Stratégies d'optimisation pour la séparation aveugle de sources parcimonieuses grande échelle
Auteur / Autrice : | Christophe Kervazo |
Direction : | Jérôme Bobin |
Type : | Thèse de doctorat |
Discipline(s) : | Traitement du signal et des images |
Date : | Soutenance le 04/10/2019 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Astrophysique Instrumentation Modélisation (Gif-sur-Yvette, Essonne ; 2005-....) |
établissement opérateur d'inscription : Université Paris-Sud (1970-2019) | |
Jury : | Président / Présidente : Christian Jutten |
Examinateurs / Examinatrices : Jérôme Bobin, Christian Jutten, Nicolas Gillis, Nicolas Dobigeon, Emilie Chouzenoux, Pascal Larzabal | |
Rapporteur / Rapporteuse : Nicolas Gillis, Nicolas Dobigeon |
Mots clés
Mots clés contrôlés
Résumé
Lors des dernières décennies, la Séparation Aveugle de Sources (BSS) est devenue un outil de premier plan pour le traitement de données multi-valuées. L’objectif de ce doctorat est cependant d’étudier les cas grande échelle, pour lesquels la plupart des algorithmes classiques obtiennent des performances dégradées. Ce document s’articule en quatre parties, traitant chacune un aspect du problème: i) l’introduction d’algorithmes robustes de BSS parcimonieuse ne nécessitant qu’un seul lancement (malgré un choix d’hyper-paramètres délicat) et fortement étayés mathématiquement; ii) la proposition d’une méthode permettant de maintenir une haute qualité de séparation malgré un nombre de sources important: iii) la modification d’un algorithme classique de BSS parcimonieuse pour l’application sur des données de grandes tailles; et iv) une extension au problème de BSS parcimonieuse non-linéaire. Les méthodes proposées ont été amplement testées, tant sur données simulées que réalistes, pour démontrer leur qualité. Des interprétations détaillées des résultats sont proposées.