Thèse soutenue

Traitement de l'information quantique avec une fibre multimode

FR  |  
EN
Auteur / Autrice : Saroch Leedumrongwatthanakun
Direction : Sylvain Gigan
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 13/12/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Kastler Brossel (Paris ; 1998-....)
Jury : Président / Présidente : Eleni Diamanti
Examinateurs / Examinatrices : Riccardo Sapienza
Rapporteurs / Rapporteuses : François Marquier, Christine Silberhorn

Résumé

FR  |  
EN

Le transport à haut débit de données à travers des fibres optiques grâce au multiplexage spatial est en pratique limité par la diaphonie modale. Au lieu de considérer ce couplage modal comme une limitation, nous exploitons ici ce mélange de modes comme une ressource. Nous mettons en oeuvre un réseau optique linéaire programmable basé sur le concept de design photonique inverse, exploitant les techniques de mise en forme du front d’onde. Nous démontrons la manipulation d’interférences quantiques à deux photons sur divers réseaux linéaires, comprenant des degrés de liberté spatiaux et de polarisations. En particulier, nous vérifions expérimentalement la « zero transmission law » dans des interféromètres de Fourier et de Sylvester, permettant de quantifier le degré d’indiscernabilité d’un état d’entrée. De plus, grâce à la possibilité de mettre en oeuvre un réseau non unitaire, nous mettons en évidence l’anti-coalescence de photons dans toutes les configurations de sortie, et réalisons une expérience d’absorption cohérente. Nous démontrons ainsi l’aspect reconfigurable de l’implémentation de tels réseaux optiques linéaires dans des fibres multimodes. De plus, nous étudions les propriétés statistiques du speckle à un et à deux photons générés à partir de divers états d’entrée, après propagation dans une fibre multimode. Ces propriétés statistiques du speckle peuvent être utilisées pour extraire des informations sur la dimensionnalité, la pureté et l’indiscernabilité d’un état quantique inconnu, permettant ainsi leur classification. Ce travail met en évidence le potentiel du contrôle de front d’onde en milieux complexes pour le traitement quantique de l’information.