Thèse soutenue

Accélération de particules dans une collision de plasmas produits par laser

FR  |  
EN
Auteur / Autrice : Julien Guyot
Direction : Andrea CiardiPhilippe Savoini
Type : Thèse de doctorat
Discipline(s) : Astrophysique
Date : Soutenance le 18/12/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d’étude du rayonnement et de la matière en astrophysique et atmosphères (Paris ; 2002-....)
Jury : Président / Présidente : Laurence Rezeau
Examinateurs / Examinatrices : Paul-Quentin Elias, Julien Fuchs
Rapporteurs / Rapporteuses : Alexandre Marcowith, Mark Sherlock

Résumé

FR  |  
EN

Les particules chargées énergétiques sont omniprésentes dans l'Univers et sont accélérées par des sources galactiques et extragalactiques. Comprendre l'origine de ces "rayons cosmiques" est crucial en astrophysique et dans le cadre de l'astrophysique de laboratoire à haute densité d'énergie, nous avons développé une nouvelle plate-forme sur les installations laser LULI pour étudier l'accélération de particules. Dans les expériences, la collision de deux plasmas contre-propageant produits par laser génère une distribution non thermique de particules allant jusqu'à 1 MeV d'énergie. L'objectif de ce travail est de fournir un cadre théorique pour comprendre leur origine. Des simulations magnéto-hydrodynamiques avec des particules tests montrent que la collision des plasmas conduit à la croissance de structures caractéristiques de l'instabilité de Rayleigh-Taylor magnétique et à la génération de forts champs électriques. Nous constatons que les particules sont accélérées à des énergies allant jusqu'à quelques centaines de keV en moins de 20 ns, par des interactions répétées avec les perturbations de Rayleigh-Taylor. Les simulations et un modèle d'accélération stochastique reproduisent bien le spectre expérimental. En conclusion, nous avons identifié en laboratoire un nouveau mécanisme d'accélération de particules qui repose sur la croissance de l'instabilité de Rayleigh-Taylor magnétique pour accélérer de manière stochastique les particules. Cette instabilité est fréquente dans les plasmas astrophysiques, avec par exemple les restes de supernovæ et les éjections de masse coronale, et nous suggérons qu'elle peut contribuer à l'accélération de particules dans ces systèmes.