 

Fat-referenced temperature and elasticity measured over time are plotted in Figure 4.15. Shear moduli 

in ROIs 1-3 decrease from 18.8/17.5/18.5 kPa to 7.5/10/11 kPa with maximal heating 30/17/11 °C, 

respectively.  

 

 

Figure 4.14 Water, fat, elasticity, wave, and temperature change (∆T) images before and after HIFU 

heating, overlaid with the magnitude image. The HIFU heating starts at time 90 s, lasts 110 s and is 

stopped at time 200 s. Before heating, the stiffer inclusion is visible in the elastograms. At the end of 

HIFU heating, PRFS shows the temperature increase at the focal spot, which results in gel softening in 

the inclusion and is reflected by relative decrease in the shear wavelength. 
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Figure 4.15 Time-dependent profiles of (a) shear modulus and (b) temperature changes (∆T) during and 

after HIFU heating in ROI 1, 2, and 3 (2×2 pixels, blue, red, and white boxes shown in Figure 4.14) at 

focal spot. As expected, temperature increases at the focal spot during heating, and then slowly goes 

back to its original value, while mechanical properties at the focal spot are durably altered. 

 

 

4.4.3 Experiment 3: Ex-vivo HIFU experiment 

Because of high variability across the muscle samples, changes in mechanical properties are 

displayed in terms of relative stiffness changes (RSC = Δµ/µ0, where µ0 is the initial stiffness). Figure 

4.16-19 show ∆𝑇, RSC, elasticity maps, and wave images measured before (100 s), after HIFU heating 

(250 s), and during cooling down (570 s) in 4 experiments, respectively. In total, shear modulus was 

found to decrease at the focal spot, as shown in the RSC maps. 
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Figure 4.16 Result of experiment #1(first heating / Sample 1). From left to right, temperature changes 

(Δ𝑇), relative stiffness change (RSC), elasticity maps (𝜇), and wave images overlaid with the magnitude 

image at the first TE, before (time 100 s), during (time 250 s) HIFU heating and after, during the cooling 

time (time 570 s). Temperature maps showed local temperature increase because of the HIFU heating. 

Corresponding relative changes in the shear modulus (RSC) were observed in the heated zone, 

corresponding to wavelength decreasing locally. 
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Figure 4.17 Result of experiment #2 (second heating / Sample 1). From left to right, temperature changes 

(Δ𝑇), relative stiffness change (RSC), elasticity maps (𝜇), and wave images overlaid with the magnitude 

image at the first TE, before (time 100 s), during (time 250 s) HIFU heating and after, during the cooling 

time (time 570 s). 
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Figure 4.18 Result of experiment #3 (first heating / Sample 2). From left to right, temperature changes 

(Δ𝑇), relative stiffness change (RSC), elasticity maps (𝜇), and wave images overlaid with the magnitude 

image at the first TE, before (time 100 s), during (time 250 s) HIFU heating and after, during the cooling 

time (time 570 s). 
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Figure 4.19 Result of experiment #4 (second heating / Sample 2). From left to right, temperature changes 

(Δ𝑇), relative stiffness change (RSC), elasticity maps (𝜇), and wave images overlaid with the magnitude 

image at the first TE, before (time 100 s), during (time 250 s) HIFU heating and after, during the cooling 

time (time 570 s). 
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ΔT and RSC were averaged within an ROI that was automatically computed as the region 

including all pixels exceeding 66.7% of the maximum peak temperature around the focal spot. Time-

dependent profiles of ∆𝑇 and RSC for the four samples are plotted in Figure 4.20. Shear moduli were 

found to decrease by 34.3±7.7 % (Exp.#1), 17.9±10.0 % (Exp.#2), 58.7±3.9 % (Exp.#3), and 36.7±6.7 % 

(Exp.#4) as a result of moderate temperature increase of 22.5±4.2℃, 14.0±2.8℃, 14.7±3.7℃, and 

14.5±3.0℃ (Exp.#1-#4).  

