Modélisation de nanostructures optiques résonantes avec des méthodes semi-analytiques utilisant les modes propres de l'objet
Auteur / Autrice : | Anton Ovcharenko |
Direction : | Christophe Sauvan |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 20/12/2019 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Ondes et matière (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Institut d'optique Graduate school (Palaiseau, Essonne ; 1920-....) |
Laboratoire : Laboratoire Charles Fabry / Nanophotonique | |
Jury : | Président / Présidente : Riad Haïdar |
Examinateurs / Examinatrices : Christophe Sauvan, Xavier Letartre, Antoine Moreau, Anne-Laure Fehrembach, Olivier Gauthier-Lafaye | |
Rapporteurs / Rapporteuses : Xavier Letartre, Antoine Moreau |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse est consacrée au développement de modèles semi-analytiques précis pour le calcul numérique de dispositifs nanophotoniques résonants. Il s'agit en particulier de membranes à cristaux photoniques, qui supportent des résonances avec des très grands facteurs de qualité, et d’ensembles composés de plusieurs nano-antennes plasmoniques, qui présentent des résonances avec des faibles facteurs de qualité. La thèse est divisée en deux parties.La première partie présente un modèle semi-analytique pour le calcul des modes supportés par des membranes à cristaux photoniques. Les modes à fuite (leaky modes) supportés par ces membranes structurées sont modélisés comme une résonance Fabry-Perot transverse composée de quelques ondes de Bloch propagatives qui vont et viennent verticalement à l'intérieur de la structure. Ce modèle est appliqué à l'étude des états liés dans le continuum (bound states in the continuum, ou BIC). Nous montrons que le modèle Fabry-Perot multimode est parfaitement adapté pour prédire l'existence des BICs ainsi que leur position dans l'espace des paramètres. Grâce à la semi-analyticité du modèle, nous étudions la dynamique des BICs avec l'épaisseur de la membrane pour des structures symétriques et asymétriques. Dans ce dernier cas, nous étudions des objets présentant soit une symétrie horizontale brisée, soit une symétrie verticale brisée (ajout d'un substrat). Le modèle Fabry-Perot nous permet d’obtenir des informations importantes sur la nature et le comportement des BICs. Nous démontrons que lorsque la symétrie miroir horizontale est brisée, les BICs dus à la symétrie du système, qui existent dans les structures symétriques au point Gamma du diagramme de dispersion, restent des BICs malgré l’absence de symétrie mais changent de nature. Ils deviennent des BICs dus à des interférences destructives entre les ondes de Bloch. La deuxième partie est consacrée au développement d'une théorie modale originale pour modéliser la diffusion de la lumière par des structures complexes composées d'un ensemble de plusieurs nano-antennes. L'objectif est de pouvoir modéliser la diffusion de la lumière par des métasurfaces à partir de la seule connaissance des modes de leurs constituants individuels. Pour ce faire, nous combinons un formalisme modal basé sur l’utilisation des modes quasi-normaux (QNM) avec la théorie multipolaire de la diffusion multiple basée sur le calcul de la matrice de transition (matrice T) d'un diffuseur unique. La matrice T fournit la relation entre le champ incident et le champ diffusé dans la base des harmoniques sphériques vectorielles. Elle contient toutes les propriétés de diffusion intrinsèques à l'objet. Le calcul de cette matrice représente une charge numérique lourde car elle nécessite de nombreux calculs rigoureux du champ diffusé. L'utilisation d'une décomposition modale avec des QNMs nous permet d’une part de rendre une partie du calcul analytique et d’autre part d'apporter une meilleure compréhension physique. Nous dérivons une décomposition modale de la matrice T et testons sa précision sur le cas de référence d'une nanosphère métallique.Enfin, la décomposition modale de la matrice T est appliquée à des cas pratiques d'intérêt en nanophotonique. A partir de la seule connaissance de quelques modes d'un nanocylindre plasmonique unique, nous calculons analytiquement la diffusion multiple de la lumière par un dimère et par une antenne Yagi-Uda composés de ces nanocylindres. Nous appliquons également l’approche modale à un réseau périodique bidimensionnel de nanocylindres . La comparaison avec les résultats d'une méthode numérique rigoureuse démontre un bon accord avec le calcul modal. Par rapport à des calculs entièrement rigoureux, la décomposition modale de la matrice T permet une réduction significative du temps de calcul. Comme les calculs sont analytiques une fois que les modes ont été calculés, l'approche modale est extrêmement utile pour les problèmes d'optimisation.