Thèse soutenue

Etude optique du couplage vibroélectronique à l'interface entre boîtes quantiques semiconductrices et molécules organiques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Thomas Noblet
Direction : Christophe Humbert
Type : Thèse de doctorat
Discipline(s) : Physique et chimie de la matière et des matériaux
Date : Soutenance le 18/09/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de chimie physique (Orsay, Essonne ; 2000-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Souhir Boujday
Examinateurs / Examinatrices : Christophe Humbert, Souhir Boujday, Pierre-François Brevet, Bernard Humbert, Laurent Dreesen, Bernard Bourguignon
Rapporteurs / Rapporteuses : Pierre-François Brevet, Bernard Humbert

Résumé

FR  |  
EN

Les processus physico-chimiques se produisant au sein des nanoparticules que sont les boîtes quantiques semiconductrices (QDs) sont à l'origine d'une nouvelle classe de sondes fluorescentes trouvant des applications en catalyse, en reconnaissance moléculaire et en imagerie. Le confinement quantique des électrons aux sein de ces objets luminescents, qui donne lieu à leur structure excitonique si particulière, permet de tirer simultanément profit de leurs propriétés optiques d'absorption et d'émission dans la gamme spectrale visible, et ce, dans le but de faciliter la détection et l’identification des espèces chimiques situées dans leur environnement proche. Dans ce contexte, nous nous sommes intéressés à des QDs de 3 à 4 nm de diamètre, composées d’un alliage ternaire de cadmium, de tellure et de soufre, et fonctionnalisées par des ligands mercaptocarboxyliques. De manière à déterminer l’ensemble de leurs propriétés structurales, chimiques et optoélectroniques, nous les avons tout d’abord caractérisées à l’état de solutions colloïdales par diverses techniques expérimentales : microscopie électronique, zêta-métrie, analyse par diffusion dynamique de la lumière, spectroscopies de rayons X, d’absorption UV-visible et d’émission de fluorescence. Ceci nous a permis de déduire la composition chimique des nanocristaux, leur structure cristalline, leur taille, leur dispersion en taille, la composition chimique de leurs ligands, les énergies propres de leurs états électroniques, leur moments dipolaires de transition et leur section efficace d’absorption. Fort de ces connaissances, nous avons pu développer un modèle analytique pour calculer la susceptibilité diélectrique des QDs et extraire de cette manière leur fonction de réponse linéaire, véritable carte d’identité optoélectronique. Nous avons ensuite optimisé la conception par voie chimique d’interfaces composées de QDs et de différentes espèces moléculaires organiques, dépôts réalisés sous forme de monocouches ou de films épais sur des substrats solides plans de silicium, de verre et de fluorure de calcium fonctionnalisés par des organosilanes. Ces interfaces substrat/QDs/molécules ont alors été étudiées par spectroscopie linéaire d’absorption UV-visible et par spectroscopie optique non-linéaire de génération de fréquence-somme (SFG). La première nous a permis de déterminer la densité superficielle des QDs déposés et d’en caractériser la stabilité temporelle, et la seconde, qui combine deux lasers visible et infrarouge, d’identifier la signature vibrationnelle des ligands recouvrant les QDs. Grâce à ces échantillons, nous avons alors montré par spectroscopie SFG deux couleurs l’existence d’un couplage vibroélectronique entre les QDs et leur environnement moléculaire. En particulier, nous avons démontré que l’amplitude de vibration des modes moléculaires associés aux ligands des QDs et aux organosilanes greffés sur les substrats est maximale lorsque les QDs sont eux-mêmes stimulés par la lumière visible dans leur premier état excitonique. Cette démonstration expérimentale s’accompagne par ailleurs d’une démonstration théorique : en utilisant les diagrammes de Feynman dans l’espace des fréquences imaginaires de Matsubara, nous avons déterminé l’expression analytique de la susceptibilité non-linéaire d’ordre 2 du complexe QD/molécule. Nous avons alors vérifié que l’hypothèse d’un couplage dipolaire entre QDs et molécules menait à une modélisation de la réponse vibrationnelle SFG compatible avec les mesures expérimentales. De cette manière, l’existence d’un couplage vibroélectronique de nature dipolaire entre boîtes quantiques et molécules est attesté.