 

 

 

Figure 4.20 Time-dependent profiles of relative stiffness change (RSC) and temperature change ∆𝑇 for 

Exp.#1 (a), #2 (b), #3 (c), and #4 (d). ROIs were selected at the region over 66.7% of peak temperature 

in the focal spot (White-dashed line in Figure 4.16-19). 
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4.5 Discussion 
In this study, the proposed method for simultaneous FRPRFS thermometry and MRE allows 

monitoring changes in both elasticity and temperature. In addition, this technique allows for correcting 

field drifts and for measuring temperature in all soft tissues, including fatty tissues. Standard MRE 

sequences rely on image acquisitions at a single echo time for all MRE phase offsets. In this study, the 

echo time is increased at each MRE phase offset. This approach with varying echo time makes it possible 

to perform chemical shift water-fat separation that will be used for FRPRFS thermometry. In MRE 

reconstruction, the LFE algorithm is processed on the spatial wave patterns created in the phase images 

and their spatial periodicity. Thus, varying TE has a minimum impact in the calculation of the elasticity 

maps. 

Standard MRE sequences include specific high amplitude bipolar MSG, which may lead to 

further field drifts when repeated over time. FRPRFS allows correcting errors induced by such field 

drifts and by fat in tissues (Hofstetter et al., 2012). The proposed acquisition scheme keeps the 

acquisition time identical to previously developed real-time PRFS thermometry and MRE, while 

allowing for robust FRPRFS thermometry (Corbin et al., 2016b). 

In PRFS calculation, temperature estimation is based on phase shifts of water protons. However, 

in fatty tissues, the global phase of mixed water and fat protons does not follow this phase shift by 0.01 

ppm/℃ because the resonance frequency of the fat is not sensitive to temperature. (Rieke and Pauly, 

2008a) investigated PRFS errors induced by the presence of fat and they proposed a method using echo 

combination to reduce the errors. This approach is based on the fact that PRFS errors due to the presence 

of fat display a periodicity with respect to temperature variation and echo time. In contrast, FRPRFS 

Thermometry can measure temperature from phase shifts of water protons present in fat containing 

tissue. In our experiment for temperature validation, we observed that regular PRFS measurements had 

significant errors in fat containing phantoms compared to the fiber optic measurements as shown in 

Figure 4.21. In addition, as expected, the errors were found to be dependent on the echo time.  
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Figure 4.21 PRFS Thermometry in ROI 1. This shows the influence on the TE on the error of 

temperature estimates. B0 field drifts are corrected using phase changes in an ROI distant from the 

heating region. 
 

 

All experiments demonstrated that the proposed method can be an interesting monitoring 

solution during hyperthermia, and particularly during HIFU heating. Different changes of temperature 

and shear modulus were observed in muscle tissue because of its heterogeneity, due to variability in the 

organization of the muscular fibers or fat infiltration. These variations may be found in other muscle 

tissues, even in other parts of the same tissue (Sapin-de Brosses et al., 2010). Muscle tissue was found 

to soften during limited hyperthermia. This behavior has already been reported previously by several 

teams. Wu et al. reported a decrease of bovine muscle shear modulus by almost 50% up to 60 °C ex-

vivo, followed by significant stiffening at temperatures higher than 60°C. Similar trends were reported 

by (Sapin-de Brosses et al., 2010) and (Arnal et al., 2011) in ex-vivo tissue. These studies suggest that 

muscle tissue softening occurring at moderate temperature elevation may be due to protein structure 

unfolding. Although this study did not illustrate the effect of heating at higher temperatures, it 

demonstrated clearly the thermal effects on tissue biomechanical properties. 

In this study, a new framework was developed for FRPRFS thermometry coupled with MRE 

for the monitoring of thermal ablations in real time. This protocol was validated in gel phantoms and in 

porcine rib tissue ex-vivo. The acquisition strategy relies on the combination of multiple TEs and MRE 
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phase offsets. The FRPRFS method is intended to provide accurate temperature measurements in all 

soft tissues, including fat-containing tissues. FRPRFS thermometry coupled with MRE may therefore 

help clinicians to monitor and evaluate thermal treatments in various types of tissues.  
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This chapter will describe important discussions that may deserve further attention.  

 

1) Spatial constraints 

The position of the pneumatic exciter is important to generate sufficient shear wave propagation. 

