Thèse soutenue

Régulation de l'épissage et de la polyadénylation alternatifs par les agents anti-cancéreux génotoxiques

FR  |  
EN
Auteur / Autrice : Iris Tanaka
Direction : Martin Dutertre
Type : Thèse de doctorat
Discipline(s) : Aspects moléculaires et cellulaires de la biologie
Date : Soutenance le 01/02/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Cancérologie : biologie-médecine-santé (Villejuif, Val-de-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Intégrité du génome, ARN et cancer (2010-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Robin Farhaeus
Examinateurs / Examinatrices : Martin Dutertre, Robin Farhaeus, Claudio Sette, Christiane Branlant, Ken André Olaussen
Rapporteurs / Rapporteuses : Claudio Sette, Christiane Branlant

Résumé

FR  |  
EN

La plupart des gènes humains codants génèrent des transcrits alternatifs (isoformes) par épissage alternatif (alternative splicing, AS) et polyadénylation alternative (APA) en général dans la région codante et la région 3’ non traduite (3’UTR), respectivement. Le rôle de l’AS et la 3’UTR-APA est de plus en plus reconnu dans l’oncogenèse. En particulier, des réseaux d’AS connectant des facteurs d’épissage et des variants d’épissage ont récemment été identifiés. L’AS est aussi largement régulé par les agents anticancéreux génotoxiques, tel que la doxorubicine et le cisplatine (induisant des différents types de lésions sur l’ADN), qui sont régulièrementt utilisés dans les traitements du cancer du sein et du poumon non-à-petites-cellules (non-small-cell lung cancer, NSCLC), respectivement. Étant donné l’apparition fréquente de résistances aux chimiothérapies, comprendre les mécanismes sous-jacents est crucial pour surmonter ce problème clinique. Il existe des exemples d’évènements d’AS associés à la résistance aux agents anticancéreux, mais l’implication des facteurs d’épissage et des réseaux d’AS est très peu connue. De plus, une étude précédente a démontré que la doxorubicine réprime un grand groupe d’exon terminaux alternatifs (alternative last exons, ALE), qui correspondent à l’utilisation de sites de polyadénylation introniques (intronic polyadenylation, IPA). Les ALEs ont un rôle émergent dans le cancer, mais on ne sait encore que très peu sur leur régulation par d’autres agents anticancéreux, tel que le cisplatine. Afin de mieux comprendre le rôle des régulations d’AS et d’APA dans la réponse et la résistance cellulaire à la chimiothérapie, mon projet de thèse avait deux objectifs principaux : 1) déterminer l’étendue, les réseaux régulateurs, et les fonctions des régulations d’AS dans la résistance à la doxorubicine des cellules de cancer du sein, et 2) déterminer l’étendue, les mécanismes, et l’impact des régulations d’ALE en réponse au cisplatine dans des cellules de NSCLC. Dans la première partie, j’ai identifié par RNA-seq des milliers d’évènements d’AS et des dizaines de facteurs d’épissage régulés dans un modèle cellulaire de cancer du sein ER+ résistant à la doxorubicine. Par un miniscreen siARN, j’ai identifié deux facteurs, ZRANB2 et SYF2, impliqués dans la résistance à la doxorubicine. D’autres analyses RNA-seq ont révélé les évènements d’AS régulés par ces deux facteurs peu étudiés, ainsi que leur convergence vers l’exon 5 alternatif de l’oncogène ECT2. La déplétion de ZRANB2, SYF2, et du variant ECT2-ex5 réduit l’arrêt en phase S induit par la doxorubicine et la résistance des cellules. De plus, un niveau élevé d’inclusion de l’exon 5 d’ECT2 corrèle avec une mauvaise survie spécifiquement de patientes ER+ traitées par chimiothérapie. Dans la deuxième partie, j’ai identifié par 3’-seq que le traitement cisplatine (mais pas oxaliplatine) induit des ALEs/IPAs dans des milliers de gènes enrichis en gènes de cycle et de mort cellulaire. Cet effet est lié à une inhibition de la processivité de l’élongation dans les longs gènes. Une analyse 3’-seq sur polysomes m’a permis de montrer que ces régulations d’ALEs impactent le traductome, et a révélé un groupe d’isoformes particulièrement courtes peu efficacement traduites, dont un transcrit connu avec une fonction non-codante. En conclusion, j’ai pu identifier durant ma thèse un nouveau réseau d’AS impliqué dans la résistance à la doxorubicine des cancers du sein ER+, et une importante régulation d’ALEs impactant le traductome en réponse au cisplatine dans des cellules NSCLC. Ces travaux améliorent notre compréhension du rôle de l’AS et des ALE/IPA dans la réponse et la résistance cellulaire à la chimiothérapie anticancéreuse. Au plus long terme, les transcrits alternatifs et les régulateurs identifiés constituent des biomarqueurs candidats de chimiorésistance.