Elaboration de nouvelles matrices d’immobilisation enzymatique à base de Metal-Organic Frameworks pour la dégradation catalytique de polluants environnementaux
Auteur / Autrice : | Effrosyni Gkaniatsou |
Direction : | Nathalie Steunou, Rémy Ricoux |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 25/01/2019 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Interfaces : matériaux, systèmes, usages (Palaiseau, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Lavoisier de Versailles - Institut Lavoisier de Versailles |
établissement opérateur d'inscription : Université de Versailles-Saint-Quentin-en-Yvelines (1991-....) | |
Jury : | Président / Présidente : Thibaud Coradin |
Examinateurs / Examinatrices : Nathalie Steunou, Rémy Ricoux, Thibaud Coradin, Claude Jolivalt, Darren Bradshaw, Marco Daturi, Pierre Mialane, Clémence Sicard | |
Rapporteur / Rapporteuse : Claude Jolivalt, Darren Bradshaw |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Les enzymes sont des biocatalyseurs de plus en plus utilisés pour la transformation de molécules organiques (chimie fine, bioconversions, dépollution, chimie du pétrole) car elles possèdent de très bonnes sélectivité et réactivité, générant rapidement de larges quantités de produit. Cependant, la fragilité des enzymes, notamment en solution, limite souvent leur utilisation. Il est donc crucial de les immobiliser et de les stabiliser dans des supports adaptés. Une grande variété de matrices d’immobilisation (organiques ou inorganiques) a déjà étudiée, mais aucune ne satisfait pleinement aux critères nécessaires pour le développement de bio-réacteurs (accessibilité au site actif de l’enzyme, relargage de l’enzyme, diffusion des réactifs, recyclabilité, stabilité..). En outre, la majorité de ces matrices présente une porosité désordonnée, inadaptée pour une immobilisation homogène. L’utilisation de matériaux hybrides, cristallins et poreux de type Metal-Organic Frameworks (MOFs) a été récemment proposée comme alternative avec des applications en biocatalyse et en biodétection.Le travail de cette thèse a consisté à associer des matériaux de type Metal-Organic Frameworks à une mini-enzyme, la microperoxidase 8 (MP8), afin d’obtenir des matériaux multifonctionnels. Dans une première partie, le MOF mésoporeux, MIL-101(Cr), a été utilisé pour encapsuler la MP8, ce qui a conduit à une amélioration de son activité catalytique dans des conditions qui ne sont pas adéquates pour l’activité enzymatique (conditions acides, forte concentration en H2O2), démontrant ainsi le rôle protecteur du MOF vis-à-vis de l’enzyme. De plus, il a été possible de recycler le biocatalyseur. Cette approche a également permis d’améliorer considérablement la sélectivité de la MP8 pour la dégradation d’un colorant organique toxique négativement chargé, le méthyl orange, grâce à son adsorption sélective par interaction électrostatique avec les particules de MIL-101(Cr). La seconde partie a été consacrée à l’utilisation de matériaux MIL-101(Cr) fonctionnalisés. Tout d’abord, l’influence de la fonctionnalisation du ligand (avec un groupement –NH2 ou –SO3H) sur l’encapsulation de la MP8 ainsi que sur son activité catalytique pour des réactions de sulfoxydation a été étudiée. Il a été montré que l’activité catalytique et la réactivité de la MP8 sont affectées par le microenvironnement spécifique des pores du MOF, notamment pour des réactions de sulfoxydation mettant en jeu des dérivés thioanisole. Ensuite, un MOF à métal mixte (MIL-101(Cr/Fe)) choisi pour ses propriétés catalytiques stables, a été synthétisé et caractérisé. Enfin, la dernière partie de cette thèse a été consacrée à la synthèse in-situ d’un MOF (le microporeux MIL-53(Al)-FA) en présence de biomolécules (BSA) dans des conditions compatibles avec la préservation de la structure protéique (en solution aqueuse à température ambiante). Les matériaux hybrides obtenus ont été caractérisés en couplant de nombreuses techniques. Cette méthode d’encapsulation a conduit à des taux d’immobilisation extrêmement élevés. Une étude préliminaire a été initiée avec l’enzyme, Horseradish Peroxidase , qui conserve son activité catalytique après immobilisation.