Combining an external MRE exciter with interventional material in vivo (HIFU or percutaneous) may 

be particularly challenging in terms of spatial access. This has led to alternative strategies, such as using 

percutaneous needles as a source of MRE excitation (Corbin et al., 2016b) or such as using the acoustic 

radiation force generated by the HIFU transducer (Hofstetter et al., 2019). In this Ph.D. study, it was 

possible to place both the HIFU transducer and the MRE exciter. With this setup, the built-in-spine coils 

or the in-bore body coils can be used for MR imaging. Translating this setup into an in vivo configuration 

would certainly require further considerations in order to enable simultaneous use of MRE together with 

an ablation device. 

 

2) Elasticity reconstruction 

In this Ph.D. study, elasticity maps are reconstructed by the LFE algorithm under the assumption 

of linear elastic material and incompressibility. The LFE algorithm is well-appreciated for clinical 

studies thanks to its fast and robust reconstruction. However, LFE methods may have lower spatial 

resolution and higher averaging effect than other reconstruction algorithms (Venkatesh and Ehman, 

2014). This may lead to errors in shear modulus estimates around the focal region, especially at the onset 

of elasticity changes, as the region where such changes occur is very limited in size. Accuracy could be 

improved by increasing shear wave excitation frequency, thus decreasing the wavelength and improving 

MRE resolution. However, increasing excitation frequency affects shear wave penetration and may 

result in lower wave to noise ratio due to increased attenuation. Despite such potential limitations, the 

LFE algorithm is used in this study because its processing time is well suited for the monitoring of 

thermal ablations. 

In chapters 3 and 4, echo times depended on both MSG frequency and additional TE lengthening 

due to SER or fat-water separation. The range of the selected TEs is acceptable to obtain sufficient SNR 

in gelatin phantom and ex-vivo tissue. Therefore, the various TEs used in this Ph.D. study do not cause 

a significant difference of the displacement sensitivity between slices with different TEs. However, 

some serious considerations remain for in-vivo studies, where T2* values may be substantially shorter 

than T2* of our phantoms. In such cases, it will be necessary to study the relationship between TE 

differences on elastogram quality. 
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3) Temperature-induced susceptibility changes 

Changes in the magnetic field can lead to particularly significant errors in PRFS-based 

Thermometry, as well as in FRPRFS Thermometry. The field changes can be categorized by two parts: 

one is time-varying field inhomogeneities (B0 field drifts) and the other is the effect of the magnetic 

susceptibility change.  

In FRPRFS Thermometry, pure fat phase is used as a field camera, which can measure B0 field 

variations without any temperature influence (not sensitive to temperature change). However, it doesn’t 

take into account for the effect of the magnetic susceptibility change. (Sprinkhuizen et al., 2010) reported 

that temperature changes resulted in changes in the susceptibility distribution. This phenomenon 

becomes more evident for heterogeneous distributions of water and fat. For example, if pure water and 

pure fat parts are placed in heating area, temperature errors may vary in the range of -2.9 ℃ to +2.3 ℃ 

(Sprinkhuizen et al., 2010). However, the errors are highly variable depending on the spatial distribution 

of water and fat, the degree of homogeneity in that distribution, and size of heating area. In chapter 4, 

both phantom and rib tissue have homogeneous water-fat distributions so that temperature-induced 

susceptibility changes in the fat might be slight in these experiments. The FRPRFS measurement in the 

hot water tube experiment also showed no significant difference when compared to the optical fiber 

measurement. Further study is needed to compensate for temperature induced susceptibility changes of 

the fat when thermal ablation is applied to a tissue with heterogeneous fat distribution. 

 

4) Conclusion 

In this Ph.D. thesis, we have presented two different developments dedicated to interventional 

MRE and MRT. These works aimed at overcoming some of the current limitations of interventional 

MRE and MRT. In chapter 3, fast multislice MRE technique was investigated. The proposed method 

relied on the simultaneous echo refocusing MR technique. We have explored its potential for monitoring 

temperature and elasticity, simultaneously in several contiguous slices. The shear modulus in 4 slices 

was monitored and updated every 8.2 s. The results of all experiments presented in this study show how 

elasticity and temperature varied differently across slices, demonstrating therefore the importance of 

being able to monitor such changes in several slices. In chapter 4, a new acquisition scheme was 

presented that combines simultaneously the need for multiple TE acquisitions for the water-fat 

separation of FRPRFS, and for multiple MRE phase offsets for elastogram reconstructions. This study 

demonstrated the feasibility of monitoring thermal ablations with FRPRFS Thermometry together with 

