Etude de la variabilité de la croissance de bactéries en gouttes microfluidiques
Auteur / Autrice : | Antoine Barizien |
Direction : | Charles Baroud |
Type : | Thèse de doctorat |
Discipline(s) : | Biologie |
Date : | Soutenance le 28/05/2019 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Interfaces : matériaux, systèmes, usages (Palaiseau, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....) |
Laboratoire : Laboratoire d'Hydrodynamique de l'École polytechnique (Palaiseau ; 1990-....) | |
Jury : | Président / Présidente : Didier Chatenay |
Examinateurs / Examinatrices : Charles Baroud, Didier Chatenay, Rosalind Allen, Grégory Batt, Aleksandra Walczak, Vincent Bansaye | |
Rapporteur / Rapporteuse : Rosalind Allen, Grégory Batt |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Cette thèse porte sur l’étude de la variabilité de la croissance de bactéries en gouttes micro-fluidiques. Dans un premier temps, la puce micro-fluidique utilisée au cours de la thèse est présentée. Elle permet d’encapsuler des bactéries individuelles dans 1500 gouttes d’un nano litre, et de suivre leur croissance en parallèle grâce à la mesure de leur fluorescence par microscopie. La relation entre fluorescence mesurée et nombre de bactérie est discutée, et plusieurs questions techniques, comme la variabilité de taille des gouttes, l’hétérogénéité de fluorescence des bactéries, sont mesurées et leurs conséquences sur les mesures de croissance quantifiées. Dans un second temps, nous développons un modèle probabiliste qui permet, à partir de la variabilité des temps de divisions des bactéries, de prédire la variabilité de croissance entre les gouttes. Pour ce faire, nous adaptons le modèle classique de Bellman-Harris. La distribution aléatoire du nombre initial de bactérie par gouttes, ainsi que les temps de divisions différents des premières générations de bactéries sont ajoutées au modèle pour l’adapter à notre système expérimental. Les contributions de ces différentes sources de variabilité à la variabilité inter-gouttes de croissance des populations de bactéries sont quantifiées, et le modèle permet bien d’expliquer la variabilité de la croissance entre les gouttes. Dans un troisième temps, nous proposons un schéma d’inférence pour résoudre le problème inverse, qui est de retrouver, à partir des courbes de croissance, la variabilité des temps de division des bactéries individuelles. Le modèle précédent ne peut être utilisé à cause des sources externes de variabilité, nous proposons donc un schéma d’inférence basé sur le suivi dans le temps de chacune des trajectoires des gouttes. Grâce à des simulations reproduisant les conditions expérimentales, nous prouvons que l’inférence est possible. Elle ne peut être appliquée à nos expériences en raison de la précision insuffisante de notre mesure de fluorescence. Enfin, la même puce micro-fluidique est utilisée pour quantifier l’action d’antibiotiques sur des bactéries, notamment la réponse SOS qui est induite lorsque l’ADN de la bactérie est endommagé. La technologie d’encapsulation en goutte est utilisée pour mesurer l’hétérogénéité de réponse des bactéries et la relier à leur capacité à survivre au stress dû à l’antibiotique, et à reformer une colonie.