Thèse soutenue

Extension de la procédure radiolytique à la préparation de polymères conducteurs dans des solvants organiques : synthèse, caractérisation et applications

FR  |  
EN
Auteur / Autrice : Teseer Bahry
Direction : Samy Remita
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 18/10/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de chimie physique (Orsay, Essonne ; 2000-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Fabien Miomandre
Examinateurs / Examinatrices : Samy Remita, Fabien Miomandre, Jean-Marc Jung, Yvette Ngono-Ravache, Rachel Méallet-Renault, Muriel Ferry, Najla Fourati-Ennouri, Thanh-Tuan Bui
Rapporteurs / Rapporteuses : Jean-Marc Jung, Yvette Ngono-Ravache

Résumé

FR  |  
EN

Dans le présent travail, nous avons étendu aux solvants organiques notre méthodologie radiolytique de synthèse de polymères conducteurs (PCs), initialement développée en solutions aqueuses. Dans ce contexte, la polymérisation des PCs a été étudiée par radiolyse gamma dans différents solvants organiques et sous différentes conditions expérimentales. La synthèse radio-induite a, en particulier, été optimisée dans le dichlorométhane grâce à la variation et à l’ajustement de différents paramètres : atmosphère, dose, débit de dose, concentration des monomères, etc. Cette synthèse a ainsi pu mener à la préparation de différents types de polymères conducteurs : poly (3,4-éthylènedioxythiophène), poly (3-thiophène acétique acide) and Poly (3-hexylthiophène). Ces derniers ont été totalement caractérises en solutions ou après dépôt par des techniques analytiques, spectroscopiques et microscopiques complémentaires. Nous avons en particulier démontré la simplicité et la versatilité de la polymérisation radio-induite de TAA que ce soit dans le dichlorométhane ou dans l’eau, et avons mis en évidence quelques différentes notable entre ces deux voies de synthèse. Nous avons, par ailleurs, évalué l’influence de la nature des espèces radiolytiques oxydantes générées dans le dichlorométhane, via la variation de l’atmosphère de travail (N₂, air ou O₂), sur les propriétés des polymères conducteurs radio-synthétises, en particulier dans le cas de P3HT. Parmi les nombreuses propriétés physiques chimiques que nous avons sondées dans le cas de tous nos polymères conducteurs radio- synthétises les propriétés électroniques et électrochimiques ont fait l’objet d’une attention particulière. Nos matériaux ont alors été incorporés au sien de cellules solaires à pérovskite hybrides organiques-inorganique (PSCs) et y ont été utilisés comme matériaux de transport de trous (HTMs). Notre nouvelle stratégie radiolytique de synthèse décrite et étendu dans le présent manuscrit, ouvre sans aucun doute la voie à la préparation de nouveaux PCs nanostructurés, de morphologie contrôlée et aux propriétés augmentées : par exemple grâce à l’utilisation d’une polymérisation en microémulsions ou par le développement d’une copolymérisation raisonnée.