MRE at a frame rate of 4.1s, even in fat-containing tissues. This allows improving PRFS MR 

Thermometry, while keeping the acquisition time unchanged. Although the results shown in this Ph.D. 

study are preliminary, the proposed methods show that it is possible to overcome some of the most 
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significant limitations of prior MRT and MRE methods for monitoring thermal ablations. As a further, 

more fundamental study, it would be interesting to study the relationship between elasticity, temperature, 

and thermal dose using the proposed techniques. In this study, temperature has increased by 14 ℃ to 44 

℃. This temperature range may cause tissue coagulation with an initial temperature is 37 ℃. However, 

all experiments in this Ph.D. study were performed with an initial temperature of around 19 ℃ (room 

temperature). Hence the reached temperature is not sufficient to reach protein coagulation or tissue 

necrosis. Further ex-vivo studies at higher temperature are highly desirable to monitor elasticity changes 

in the ablated tissues. Alternatively, in-vivo study can be performed to observe changes in biological 

tissue during thermal ablations. The proposed methods presented here were not combined with 

compensation for susceptibility- and motion-related signal errors. To expand into in-vivo study, further 

improvements need to include these compensations. 
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Introduction 

Le cancer est récemment devenu la principale cause de décès dans les pays les plus développés. On 

estime à 3,9 millions le nombre de nouveaux cas de cancers et à 1,93 million le nombre de décès en 2018 

en Europe. Parmi les procédures de traitement les plus répandues, les ablations thermiques des tumeurs (ou 

thermothérapie) présentent l’avantage de cibler précisément les zones à traiter tout en évitant le plus 

possible d’endommager les tissus sains environnants. La thermothérapie est souvent combinée à une 

méthode d’imagerie telle que la tomodensitométrie, l'échographie ou l'imagerie par résonance magnétique 

(IRM). Ce suivi par l’imagerie est nécessaire car il permet au radiologue de repérer les lésions, de décider 

d’une stratégie de traitement et de veiller au bon déroulement de la procédure. L’IRM est une modalité 

permettant d’étudier avec précision les tissus mous, fournissant des images avec un meilleur contraste 

comparées à celles obtenues par scanner ou échographie. De plus, il s’agit d’une technique d’imagerie non 

invasive et non ionisante permettant d’imager des organes profonds en trois dimensions et selon n’importe 

quelle orientation. 

Le suivi des ablations thermiques par IRM a deux objectifs spécifiques : 1) le suivi en temps réel 

de l’évolution de la température dans la région traitée, afin de contrôler la quantité d’énergie déposée 2) 

l’évaluation en temps réel des effets du traitement sur les tissus, telle qu’une dégradation. La thermométrie 

IRM (TRM) est couramment utilisée pour contrôler le dépôt d’énergie thermique et estimer les dommages 

infligés aux tissus au cours des ablations thermiques guidées par IMR. Plus récemment, l’élasticité ou la 

rigidité des tissus, pouvant être mesurée par élastographie IRM (ERM), a fait l’objet d’une attention 

croissante en tant que biomarqueur complémentaire de la température. 

Bien que le suivi de l’évolution de la température et de l'élasticité des tissus soit une technique 

récente largement exploitée dans le domaine de la recherche, cette technique n'est pas encore adoptée en 

tant que standard clinique pour le suivi des thermothérapies. Sa limitation à certains types de tissus et son 

faible taux de rafraichissement d’images ne répondent pas encore aux conditions d'utilisation clinique 

standard. 
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Développement d'une séquence ERM multicoupe rapide (Chapitre 3) 

 

La première partie de ce travail a été consacrée au développement d'une séquence ERM multicoupe 

rapide permettant une meilleure couverture spatiale de la région concernée par la thermothérapie. Un 

système d’ablation HIFU (ultrasons focalisés de haute intensité) compatible IRM a été utilisé dans le cadre 

de cette thèse. Une couverture spatiale 3D complète de la zone d'ablation est privilégiée à un simple mode 

d'imagerie 2D pour deux raisons. Premièrement, les images 2D peuvent se retrouver décentrées par rapport 

