Thèse soutenue

Apprentissage neuronal par neurofeedback à l’aide d’un système EEG portable : application à la réduction du stress chez l'Homme

FR  |  
EN
Auteur / Autrice : Fanny Grosselin
Direction : Fabrizio De Vico Fallani
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 24/10/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut du cerveau et de la moelle épinière (Paris). Algorithmes, modèles et méthodes pour les images et les signaux du cerveau humain sain et pathologique
Jury : Président / Présidente : Jean-Gabriel Ganascia
Examinateurs / Examinatrices : Mario Châvez, Camille Jeunet, Yohan Attal, Nathalie George
Rapporteurs / Rapporteuses : Fabien Lotte, François Vialatte

Résumé

FR  |  
EN

Cette thèse porte sur la conception, l’implémentation et l’évaluation d’un système de neurofeedback EEG portable, d’aide à la gestion du stress, à destination du grand public. Un tel système permet aux utilisateurs d’apprendre à moduler leurs états mentaux par des phénomènes de plasticité cérébrale. Cependant, plusieurs facteurs peuvent compliquer cet apprentissage, comme un plus faible rapport signal sur bruit de l'EEG acquis par des électrodes sèches, la contamination par des artefacts ou encore la définition de paramètres pertinents à partir des signaux EEG. Afin d’optimiser ce retour neuronal, ma thèse propose d’abord une méthode statistique permettant de s’assurer de la qualité des signaux EEG acquis, ainsi qu’une méthode corrective d’artefacts, afin de pouvoir extraire une mesure pertinente de l’activité EEG reflétant le niveau de stress ou de relaxation de l’individu. Le développement d’un indice de neurofeedback pertinent et adapté à l’utilisateur est également proposé. A la suite de la constitution algorithmique d’un tel système, les caractéristiques d'apprentissage par neurofeedback ont pu être étudiées. En particulier, je montre qu'un apprentissage intersession semble se mettre en place et que chez les sujets stressés, des changements cérébraux s'opèrent dans la bande alpha durant les phases de repos. Finalement, par ces aspects méthodologiques, d’intégration logicielle et d’analyse longitudinale, cette thèse constitue les briques fondamentales d’un système de recommandation automatique adapté à l’utilisateur. Un tel système permettrait un suivi personnel des utilisateurs afin de leur proposer une stratégie préventive pour la gestion du stress.