Thèse soutenue

Méthodologie d'aide à la décision pour le dépistage anténatal échographique d'anomalies fœtales par apprentissage statistique

FR  |  
EN
Auteur / Autrice : Rémi Besson
Direction : Stéphanie AllassonnièreErwan Le Pennec
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 01/10/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Centre de mathématiques appliquées de l'Ecole polytechnique (Palaiseau ; 1974-....)
Jury : Président / Présidente : Antoine Chambaz
Examinateurs / Examinatrices : Stéphanie Allassonnière, Erwan Le Pennec, Antoine Chambaz, Tristan Cazenave, Jean-Michel Loubès, Karim Lounici, Julien Stirnemann
Rapporteur / Rapporteuse : Tristan Cazenave, Jean-Michel Loubès

Résumé

FR  |  
EN

Dans cette thèse, nous proposons une méthode pour construire un outil d'aide à la décision pour le diagnostic de maladie rare. Nous cherchons à minimiser le nombre de tests médicaux nécessaires pour atteindre un état où l'incertitude concernant la maladie du patient est inférieure à un seuil prédéterminé. Ce faisant, nous tenons compte de la nécessité dans de nombreuses applications médicales, d'éviter autant que possible, tout diagnostic erroné. Pour résoudre cette tâche d'optimisation, nous étudions plusieurs algorithmes d'apprentissage par renforcement et les rendons opérationnels pour notre problème de très grande dimension. Pour cela nous décomposons le problème initial sous la forme de plusieurs sous-problèmes et montrons qu'il est possible de tirer partie des intersections entre ces sous-tâches pour accélérer l'apprentissage. Les stratégies apprises se révèlent bien plus performantes que des stratégies gloutonnes classiques. Nous présentons également une façon de combiner les connaissances d'experts, exprimées sous forme de probabilités conditionnelles, avec des données cliniques. Il s'agit d'un aspect crucial car la rareté des données pour les maladies rares empêche toute approche basée uniquement sur des données cliniques. Nous montrons, tant théoriquement qu'empiriquement, que l'estimateur que nous proposons est toujours plus performant que le meilleur des deux modèles (expert ou données) à une constante près. Enfin nous montrons qu'il est possible d'intégrer efficacement des raisonnements tenant compte du niveau de granularité des symptômes renseignés tout en restant dans le cadre probabiliste développé tout au long de ce travail.