à la région d’observation et ne pas rendre compte précisément de l’échauffement réel subi par les tissus au 

point focal, de sorte que l'augmentation maximale de la température et la localisation exacte du point focal 

peuvent être faussées. Deuxièmement, l’imagerie tridimensionnelle peut fournir avec précision la structure 

de la zone d'ablation, déterminée par la structure locale des tissus (flux sanguin, dépôt de chaleur, 

physiologie des tissus, etc.), que seule l’imagerie tridimensionnelle peut fournir. L'acquisition d'ERM est 

intrinsèquement lente en raison du nombre d'images acquises, à la fois à cause de l’utilisation de gradients 

bipolaires de sensibilité au mouvement (MSG +/-) et de la nécessité d’employer plusieurs décalages de 

phase entre l’onde mécanique et le MSG. Ce premier projet vise à proposer l'utilisation de la technique 

appelée SER pour « Simultaneous echo refocusing » (Feinberg et al., 2002) qui permet l’encodage ERM 

simultané et l’acquisition de 2 coupes par TR, afin d’obtenir un suivi multi-coupe des changements de 

température et d'élasticité au cours des ablations thermiques.  

Cette technique consiste à utiliser deux impulsions d'excitation (RF) consécutives et leurs gradients 

de sélection de coupe (SS) respectifs pour sélectionner deux coupes (Figure R.1). Combinés à des gradients 

de lecture (RO) ayant subi une préparation adéquate de pré-déphasage, deux échos consécutifs (un par 

coupe) sont acquis. Plus spécifiquement, les gradients appliqués entre les deux impulsions RF n'affectent 

que l'aimantation excitée par la première impulsion RF, soit uniquement la première coupe, tandis que les 

gradients appliqués après la seconde impulsion RF affectent les deux coupes à la fois. L’aire consacrée au 

pré-déphasage des gradients de lecture correspond respectivement à la moitié et au quart de l’aire totale du 

gradient de lecture, afin de générer successivement l’écho nº2 (ADC 2, associé à l’impulsion RF nº2) et 

l’écho nº1 (ADC 1, impulsion RF nº1). Ainsi, deux échos sont générés au cours de la lecture à différents 

moments, chaque écho étant acquis avec un TE différent associé à une coupe.  
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Figure R.1 Chronogramme de la séquence SER-GRE, intégrant le MSG et l’onde harmonique générée par 

un excitateur acoustique externe. 1 / fMSG correspond à la période du MSG, qui permet l’encodage dit 

fractionnel du mouvement. ∆θ représente le décalage de phase entre le MSG et l’excitation mécanique, les 

pas de phase employés étant répartis de manière égale sur un cycle de vibration. 

 

Une première expérience réalisée sur fantôme a d’abord permis de confronter notre nouvelle 

séquence d’ERM à la méthode standard. Cette étape a permis de valider l’approche proposée, en montrant 

l’équivalence entre ERM classique et la séquence proposée, pour un gain de temps d’acquisition d’un 

facteur deux. Une deuxième série d’expériences a eu pour but de valider l'utilisation de la méthode SER 

pour le suivi des changements de température et d'élasticité pendant un échauffement par HIFU dans un 

fantôme constitué de gélatine et de muscle de poulet. Nous avons montré l’intérêt d’acquérir plusieurs 

coupes pour évaluer de manière précise les changements de température et de propriétés mécaniques lors 

d’une ablation par HIFU.  

 

 

Résultats obtenus (Chapitre 3) 

La figure R.2 présente les élastogrammes obtenus selon 3 méthodes d’acquisition ERM : notre 

séquence SER-GRE et deux séquences GRE à encodage fractionnel (TR = 1 ou 2 périodes mécaniques). 

Dans le cas de la séquence SER-GRE, les coupes nº1 et 2 ont été respectivement obtenues avec un TE égal 

à 11.4 / 8.6 ms. Pour chacune des 2 coupes, une différence d’élasticité entre les différents compartiments 
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du fantôme (gel à 7% et 9%) est observée sur les élastogrammes reconstruits à partir des trois schémas 

d'acquisition, telle que reflétée par la longueur d'onde au sein des images de différence de phase. (Voir 

Chapitre 3.3.1.) 

