Thèse soutenue

Optimisation stochastique avec contraintes en probabilités et applications

FR  |  
EN
Auteur / Autrice : Shen Peng
Direction : Abdel-Ilah LisserZhiping Chen
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 17/06/2019
Etablissement(s) : Université Paris-Saclay (ComUE) en cotutelle avec Xi'an Jiaotong University
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Alexandre Caminada
Examinateurs / Examinatrices : Abdel-Ilah Lisser, Zhiping Chen, Alexandre Caminada, Mounir Haddou, Yacine Chitour, Vikas Vikram Singh, Francesca Maggioni, Janny M. Y. Leung
Rapporteur / Rapporteuse : Alexandre Caminada, Mounir Haddou

Résumé

FR  |  
EN

L'incertitude est une propriété naturelle des systèmes complexes. Les paramètres de certains modèles peuvent être imprécis; la présence de perturbations aléatoires est une source majeure d'incertitude pouvant avoir un impact important sur les performances du système. Dans cette thèse, nous étudierons les problèmes d’optimisation avec contraintes en probabilités dans les cas suivants : Tout d’abord, nous passons en revue les principaux résultats relatifs aux contraintes en probabilités selon trois perspectives: les problèmes liés à la convexité, les reformulations et les approximations de ces contraintes, et le cas de l’optimisation distributionnellement robuste. Pour les problèmes d’optimisation géométriques, nous étudions les programmes avec contraintes en probabilités jointes. A l’aide d’hypothèses d’indépendance des variables aléatoires elliptiquement distribuées, nous déduisons une reformulation des programmes avec contraintes géométriques rectangulaires jointes. Comme la reformulation n’est pas convexe, nous proposons de nouvelles approximations convexes basées sur la transformation des variables ainsi que des méthodes d’approximation linéaire par morceaux. Nos résultats numériques montrent que nos approximations sont asymptotiquement serrées. Lorsque les distributions de probabilité ne sont pas connues à l’avance, le calcul des bornes peut être très utile. Par conséquent, nous développons quatre bornes supérieures pour les contraintes probabilistes individuelles, et jointes dont les vecteur-lignes de la matrice des contraintes sont indépendantes. Sur la base des inégalités de Chebyshev, Chernoff, Bernstein et de Hoeffding, nous proposons des approximations déterministes. Des conditions suffisantes de convexité. Pour réduire la complexité des calculs, nous reformulons les approximations sous forme de problèmes d'optimisation convexes solvables basés sur des approximations linéaires et tangentielles par morceaux. Enfin, des expériences numériques sont menées afin de montrer la qualité des approximations étudiées sur des données aléatoires. Dans certains systèmes complexes, la distribution des paramètres aléatoires n’est que partiellement connue. Pour traiter les incertitudes dans ces cas, nous proposons un ensemble d'incertitude basé sur des données obtenues à partir de distributions mixtes. L'ensemble d'incertitude est construit dans la perspective d'estimer simultanément des moments d'ordre supérieur. Ensuite, nous proposons une reformulation du problème robuste avec contraintes en probabilités en utilisant des données issues d’échantillonnage. Comme la reformulation n’est pas convexe, nous proposons des approximations convexes serrées basées sur la méthode d’approximation linéaire par morceaux sous certaines conditions. Pour le cas général, nous proposons une approximation DC pour dériver une borne supérieure et une approximation convexe relaxée pour dériver une borne inférieure pour la valeur de la solution optimale du problème initial. Enfin, des expériences numériques sont effectuées pour montrer que les approximations proposées sont efficaces. Nous considérons enfin un jeu stochastique à n joueurs non-coopératif. Lorsque l'ensemble de stratégies de chaque joueur contient un ensemble de contraintes linéaires stochastiques, nous modélisons ces contraintes sous la forme de contraintes en probabilité jointes. Pour chaque joueur, nous formulons les contraintes en probabilité dont les variables aléatoires sont soit normalement distribuées, soit elliptiquement distribuées, soit encore définies dans le cadre de l’optimisation distributionnellement robuste. Sous certaines conditions, nous montrons l’existence d’un équilibre de Nash pour ces jeux stochastiques.