Cohomologie des fibrés en droites sur SL3/B en caractéristique positive : deux filtrations et conséquences
Auteur / Autrice : | Linyuan Liu |
Direction : | Patrick Polo |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 26/06/2019 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de mathématiques de Jussieu-Paris Rive Gauche (1997-....) |
Jury : | Président / Présidente : François Loeser |
Examinateurs / Examinatrices : Anna Cadoret, Caroline Gruson, Wolfgang Soergel | |
Rapporteur / Rapporteuse : Simon Riche, Geordie Williamson |
Résumé
Soit G un groupe algébrique semi-simple sur un corps k algébriquement clos de caractéristique positive et soit B un sous-groupe de Borel. La cohomologie des fibrés en droites G-équivariants sur G/B induits par des caractères de B sont des objets importants dans la théorie des représentations de G. Dans cette thèse, on se concentre sur G = SL3. Dans le premier chapitre,on montre l’existence d’une filtration à deux étages de H1(μ) et H2(μ) pour μ dans l’adhérence de la région de Griffith. Dans le deuxième chapitre, on montre l’existence d’une p-Hi-D-filtration de Hi(μ) pour tout i et μ, qui généralise la p filtration de H0(μ) introduite par Jantzen. Dans le troisième chapitre, on étudie et détermine la structure des modules apparaissants dans la p-Hi-D-filtration.Dans le dernier chapitre, on donne une description explicite et combinatoire de H2(μ) pour μ dans la région de Griffith et on généralise cette description à Hd(G/B, μ) pour G = SLd+1 et certains poids μ.