Thèse soutenue

Parallélisation automatique pour systèmes hétérogènes embarqués
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Rokiatou Diarra
Direction : Alain Mérigot
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et des images
Date : Soutenance le 25/11/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Systèmes et applications des technologies de l'information et de l'énergie (Gif-sur-Yvette, Essonne ; 2002-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Dominique Houzet
Examinateurs / Examinatrices : Alain Mérigot, Dominique Houzet, Bertrand Granado, Marc Shawky, Michèle Gouiffès, Bastien Vincke
Rapporteurs / Rapporteuses : Bertrand Granado, Marc Shawky

Résumé

FR  |  
EN

L'utilisation d'architectures hétérogènes, combinant des processeurs multicoeurs avec des accélérateurs tels que les GPU, FPGA et Intel Xeon Phi, a augmenté ces dernières années. Les GPUs peuvent atteindre des performances significatives pour certaines catégories d'applications. Néanmoins, pour atteindre ces performances avec des API de bas niveau comme CUDA et OpenCL, il est nécessaire de réécrire le code séquentiel, de bien connaître l’architecture des GPUs et d’appliquer des optimisations complexes, parfois non portables. D'autre part, les modèles de programmation basés sur des directives (par exemple, OpenACC, OpenMP) offrent une abstraction de haut niveau du matériel sous-jacent, simplifiant ainsi la maintenance du code et améliorant la productivité. Ils permettent aux utilisateurs d’accélérer leurs codes séquentiels sur les GPUs en insérant simplement des directives. Les compilateurs d'OpenACC/OpenMP ont la lourde tâche d'appliquer les optimisations nécessaires à partir des directives fournies par l'utilisateur et de générer des codes exploitant efficacement l'architecture sous-jacente. Bien que les compilateurs d'OpenACC/OpenMP soient matures et puissent appliquer certaines optimisations automatiquement, le code généré peut ne pas atteindre l'accélération prévue, car les compilateurs ne disposent pas d'une vue complète de l'ensemble de l'application. Ainsi, il existe généralement un écart de performance important entre les codes accélérés avec OpenACC/OpenMP et ceux optimisés manuellement avec CUDA/OpenCL. Afin d'aider les programmeurs à accélérer efficacement leurs codes séquentiels sur GPU avec les modèles basés sur des directives et à élargir l'impact d'OpenMP/OpenACC dans le monde universitaire et industrielle, cette thèse aborde plusieurs problématiques de recherche. Nous avons étudié les modèles de programmation OpenACC et OpenMP et proposé une méthodologie efficace de parallélisation d'applications avec les approches de programmation basées sur des directives. Notre expérience de portage d'applications a révélé qu'il était insuffisant d'insérer simplement des directives de déchargement OpenMP/OpenACC pour informer le compilateur qu'une région de code particulière devait être compilée pour être exécutée sur la GPU. Il est essentiel de combiner les directives de déchargement avec celles de parallélisation de boucle. Bien que les compilateurs actuels soient matures et effectuent plusieurs optimisations, l'utilisateur peut leur fournir davantage d'informations par le biais des clauses des directives de parallélisation de boucle afin d'obtenir un code mieux optimisé. Nous avons également révélé le défi consistant à choisir le bon nombre de threads devant exécuter une boucle. Le nombre de threads choisi par défaut par le compilateur peut ne pas produire les meilleures performances. L'utilisateur doit donc essayer manuellement différents nombres de threads pour améliorer les performances. Nous démontrons que les modèles de programmation OpenMP et OpenACC peuvent atteindre de meilleures performances avec un effort de programmation moindre, mais les compilateurs OpenMP/OpenACC atteignent rapidement leur limite lorsque le code de région déchargée a une forte intensité arithmétique, nécessite un nombre très élevé d'accès à la mémoire globale et contient plusieurs boucles imbriquées. Dans de tels cas, des langages de bas niveau doivent être utilisés. Nous discutons également du problème d'alias des pointeurs dans les codes GPU et proposons deux outils d'analyse statiques qui permettent d'insérer automatiquement les qualificateurs de type et le remplacement par scalaire dans le code source.