Thèse soutenue

Développement de détecteurs pour l'expérience UA9 au CERN SPS
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Andrii Natochii
Direction : Achille StocchiOleg Bezshyyko
Type : Thèse de doctorat
Discipline(s) : Instrumentation spatiale
Date : Soutenance le 13/09/2019
Etablissement(s) : Université Paris-Saclay (ComUE) en cotutelle avec Kiïvsʹkij nacìonalʹnij unìversitet imeni Tarasa Ševčenka (Ukraine)
Ecole(s) doctorale(s) : École doctorale Particules, hadrons, énergie et noyau : instrumentation, imagerie, cosmos et simulation (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'accélérateur linéaire (Orsay, Essonne ; 1969-2019) - Centre européen pour la recherche nucléaire - Department of Nuclear Physics (Kyiv)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Fabien Cavalier
Examinateurs / Examinatrices : Achille Stocchi, Oleg Bezshyyko, Fabien Cavalier, Mykola Shulha, Giovanni Calderini, Walter Scandale
Rapporteurs / Rapporteuses : Mykola Shulha, Giovanni Calderini

Résumé

FR  |  
EN

Les travaux de recherche documentés dans cette thèse s'inscrivent dans le cadre de la Collaboration UA9 au CERN. L'objectif principal de la collaboration est l'étude de la collimation et de l'extraction de faisceaux de particules de haute énergie. La thèse est principalement consacrée au développement des détecteurs et aux installations expérimentales correspondantes qui ont été mises en œuvre au SPS et au LHC au CERN. En ce qui concerne la nature de l'interaction des particules chargées avec une structure monocristalline, un cristal courbé peut être utilisé pour orienter le faisceau de particules de haute énergie au moyen de la canalisation de particules entre les plans atomiques du cristal. Un tel phénomène est étudié de manière approfondie par la Collaboration UA9. Un des principaux objectifs de la recherche présentée dans cette thèse est de développer des dispositifs sensibles pour mesurer le flux et les caractéristiques de faisceau des particules déviées par le cristal au SPS et au LHC. Pour cette thèse nous avons étudié les détecteurs Cherenkov (CpFM) et les détecteurs à pixel (Timepix). Depuis 2015, le CpFM (détecteur de Cherenkov pour la mesure du flux de protons) a été souvent modifié afin d'améliorer la précision pour le comptage des particules. La plage de fonctionnement du dispositif varie de 1 à 1000 particules par faisceau de particules (~3 ns) avec une résolution inférieure à 20% par proton. Fonctionnant dans le vide primaire de l’accélérateur et à des doses de rayonnement élevées, le détecteur a montré une grande stabilité et ayant la possibilité d’effectuer des études de contamination par faisceau. À son tour, le détecteur Timepix a été étalonné sur la ligne de faisceaux d'extraction de l'accélérateur SPS, fonctionnant dans le vide secondaire (Roman Pot). Une partie importante de la thèse est consacrée à la caractérisation et à l'étalonnage de ces détecteurs avec les développements des logiciels pour l'acquisition et l'analyse de données. Dans cette thèse, nous proposons également la mesure du moment dipolaire magnétique (MDM) de baryons à courte durée de vie. Le MDM est une caractéristique importante de l'interaction des particules avec un champ magnétique externe. Pour cette thèse, nous nous concentrons sur la mesure le MDM du baryon LambdaC+, qui pourrait fournir des informations sur le facteur gyromagnétique (g) du quark charme. Une valeur différente de g=2 indiquera une structure composite possible du c-quark et clairement la présence de physique au-delà du Modèle Standard (SM). Jusqu'ici, aucune mesure expérimentale du moment dipolaire magnétique des baryons avec des quarks lourds n'a été effectuée en raison d'une courte durée de désintégration de ces particules (environ 60 um). La proposition faite dans cette thèse est de produire des baryons charmés par interaction forte entre les protons extraits (à l’aide d’un premier cristal courbé) et une cible. Après la cible, un deuxième cristal courbé à grand angle (de plusieurs mrad) est utilisé pour canaliser les baryons et induire une rotation du vecteur de polarisation des baryons charmés. Cette configuration s'appelle une configuration à double cristal et l'expérience est proposée au LHC. Dans cette thèse, je me suis concentré principalement sur tous les tests et la validation nécessaires au SPS avant la mise en œuvre au LHC. Une configuration expérimentale possible pour les mesures MDM au niveau du SPS est également proposée avec une estimation de l'erreur absolue de la valeur mesurée du facteur g pour le baryon LambdaC+.