Thèse soutenue

Systèmes quantiques à plusieurs corps dissipatifs et pilotés

FR  |  
EN
Auteur / Autrice : Orazio Scarlatella
Direction : Marco Schiro
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 21/10/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Institut de physique théorique (Gif-sur-Yvette, Essonne ; 1982-....) - Collège de France (1530-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Karyn Le Hur
Examinateurs / Examinatrices : Marco Schiro, Karyn Le Hur, Jonathan Keeling, Martin Eckstein, Serge Florens, Alessandro Silva, Cristiano Ciuti
Rapporteurs / Rapporteuses : Jonathan Keeling, Martin Eckstein

Résumé

FR  |  
EN

Ma thèse de doctorat était consacrée à l'étude des systèmes quantiques à plusieurs corps dissipatifs et pilotés. Ces systèmes représentent des plateformes naturelles pour explorer des questions fondamentales sur la matière dans des conditions de non-équilibre, tout en ayant un impact potentiel sur les technologies quantiques émergentes. Dans cette thèse, nous discutons d'une décomposition spectrale de fonctions de Green de systèmes ouverts markoviens, que nous appliquons à un modèle d'oscillateur quantique de van der Pol. Nous soulignons qu’une propriété de signe des fonctions spectrales des systèmes d’équilibre ne s’imposait pas dans le cas de systèmes ouverts, ce qui produisait une surprenante "densité d’états négative", avec des conséquences physiques directes. Nous étudions ensuite la transition de phase entre une phase normale et une phase superfluide dans un système prototype de bosons dissipatifs forcés sur un réseau. Cette transition est caractérisée par une criticité à fréquence finie correspondant à la rupture spontanée de l'invariance par translation dans le temps, qui n’a pas d’analogue dans des systèmes à l’équilibre. Nous discutons le diagramme de phase en champ moyen d'une phase isolante de Mott stabilisée par dissipation, potentiellement pertinente pour des expériences en cours. Nos résultats suggèrent qu'il existe un compromis entre la fidélité de la phase stationnaire à un isolant de Mott et la robustesse d'une telle phase à taux de saut fini. Enfin, nous présentons des développements concernant la théorie du champ moyen dynamique (DMFT) pour l’étude des systèmes à plusieurs corps dissipatifs et forcés. Nous introduisons DMFT dans le contexte des modèles dissipatifs et forcés et nous développons une méthode pour résoudre le problème auxiliaire d'une impureté couplée simultanément à un environnement markovien et à un environnement non-markovien. À titre de test, nous appliquons cette nouvelle méthode à un modèle simple d’impureté fermionique.