Thèse soutenue

Algorithmes pour les systèmes polynomiaux creux : bases de Gröbner et résultants

FR  |  
EN
Auteur / Autrice : Matias Rafael Bender
Direction : Jean-Charles FaugèreElias Tsigaridas
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 03/06/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris
Partenaire(s) de recherche : Laboratoire : LIP6 (1997-....)
Jury : Président / Présidente : Bernard Mourrain
Examinateurs / Examinatrices : Laurent Busé, Stef Graillat, Gilles Villard
Rapporteurs / Rapporteuses : Agnès Szántó, Carlos D'Andrea

Résumé

FR  |  
EN

La résolution de systèmes polynomiaux est l’un des problèmes les plus anciens et importants en mathématiques informatiques et a des applications dans plusieurs domaines des sciences et de l’ingénierie. C'est un problème intrinsèquement difficile avec une complexité au moins exponentielle du nombre de variables. Cependant, dans la plupart des cas, les systèmes polynomiaux issus d'applications ont une structure quelconque. Dans cette thèse, nous nous concentrons sur l'exploitation de la structure liée à la faible densité des supports des polynômes; c'est-à-dire que nous exploitons le fait que les polynômes n'ont que quelques monômes à coefficients non nuls. Notre objectif est de résoudre les systèmes plus rapidement que les estimations les plus défavorables, qui supposent que tous les termes sont présents. Nous disons qu'un système creux est non mixte si tous ses polynômes ont le même polytope de Newton, et mixte autrement. La plupart des travaux sur la résolution de systèmes creux concernent le cas non mixte, à l'exception des résultants creux et des méthodes d'homotopie. Nous développons des algorithmes pour des systèmes mixtes. Nous utilisons les résultantes creux et les bases de Groebner. Nous travaillons sur chaque théorie indépendamment, mais nous les combinons également: nous tirons parti des propriétés algébriques des systèmes associés à une résultante non nulle pour améliorer la complexité du calcul de leurs bases de Groebner; par exemple, nous exploitons l’exactitude du complexe de Koszul pour déduire un critère d’arrêt précoce et éviter tout les réductions à zéro. De plus, nous développons des algorithmes quasi-optimaux pour décomposer des formes binaires.