Thèse soutenue

Extraction de résumé personnalisé, basé sur les aspects des critiques de films

FR  |  
EN
Auteur / Autrice : Sara El Aouad
Direction : Renata TeixeiraVassilis Christophides
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 26/04/2019
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Centre de recherche de Paris (Paris)
Jury : Président / Présidente : Serge Fdida
Examinateurs / Examinatrices : Christophe Diot, Patrick Pérez
Rapporteurs / Rapporteuses : Mark E. Crovella, Dimitris Kotzinos

Résumé

FR  |  
EN

Les sites web de critiques en ligne aident les utilisateurs à décider quoi acheter ou quels hôtels choisir. Ces plateformes permettent aux utilisateurs d’exprimer leurs opinions à l’aide d’évaluations numériques et de commentaires textuels. Les notes numériques donnent une idée approximative du service. D'autre part, les commentaires textuels donnent des détails complets, ce qui est fastidieux à lire. Dans cette thèse, nous développons de nouvelles méthodes et algorithmes pour générer des résumés personnalisés de critiques de films, basés sur les aspects, pour un utilisateur donné. Le premier problème que nous abordons consiste à extraire un ensemble de mots liés à un aspect des critiques de films. Notre évaluation montre que notre méthode est capable d'extraire même des termes impopulaires qui représentent un aspect, tels que des termes composés ou des abréviations. Nous étudions ensuite le problème de l'annotation des phrases avec des aspects et proposons une nouvelle méthode qui annote les phrases en se basant sur une similitude entre la signature d'aspect et les termes de la phrase. Le troisième problème que nous abordons est la génération de résumés personnalisés, basés sur les aspects. Nous proposons un algorithme d'optimisation pour maximiser la couverture des aspects qui intéressent l'utilisateur et la représentativité des phrases dans le résumé sous réserve de contraintes de longueur et de similarité. Enfin, nous réalisons trois études d’utilisateur qui montrent que l’approche que nous proposons est plus performante que la méthode de pointe en matière de génération de résumés.