Thèse soutenue

Adsorption de molécules chirales sur catalyseurs hétérogènes supportés sur oxyde : une approche modèle

FR  |  
EN
Auteur / Autrice : Elisa Meriggio
Direction : Xavier Carrier
Type : Thèse de doctorat
Discipline(s) : Physique et chimie des matériaux
Date : Soutenance le 24/09/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Physique et chimie des matériaux (Paris)
Partenaire(s) de recherche : Laboratoire : Laboratoire de réactivité de surface (Paris ; 1985-....) - Institut des nanosciences de Paris (1997-....)
Jury : Président / Présidente : Delphine Cabaret
Examinateurs / Examinatrices : Vincent Humblot, Dimitri Mercier, Marie d' Angelo, Gregory Cabailh
Rapporteurs / Rapporteuses : Letizia Savio, Christine Robert-Goumet

Résumé

FR  |  
EN

La catalyse asymétrique hétérogène est une méthode de choix pour la synthèse de composés chiraux énantiopurs. Une approche courante implique la modification d'une surface métallique par un inducteur chiral. Malgré son potentiel, seul un petit nombre de systèmes ont été mis au point jusqu'à présent avec succès. De plus, si l’interaction de cette molécule asymétrique avec des surfaces métalliques monocristallines est maintenant bien comprise, le rôle du support oxyde dans des catalyseurs à base de nanoparticules métalliques supportées demeure encore peu étudié. La conception raisonnée du catalyseur repose sur la maitrise des interactions à l’échelle moléculaire entre l’oxyde, les nanoparticules métalliques et l’inducteur chiral. Dans ce contexte, cette étude vise à comprendre les interactions entre ces trois partenaires grâce à une approche de type science des surfaces. Pour représenter le système catalytique, des monocristaux de rutile TiO2(110), l'acide tartrique (AT) et des nanoparticules de nickel ont été sélectionnés. La nature chimique de l’AT sur TiO2(110) est étudiée par Photoémission X (XPS) et UV et Spectroscopie de Perte d'Énergie d'Électrons Lents à Haute Résolution. La structure de la couche moléculaire et ses points d’ancrage sont étudiés par Microscopie à Effet Tunnel (STM) et Diffraction d’Électrons Lents. Le comportement de décomposition de l’AT est obtenu par désorption thermique (TPD). Les techniques XPS, STM et la Réflectivité Différentielle de Surface sont utilisées pour sonder la croissance du Ni sur le TiO2 lorsque la couverture en Ni augmente. Enfin, des perspectives sur le système AT / Ni / TiO2 sont proposées principalement par XPS et TPD.