 

Figure R.2 (a) Élastogrammes et (b) Images de différence de phase (déphasage n°1) des coupes 1 et 2 

obtenues à partir des séquences GRE et SER-GRE à la mesure nº2. La différence d’élasticité entre les 

compartiments à 7% et 9% de gélatine est visible aussi bien sur les élastogrammes que les images d’onde. 

 

Figure R.3, les variations de température (ΔT) sont clairement visibles dans les 4 coupes. La tache 

focale est représentée au sein de la coupe nº2 et l'effet de la diffusion de chaleur est observé dans les coupes 

1, 3 et 4. Des variations de l’onde et du module de cisaillement (μ et ∆μ) sont mises en évidence au sein 

des 4 coupes. Utilisés comme références, le premier élastogramme et la première carte de température ont 

pu être reconstruits 24 s après le début de l'acquisition de l'IRM. L'élastogramme, tout comme la carte de 
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température, peut ensuite être mis à jour toutes les 8 s selon le principe de la fenêtre glissante (Corbin et al., 

2016b). Une analyse détaillée est décrite au Chapitre 3.3.2. 

 

 

Figure R.3 Résultats de l'ablation HIFU. De gauche à droite, images des variations de température ΔT, 

cartes d’élasticité µ, cartes des variations d’élasticité Δμ et images d’onde (wave) superposées à l'image 

d’amplitude, avant (t=48 s), après le tir HIFU (t=256 s) et au cours de la phase de refroidissement (t=448 

s). S1 à 4 sur la figure représentent respectivement les coupes 1 à 4. Les cartes de température témoignent 

d’une augmentation de la température très localisée en raison du tir HIFU. Des modifications du module de 

cisaillement (Δμ) sont observées dans la zone chauffée, correspondant à une longueur d'onde localement 

décroissante. 

 

 

La figure R.4 illustre les cartes de température et d'élasticité obtenues pour 4 coupes contiguës une fois 

terminée la phase de chauffe par HIFU (300 s). La zone de l’ablation thermique a été repérée entre les 

coupes 2 et 3, toutefois, des zones affectées par un échauffement sont visibles sur les 4 coupes, comme le 

montre la figure R.4. Le premier élastogramme a pu être reconstruit 24,5 s après le début de l’acquisition 
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IRM, puis rafraîchi toutes les 8,2 s selon le principe de la fenêtre glissante. Les cartes d’évolution de la 

température s’affichaient toutes les 8,2 s après l'acquisition de l'image de phase de référence. 

 

 
Figure R.4 Résultats de l'ablation HIFU. De gauche à droite, images des variations de température ΔT, 

cartes d’élasticité µ, cartes des variations d’élasticité Δμ et images d’onde (wave) superposées à l'image 

d’amplitude, avant (t=100 s), après le tir HIFU (t=300 s) et au cours de la phase de refroidissement (t=700 

s). S1 à 4 sur la figure représentent respectivement les coupes 1 à 4. Les cartes de température témoignent 

d’une augmentation de la température très localisée en raison du tir HIFU. Des modifications du module de 

cisaillement (Δμ) sont observées dans la zone chauffée, correspondant à une longueur d'onde localement 

décroissante. 

 

 

Conclusion (Chapitre 3) 

Cette étude préliminaire présentée dans le Chapitre 3 a montré que la méthode SER pouvait être une bonne 

option d’accélération des séquences d’ERM interventionnelles. La méthode SER-GRE proposée ici permet 

d’acquérir des élastogrammes et des cartes de température pour des coupes contiguës, dans un délai 

d’acquisition plus court que les séquences d’ERM ordinaires. Deux coupes par TR sont acquises, partageant 
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un seul MSG d’encodage du mouvement mécanique. Ainsi, il est possible de suivre simultanément la 

propagation des ondes et les changements de température dans différentes coupes. Cette technique fournira 

une autre option d’accélération pour une acquisition rapide multi-coupe lors d’une intervention guidée par 

IRM. 
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La thermométrie PRFS référencée à la graisse (Chapitre 4) 

 

