L'apprentissage profond dans les systèmes évènementiels, bio-inspirés
Auteur / Autrice : | Johannes C. Thiele |
Direction : | Antoine Dupret |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences de l'information et de la communication |
Date : | Soutenance le 22/11/2019 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Paris-Sud (1970-2019) |
Laboratoire : Laboratoire d'intégration des systèmes et des technologies (Gif-sur-Yvette, Essonne ; 2001-....) | |
Jury : | Président / Présidente : Antoine Manzanera |
Examinateurs / Examinatrices : Antoine Dupret, Antoine Manzanera, Simon Thorpe, Shih-Chii Liu, Emre Neftci | |
Rapporteur / Rapporteuse : Simon Thorpe, Shih-Chii Liu |
Mots clés
Mots clés contrôlés
Résumé
Inférence et apprentissage dans les réseaux de neurones profonds nécessitent une grande quantité de calculs qui, dans beaucoup de cas, limite leur intégration dans les environnements limités en ressources. Les réseaux de neurones évènementiels de type « spike » présentent une alternative aux réseaux de neurones artificiels classiques, et promettent une meilleure efficacité énergétique. Cependant, entraîner les réseaux spike demeure un défi important, particulièrement dans le cas où l’apprentissage doit être exécuté sur du matériel de calcul bio-inspiré, dit matériel neuromorphique. Cette thèse constitue une étude sur les algorithmes d’apprentissage et le codage de l’information dans les réseaux de neurones spike.A partir d’une règle d’apprentissage bio-inspirée, nous analysons quelles propriétés sont nécessaires dans les réseaux spike pour rendre possible un apprentissage embarqué dans un scénario d’apprentissage continu. Nous montrons qu’une règle basée sur le temps de déclenchement des neurones (type « spike-timing dependent plasticity ») est capable d’extraire des caractéristiques pertinentes pour permettre une classification d’objets simples comme ceux des bases de données MNIST et N-MNIST.Pour dépasser certaines limites de cette approche, nous élaborons un nouvel outil pour l’apprentissage dans les réseaux spike, SpikeGrad, qui représente une implémentation entièrement évènementielle de la rétro-propagation du gradient. Nous montrons comment cette approche peut être utilisée pour l’entrainement d’un réseau spike qui est capable d’inférer des relations entre valeurs numériques et des images MNIST. Nous démontrons que cet outil est capable d’entrainer un réseau convolutif profond, qui donne des taux de reconnaissance d’image compétitifs avec l’état de l’art sur les bases de données MNIST et CIFAR10. De plus, SpikeGrad permet de formaliser la réponse d’un réseau spike comme celle d’un réseau de neurones artificiels classique, permettant un entraînement plus rapide.Nos travaux introduisent ainsi plusieurs mécanismes d’apprentissage puissants pour les réseaux évènementiels, contribuant à rendre l’apprentissage des réseaux spike plus adaptés à des problèmes réels.