Thèse soutenue

Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique

FR  |  
EN
Auteur / Autrice : Jessica Goya Outi
Direction : Frédérique Frouin
Type : Thèse de doctorat
Discipline(s) : Imagerie et physique médicale
Date : Soutenance le 25/09/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Imagerie moléculaire in vivo (Orsay, Essonne ; 2015-2019)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Nicolas Passat
Examinateurs / Examinatrices : Frédérique Frouin, Nicolas Passat, Carole Lartizien, Sébastien Benzekry, Nathalie Bellaiche-Boddaert, Jacques Grill
Rapporteur / Rapporteuse : Carole Lartizien, Sébastien Benzekry

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La radiomique suppose que des informations pertinentes non repérables visuellement peuvent être trouvées en calculant une grande quantité d’indices quantitatifs à partir des images médicales. En cancérologie, ces informations pourraient caractériser le phénotype de la tumeur et définir le pronostic du patient. Le GITC est une tumeur pédiatrique rare diagnostiquée d'après des signes cliniques et son apparence en IRM. Cette thèse présente les premières études radiomiques pour des patients atteints de GITC. Comme les intensités en IRM clinique sont exprimées en unités arbitraires, la première étape de l’étude a été la standardisation des images. Une méthode de normalisation basée sur l'estimation de l'intensité dans la matière blanche d'apparence normale s’est avérée efficace sur plus de 1500 volumes d'images. Des études méthodologiques sur le calcul des indices de texture ont abouti aux recommandations suivantes : (a) discrétiser les niveaux de gris avec une largeur constante pour tous les patients, (b) utiliser un volume d'intérêt constant ou faire attention au biais introduit par des volumes de taille et forme différentes. En s’appuyant sur ces recommandations, les indices radiomiques issus de 4 modalités d'IRM ont été systématiquement analysés en vue de prédire les principales mutations génétiques associées aux GITC et la survie globale des patients au moment du diagnostic. Un pipeline de sélection d’indices a été proposé et différentes méthodes d’apprentissage automatique avec validation croisée ont été mises en oeuvre pour les deux tâches de prédiction. La combinaison des indices cliniques avec les indices d’imagerie est plus efficace que les indices cliniques ou d’imagerie seuls pour la prédiction des deux principales mutations de l’histone H3 (H3.1 versus H3.3) associées au GITC. Comme certaines modalités d'imagerie étaient manquantes, une méthodologie adaptée à l’analyse des bases de données d’imagerie multi-modales avec données manquantes a été proposée pour pallier les limites de recueil des données d'imagerie. Cette approche permet d'intégrer de nouveaux patients. Les résultats du test externe de prédiction des deux principales mutations de l’histone H3 sont encourageants. Concernant la survie, certains indices radiomiques semblent informatifs. Toutefois, le faible nombre de patients n'a pas permis d'établir les performances des prédicteurs proposés. Enfin, ces premières études radiomiques suggèrent la pertinence des indices radiomiques pour la prise en charge des patients atteints de GITC en absence de biopsie mais l’augmentation de la base de données est nécessaire pour confirmer ces résultats. La méthodologie proposée dans cette thèse peut être appliquée à d'autres études cliniques.