La deuxième partie de cette thèse présente une nouvelle stratégie d'acquisition IRM rendant 

possible la thermométrie et l’élastographie simultanées pour le suivi des ablations thermiques dans les tissus 

mous, incluant ceux contenant de la graisse. Dans ce but, une séquence d’acquisition mêlant ERM et 

séparation eau/graisse a été développée. En effet, les méthodes d’ERM/TRM interventionnelles actuelles 

exploitent la thermométrie PRFS (Proton Resonance Frequency Shift), qui est limitée aux tissus aqueux, 

car leur utilisation dans des tissus contenant de la graisse peut entraîner des erreurs importantes d’estimation 

de la température. L’objectif général de ce chapitre est d’étendre la méthode d’ERM/TRM interventionnelle 

à n’importe quel type de tissu mou, y compris les tissus contenant de la graisse. À cette fin, la thermométrie 

PRFS exploitant la méthode de séparation eau / graisse (FR-PRFS,  Fat-Referenced-PRFS) par déplacement 

chimique doit être combinée avec l’ERM / TRM interventionnelle actuelle. La stratégie proposée offre une 

amélioration du suivi combiné ERM/TRM en temps réel des ablations thermiques, en élargissant sa 

précision dans les tissus mous, y compris les tissus contenant des graisses, tout en maintenant le temps 

d'acquisition similaire. D'une part, un algorithme itératif exploitant la méthode des moindres carrés (IDEAL) 

est utilisé pour une séparation rapide et robuste du signal de l'eau et de la graisse (Tsao and Jiang, 2013; Yu 

et al., 2008). Le modèle de signal eau-graisse est résolu en utilisant des jeux de données à TE multiples. 

D'autre part, les reconstructions ERM nécessitent l'acquisition de plusieurs images avec des décalages de 

phase variables entre l'onde mécanique et les gradients de sensibilité au mouvement (MSG), afin de capturer 

l'onde de cisaillement à des instants différents lors de sa propagation. La stratégie décrite ici tire parti de 

l’acquisition de plusieurs déphasages en ERM permettant d’obtenir les différentes valeurs de temps d’écho 

(TE) nécessaires à la séparation eau-graisse. Pour cela, les temps d'écho et les décalages de phase ERM 

sont incrémentés conjointement au cours de l’acquisition (Figure R.5). Le nombre de décalages de phase 

ERM et le nombre de TE utilisés pour résoudre l'algorithme IDEAL sont les mêmes. Par conséquent, 

l'élastogramme et la carte de température FR-PRFS sont mis à jour en même temps. Cette méthode offre 

ainsi la possibilité d’enregistrer des informations de déplacements chimiques dans un seul jeu de données 

ERM.  
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Figure R.5 (a) Chronogramme schématique de la séquence GRE ERM pour la thermométrie FR-PRFS et 

l’ERM simultanées. Les impulsions RF, les MSG et les gradients de lecture sont représentés sur une seule 

ligne. TE est incrémenté de ∆TE, ∆θ représente le décalage de phase nécessaire en ERM. (b) Schéma 

résumé de l’acquisition du signal, avec « n » le nombre de décalages de phase ∆θ et de temps d’écho ∆TE. 

Les images sont acquises par paire en alternant la polarité du MSG. Chaque paire d'images est acquise avec 

le même TE spécifique et le même décalage de phase. 

 

Pour la validation, trois séries d’expériences ont été effectuées : premièrement, la mesure de la 

température a été validée dans une expérience sur fantômes via comparaison avec mesure thermométrique 

de référence (par fibres optiques). La deuxième série d’expériences a été effectuée pour valider les cartes 

d'élasticité, en les comparant à celles reconstruites par la séquence ERM de référence. Enfin, cette méthode 

a été testée lors d’expériences HIFU menées ex-vivo dans du tissu de porc avec une fraction adipeuse 

homogène.  
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Résultats de chapitre 4 

La figure R.6 présente les variations de température (ΔT), les variations d'élasticité (Δμ) et les 

images d'ondes mesurées avant (t=40 s) et pendant les 2 phases de montée en température (t=200 s puis 

t=400 s) pour une expérience de validation réalisée sur fantôme. Afin de mimer une ablation thermique, un 

circuit d’eau chaude (~90°) a été manuellement activé via une seringue. L’augmentation de la température 

s’accompagne ici d’un ramollissement du milieu, ce qui correspond à une diminution du module de 

cisaillement sur les cartes Δμ et à une diminution locale de la longueur d’onde de cisaillement sur les images 

d’onde. 

