Thèse soutenue

Développement d’une nouvelle configuration de cavité régénérative à 10 kHz, permettant l’amplification à1 kHz d’impulsions de durée 17 fs, stabilisées en CEP dans la classe TW ou accordables en longueur d’onde à10 ou 1 kHz

FR  |  
EN
Auteur / Autrice : Anna Golinelli
Direction : Jean-François Hergott
Type : Thèse de doctorat
Discipline(s) : Lasers, molécules, rayonnement atmosphérique
Date : Soutenance le 21/01/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Laboratoire Interactions, dynamiques et lasers (Gif-sur-Yvette, Essonne ; 2015-....)
Jury : Président / Présidente : Éric Cormier
Examinateurs / Examinatrices : Jean-François Hergott, Éric Cormier, Aurélie Jullien, Salvadore Stagira, Marc Hanna, Milutin Kovačev
Rapporteurs / Rapporteuses : Aurélie Jullien, Salvadore Stagira

Résumé

FR  |  
EN

Au cours de dix dernières années la science aux attoseconde ou Physique au champ-fort a été l’objet d’un fort développement. La production d’impulsions laser énergétiques de courte durée à haute cadence et stabilisées en CEP constitue la première étape pour accéder aux dynamiques ultra-rapides caractérisant l’interaction de la matière avec une source de lumière cohérente, intense et ultra-rapide. Le travail de cette thèse consiste à améliorer globalement les performances d’un système laser Ti:Sa à haute cadence optimisé pour la génération des impulsions attoseconde. Nous avons développé une nouvelle configuration de cavité régénérative fonctionnant à 10 kHz qui permet une meilleure gestion des effets thermiques dans le cristal. En sortie de l’amplificateur les impulsions atteignent des valeurs de puissance de 5 W en bande étroite (35 fs), ou 2.7 W en bande spectrale large permettant une compression des impulsions proche de 17 fs. La CEP des impulsions en sortie d’amplificateur a été stabilisée ; le bruit résiduel mesuré tir-à-tir est de 210 mrad pendant trois heures.L’amplificateur peut supporter également le fonctionnement en mode accordable, en sélectionnant des spectres de 30 à 40 nm de largeur à mi-hauteur et en accordant leur longueur d’onde centrale dans une gamme de 80 nm autour de 800 nm. Nous avons conçu et mis en fonctionnement un amplificateur multi-passages non-cryogéné à imagerie par lentille thermique pour accroître la puissance des impulsions jusqu’à 10 W à une cadence de 1 kHz. Le régime de forte saturation d’amplificateur garantit une variation négligeable (±3% pic à pic) de la puissance des impulsions en sortie du module, face à une variation importante de la puissance en entrée (±25% pic à pic) sur la bande spectrale accordable. L’amplification peut encore être plus importante grâce à une ligne d’amplification à refroidissement cryogénique, qui permet d’atteindre des puissances au niveau TW, à la cadence de 1 kHz, tout en maintenant un régime de courte durée (17.5 fs) et stabilité en CEP (350 mrad de bruit résiduel tir-à-tir). Nous proposons aussi une étude des sources de bruit de CEP dans les modules hautement dispersifs: nous avons conçu une nouvelle approche numérique sur la base d’un logiciel de tracé de rayon commercial (Zemax) pour évaluer les variations de CEP dans les modules contenant réseaux de diffraction.