Cellules solaires à jonction radiale à base de nanofils de silicium avec absorbeur en μc-Si˸H pour dispositifs tandem
Auteur / Autrice : | Letian Dai |
Direction : | Jean-Paul Kleider |
Type : | Thèse de doctorat |
Discipline(s) : | Electronique et Optoélectronique, Nano- et Microtechnologies |
Date : | Soutenance le 27/09/2019 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Génie électrique et électronique de Paris (Gif-sur-Yvette, Essonne ; 1998-....) - Laboratoire de physique des interfaces et des couches minces (Palaiseau, Essonne) - Laboratoire de Physique de la Matière Condensée (Palaiseau, Essonne) |
établissement opérateur d'inscription : Université Paris-Sud (1970-2019) | |
Jury : | Président / Présidente : Sophie Bouchoule |
Examinateurs / Examinatrices : Jean-Paul Kleider, Sophie Bouchoule, Antonin Fejfar, Georges Brémond, Mathieu Boccard, Isabelle Maurin | |
Rapporteur / Rapporteuse : Antonin Fejfar, Georges Brémond |
Mots clés
Résumé
Dans cette thèse, nous avons fabriqué des cellules solaires à jonction radiale en nanofils de silicium avec du silicium microcristallin hydrogéné (µc-Si:H) comme absorbeur, par dépôt chimique en phase vapeur assisté par plasma à basse température (PECVD). Pour contrôler la densité de nanofils sur les substrats, nous avons utilisé des nanoparticules (NP) de dioxyde d'étain (SnO₂) d'un diamètre moyen de 55 nm, disponibles dans le commerce, comme précurseur du catalyseur Sn pour la croissance des nanofils de silicium. La distribution des nanoparticules de SnO₂ sur le substrat a été contrôlée par centrifugation et dilution du colloïde de SnO₂, en combinaison avec la fonctionnalisation du substrat. Par la suite, le SnO₂ est réduit en Sn métallique après le traitement par plasma de H₂, suivi de la croissance, par la technique vapeur-liquide-solide (VLS) assistée par plasma, de nanofils de Si sur lesquels sont déposées les couches P, I et N constituant les cellules solaires à jonction radiale. Nous avons atteint un taux de croissance élevé des nanofils de Si, jusqu'à 70%, avec une très large gamme de densité, de 10⁶ à 10⁹ /cm². Comme approche supplémentaire de contrôle de la densité des nanofils, nous avons utilisé du Sn évaporé comme précurseur du catalyseur Sn. Nous avons étudié l'effet de l'épaisseur de Sn évaporé, l'effet de la durée du traitement au plasma de H₂ et l'effet du débit de gaz H₂ dans le dans le mélange de précurseurs, sur la densité des nanofils. L'ellipsométrie spectroscopique in-situ (SE) a été utilisée pour contrôler la croissance des nanofils et le dépôt des couches de µc-Si:H sur les SiNWs. En combinant les résultats de in-situ SE et de microscopie électronique à balayage, une relation entre l'intensité du signal de SE pendant la croissance et la longueur et la densité des nanofils a été démontrée, ce qui permet d'estimer ces paramètres en cours de croissance. Nous avons réalisé une étude systématique des matériaux (couches intrinsèques et dopées de type n ou p de µc-Si:H, couches dopées d'oxyde de silicium microcristallin hydrogéné, µcSiOx:H) et des cellules solaires obtenues dans deux réacteurs à plasma appelés ''PLASFIL'' et ''ARCAM''. Les épaisseurs de revêtement sur substrat lisse et sur les nanofils ont été déterminées et nous avons obtenu une relation linéaire entre les deux, ce qui permet de concevoir un revêtement conforme sur les nanofils pour chaque couche avec une épaisseur optimale. Les paramètres des nanofils et des matériaux, affectant la performance des cellules solaires à jonction radiale, ont été systématiquement étudiés, les principaux étant la longueur et la densité des nanofils, l'épaisseur de la couche intrinsèque de µc-Si:H, l'utilisation de µc-SiOx:H et le réflecteur arrière en Ag. Enfin, avec les cellules solaires à jonction radiale en nanofils de silicium optimisées utilisant le µc-Si:H comme absorbeur, nous avons atteint un rendement de conversion de l'énergie de 4,13 % avec Voc = 0,41 V, Jsc = 14,4 mA/cm² et FF = 69,7%. Cette performance est supérieure de plus de 40 % à l'efficacité record de 2,9 % publiée précédemment.