Syzygies : algebra, combinatorics and geometry

par Navid Nemati

Thèse de doctorat en Mathématiques

Sous la direction de Marc Chardin.

Le président du jury était Bernard Teissier.

Le jury était composé de Jürgen Herzog, Julien Grivaux.

Les rapporteurs étaient Aldo Conca, Laurent Busé.

  • Titre traduit

    Syzygies : algèbre, combinatoire et géométrie


  • Résumé

    La régularité de Castelnuovo-Mumford est l'un des principaux invariants numériques permettant de mesurer la complexité de la structure des modules gradués de type fini sur des anneaux polynomiaux. Il mesure le degré maximal des générateurs des modules de syzygies. Dans cette thèse, nous étudions la régularité de Castelnuovo-Mumford avec différents points de vue et, dans certaines parties, nous nous concentrons principalement sur les syzygies linéaires. Dans le chapitre 2, nous étudions la régularité des homologies de Koszul et des cycles de Koszul de quotients unidimensionnels. Dans le chapitre 3, nous étudions les propriétés de Lefschetz faibles et fortes d'une classe d'idéaux monomiaux artiniens. Nous donnons, dans certains cas, une réponse affirmative à une conjecture d'Eisenbud, Huneke et Ulrich. Dans les chapitres 4 et 5, nous étudions deux comportements asymptotiques différents de la régularité de Castelnuovo-Mumford. Dans le chapitre 4, nous travaillons sur un quotient d'une algèbre noethérienne standard par suite régulière homogène. Au chapitre 5, nous étudions la régularité des puissances des idéaux monomiaux associés aux graphes en haltère. Dans le chapitre 6, nous travaillons sur des espaces projectifs. Au début de ce chapitre, nous présentons un package pour le logiciel informatique Macaulay2. De plus, nous étudions les cohomologies des "intersections complètes" dans Pnx Pm.


  • Résumé

    Castelnuovo-Mumford regularity is one of the main numerical invariants that measure the complexity of the structure of homogeneous finitely generated modules over polynomial rings. It measures the maximum degrees of generators of the syzygies. In this thesis we study the Castelnuovo-Mumford regularity with different points of view and, in some parts, we mainly focus on linear syzygies. In Chapter 2 we study the regularity of Koszul homologies and Koszul cycles of one dimensional quotients. In Chapter 3 we study the weak and strong Lefschetz properties of a class of artinain monomial ideals. We show how the structure of the minimal free resolution could force weak or strong Lefschetz properties. In Chapter 4 and 5we study two different asymptotic behavior of Castelnuovo-Mumford regularity. In Chapter 4 we work on a quotient of a standard graded Noetherian algebra by homogeneous regular sequence. It is a celebrated result that the regularity of powers of an ideal in a polynomial ring becomes a linear function. In Chapter 5, we study the regularity of powers of dumbbell graphs. In Chapter 6, we work on product of projective spaces. In the begining of this chapter, we present a package for the computer software Macaulay2. Furthermore, we study the cohomologies of the “complete intersections'' in Pn x Pm.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque des thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.