Thèse soutenue

Arithmétique rapide pour des corps finis

FR  |  
EN
Auteur / Autrice : Robin Larrieu
Direction : Joris van der Hoeven
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 10/12/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Laboratoire d'informatique de l'École polytechnique (Palaiseau, Essonne)
Jury : Président / Présidente : Lucia Di Vizio
Examinateurs / Examinatrices : Joris van der Hoeven, Lucia Di Vizio, Pierrick Gaudry, Gilles Villard, Luca De Feo, Magali Turrel Bardet, Alin Bostan, Jean-Charles Faugère
Rapporteurs / Rapporteuses : Pierrick Gaudry, Gilles Villard

Résumé

FR  |  
EN

La multiplication de polynômes est une opération fondamentale en théorie de la complexité. En effet, pour de nombreux problèmes d’arithmétique, la complexité des algorithmes s’exprime habituellement en fonction de la complexité de la multiplication. Un meilleur algorithme de multiplication permet ainsi d’effectuer les opérations concernées plus rapidement. Un résultat de 2016 a établi une meilleure complexité asymptotique pour la multiplication de polynômes dans des corps finis. Cet article constitue le point de départ de la thèse ; l’objectif est d’étudier les conséquences à la fois théoriques et pratiques de la nouvelle borne de complexité.La première partie s’intéresse à la multiplication de polynômes à une variable. Cette partie présente deux nouveaux algorithmes censés accélérer le calcul en pratique (plutôt que d’un point de vue asymptotique). S’il est difficile dans le cas général d’observer l’amélioration prévue, certains cas précis sont particulièrement favorables. En l’occurrence, le second algorithme proposé, spécifique aux corps finis, conduit à une meilleure implémentation de la multiplication dans F_2[X], environ deux fois plus rapide que les logiciels précédents.La deuxième partie traite l’arithmétique des polynômes à plusieurs variables modulo un idéal, telle qu’utilisée par exemple pour la résolution de systèmespolynomiaux. Ce travail suppose une situation simplifiée, avec seulement deux variables et sous certaines hypothèses de régularité. Dans ce cas particulier, la deuxième partie de la thèse donne des algorithmes de complexité asymptotiquement optimale (à des facteurs logarithmiques près), par rapport à la taille des entrées/sorties. L’implémentation pour ce cas spécifique est alors nettement plus rapide que les logiciels généralistes, le gain étant de plus en plus marqué lorsque la taille de l’entrée augmente.