Thèse soutenue

Minéralogie et composition isotopique des phases d’altération des premières roches du Système Solaire

FR  |  
EN
Auteur / Autrice : Dan Lévy
Direction : Jérôme AléonAlice Aléon-Toppani
Type : Thèse de doctorat
Discipline(s) : Cosmochimie
Date : Soutenance le 14/11/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Sciences de la nature et de l'Homme - Évolution et écologie (Paris)
Partenaire(s) de recherche : Laboratoire : Institut de minéralogie, de physique des matériaux et de cosmochimie (Paris ; 1997-....) - Institut d'astrophysique spatiale (Orsay, Essonne ; 1990-....)
Jury : Président / Présidente : Sara Samantha Russell
Examinateurs / Examinatrices : Lydie Bonal, Laurent Remusat
Rapporteurs / Rapporteuses : Etienne Deloule, Guy Libourel

Résumé

FR  |  
EN

Les inclusions réfractaires riches en calcium et en aluminium (CAIs) sont les premiers objets solides du système solaire à s'être formés. Malgré 4,568 Ga d'évolution, on peut remonter à leurs conditions de formation et dire qu'elles se sont formées à plus de 1200 °C dans des conditions très réductrices près du Soleil jeune. Les phases secondaires présentes dans les CAIs suggèrent quant à elles une formation dans des conditions plus oxydantes et/ou à plus basse température. La plupart de ces phases ont été interprétées comme provenant d'évènements tardifs. Néanmoins, une origine nébulaire de certaines phases secondaires reste débattue. L'objectif de cette thèse est de vérifier en couplant différentes techniques si certaines phases secondaires se seraient formées lors de la formation des CAIs dans la nébuleuse. Pour cela une CAI composée, nommée E101.1, provenant de la météorite CV3 réduite Efremovka a été étudiée. Cette CAI a été choisie car comportant des phases riches en FeO incluses dans des diopsides eux-mêmes inclus dans la CAI hôte. Ces phases ont été caractérisées comme de la Fe-åkermanite, des assemblages à grains fins associés à de la kirschsteinite et de la wollastonite. L'étude pétrologique et texturale de ces phases réalisée pendant cette thèse a permis de suggérer que la kirschsteinite et la wollastonite s'étaient formées dans la nébuleuse au sein de précurseurs riches en diopside et anorthite. La Fe-åkermanite résulterait de l'incorporation de ces précurseurs dans une CAI de type A partiellement fondue. Cela est cohérent avec des expériences en pétrologie expérimentale qui ont été entamées. Après avoir développé une méthode d'imagerie du rapport D/H dans des sections ultraminces de minéraux peu hydratés en NanoSIMS, les δD des différents minéraux d'E101.1 ont été mesurés. Les valeurs les plus basses jamais mesurées dans un échantillon météoritique ont ainsi été répertoriées au sein de l'anorthite avec un δD de -817 ± 185 ‰ (2σ). Cette valeur est en accord avec une formation près du Soleil jeune. Les assemblages à grains fins ont des valeurs allant jusque 1250 ± 516 ‰ (2σ). La kirschsteinite a quant à elle un δD chondritique de 163 ± 201 ‰ (2σ). Les valeurs élevées ont été attribuées, en accord avec les observations pétrologiques, à la capture des xénolithes. La kirschsteinite et la wollastonite se sont donc formées dans la nébuleuse dans un réservoir avec une composition isotopique en H chondritique. Cela signifie que le D/H de l'eau dans la nébuleuse serait passé d'une valeur solaire à une valeur presque terrestre en quelques centaines de milliers d'années maximum. Ces approches complémentaires nous ont ainsi permis de montrer la présence de phases d’altération nébulaires dans une CAI et qu’un épisode oxydant non prédit par la thermodynamique a eu lieu dans la nébuleuse.