 

Figure R.6 De gauche à droite, cartes des variations de température (ΔT), cartes des variations d'élasticité 

(Δμ), élastogrammes (μ) et images d'onde superposées à l’image d’amplitude correspondante, obtenues 

avant (t=40 s) et pendant la phase de chauffe (t =200 s et 400 s). Au cours de cette dernière, une 

augmentation localisée de la température est observée. Le gel de l’inclusion se ramollit, comme en témoigne 

la diminution relative de la longueur d'onde de cisaillement visible sur les images d’onde. 

 

La deuxième série d’expériences a été effectuée pour valider les cartes d'élasticité, en les comparant 

à celles reconstruites par la séquence ERM de référence (Figure R.7). Ces expériences ont montré un très 

bon accord, sans différences significatives avec une erreur relative égale à 4.7 ± 1.8% sur l’ensemble du 
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fantôme. L’utilisation de jeux de données à TE multiples permet ainsi de reconstruire des élastogrammes 

obtenus en ERM standard n’exploitant qu’un seul TE. Une analyse détaillée est décrite au Chapitre 4.4.1-

2. 

 

Figure R.7 Élastogrammes reconstruits à partir de jeu de données incluant plusieurs TE (EmTE) et un seul 

TE (EsTE). L'erreur relative est donnée par la formule : |EmTE − EsTE|/EsTE × 100 et est évaluée à 4.7 ± 

1.8% dans l’ensemble du milieu. Ceci nous permet d’avancer que l’ERM-IDEAL fournit des 

élastogrammes semblables à ceux obtenus en ERM classique. 

 

Pour les expériences HIFU menées ex-vivo, la figure R.8 rend compte des variations de température 

∆T subies par les tissus, ainsi que des modifications de la rigidité relative du milieu (RSC = Δµ / µ0, où µ0 

est la rigidité initiale), des cartes d'élasticité et des images d'onde mesurées avant (t =100 s), après 

échauffement par HIFU (t=250 s) et pendant la phase de refroidissement (t =570 s) au cours de 4 

expériences. En définitive, il a été constaté que le module de cisaillement diminuait au niveau du point 

focal, comme indiqué sur les cartes RSC. Une analyse détaillée est décrite au Chapitre 4.4.3. 
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Figure R.8 Expérience Hifu ex vivo dans du muscle de porc. De gauche à droite, variations de température 

(ΔT), modification de la rigidité relative (RSC), cartes d'élasticité et images d'onde superposées avec 

l'image d’amplitude pour une même valeur de TE, avant (t =100 s), pendant la phase de chauffe HIFU 

(t=250 s) et au cours de la phase de refroidissement (t =570 s). 

 

 

Conclusion chapitre 4 

Dans le chapitre 4, un nouveau cadre a été développé pour la thermométrie FR-PRFS associée à 

l’ERM permettant le suivi des ablations thermiques en temps réel. Ce protocole a été validé sur fantôme 

puis ex-vivo dans du tissu de porc. La stratégie d’acquisition s’appuie sur la combinaison de plusieurs 

méthodes de compensation de la phase : exploitation de plusieurs temps d’écho et de plusieurs déphasages 

entre le gradient de sensibilité au mouvement et l’excitation mécanique. La thermométrie FR-PRFS permet 

d’obtenir des mesures de température précises dans tous les tissus mous, y compris les tissus contenant de 

la graisse. Associée à l’ERM, notre méthode peut donc aider les cliniciens pour le suivi des traitements 

d’ablations thermiques dans divers types de tissus. 
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Conclusion générale 

Dans cette thèse de doctorat , nous avons présenté deux développements différents afin de 
surmonter certaines des limitations actuelles de l‘ERM et de la MRT interventionnelles simultanées, en 
termes d’extension à la couverture spatiale de la région ciblée et au développement d’une nouvelle 
méthode de surveillance des ablations thermiques pour tous les types de tissus mous, y compris les tissus 
adipeux. Ces contributions visent à améliorer la sécurité et l'efficacité des ablations thermiques guidées 
par IRM.  
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