Thèse soutenue

Contributions à la sélection génomique et à la génétique d'association en populations structurées et admixées : application au maïs

FR  |  
EN
Auteur / Autrice : Simon Rio
Direction : Alain Charcosset
Type : Thèse de doctorat
Discipline(s) : Sciences agronomiques
Date : Soutenance le 26/04/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Agriculture, alimentation, biologie, environnement, santé (Paris ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Génétique quantitative et évolution-Le Moulon (Gif-sur-Yvette, Essonne ; 2002-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Christine Dillmann
Examinateurs / Examinatrices : Alain Charcosset, Christine Dillmann, Jianming Yu, Tristan Mary-Huard, Laurence Moreau, Christina Lehermeier, Vincent Ségura
Rapporteurs / Rapporteuses : Zulma Vitezica, Jianming Yu

Résumé

FR  |  
EN

L'essor des marqueurs moléculaires (SNPs) a révolutionné les méthodes de génétique quantitative en permettant l'identification de régions impliquées dans le déterminisme génétique des caractères (QTLs) via la génétique d'association (GWAS), ou encore la prédiction des performances d'individus sur la base de leur information génomique (GS). La stratification des populations en groupes génétiques est courante en sélection animale et végétale. Cette structure peut impacter les méthodes de GWAS et de GS via des différences de fréquence et d'effets des allèles des QTL, ainsi que par des différences de déséquilibre de liaison (LD) entre SNP et QTL selon les groupes.Pendant cette thèse, deux panels de diversité de maïs ont été utilisés, présentant des niveaux différents de structuration: le panel “Amaizing Dent” représentant les lignées dentées utilisées en Europe et le panel “Flint-Dent” incluant des lignées dentées, cornées européennes, ainsi que des lignées admixées entre ces deux groupes.En GS, l'impact de la structure génétique sur la qualité des prédictions a été évalué au sein du premier panel pour des caractères de productivité et de phénologie. Cette étude a mis en évidence l'intérêt d'une population d'entraînement (TS) dont la constitution en matière de groupes génétiques est similaire à celle de la population à prédire. Assembler les différents groupes au sein d'un TS multi-groupe apparaît comme une solution efficace pour prédire un large spectre de diversité génétique. Des indicateurs a priori de la précision des prédictions génomiques, basés sur le coefficient de détermination, ont également été évalués, mettant en évidence une efficacité variable selon le groupe et le caractère étudié.Une nouvelle méthodologie GWAS a ensuite été développée pour étudier l'hétérogénéité des effets capturés par les SNPs selon les groupes. L'intégration des individus admixés à l'analyse permet de séparer les effets des facteurs responsables de l'hétérogénéité des effets alléliques: différence génomique locale (liée au LD ou à une mutation spécifique d'un groupe) ou interactions épistatiques entre le QTL et le fonds génétique. Cette méthodologie a été appliquée au panel “Flint-Dent” pour la précocité de floraison. Des QTL ont été détéctés comme présentant des effets groupe-spécifiques interagissant ou non avec le fonds génétique. De nombreux QTL présentant un profil original ont pu être mis en évidence, incluant des locus connus tels que Vgt1, Vgt2 ou Vgt3. Une importante épistasie directionnelle a aussi été mise en évidence grâce aux individus admixés, confortant l'existence d'interactions épistatiques avec le fonds génétique pour ce caractère.Sachant l'existence de cette hétérogénéité d’effets alléliques, nous avons développé deux modèles de prédictions génomiques nommées Multi-group Admixed GBLUP (MAGBLUP). Ceux-ci modélisent des effets groupe-spécifiques aux QTLs et sont adaptés à la prédiction d'individus admixés. Le premier permet d'identifier la variance génétique additionnelle créée par l'admixture (variance de ségrégation), alors que le second permet d'évaluer le degré de conservation des effets alléliques entre groupes. Ces deux modèles ont montré un intérêt certain par rapport à des modèles standards pour prédire des caractères simulés, mais plus limité sur des caractères réels.Enfin, l'intérêt des individus admixés dans la constitution de TS multi-groupes a été évalué à l'aide du second panel. Si leur intérêt a clairement été mis en évidence pour des caractères simulés, des résultats plus variables ont été observés avec les caractères réels, pouvant s'expliquer par la présence d'interactions avec le fonds génétique.Les nouvelles méthodes et l'utilisation d'individus admixés ouvrent des pistes de recherches intéressantes pour les études de génétique quantitative en population structurée.