Thèse soutenue

Nanofibres optiques pour la réalisation de sources de photons corrélés

FR  |  
EN
Auteur / Autrice : Abderrahim Azzoune
Direction : Gilles Pauliat
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 25/07/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Charles Fabry / Manolia
établissement opérateur d'inscription : Institut d'optique Graduate school (Palaiseau, Essonne ; 1920-....)
Jury : Président / Présidente : Laurent Bigot
Examinateurs / Examinatrices : Patricia Segonds, Marc Brunel, Sylvain Ravets
Rapporteurs / Rapporteuses : Patricia Segonds, Marc Brunel

Résumé

FR  |  
EN

Les sources de paires de photons corrélés sont des composants clés nécessaires aux réseaux de télécommunications quantiques. Réaliser directement ces sources à partir de fibres optiques permet de minimiser les pertes d'insertion. Nous proposons de concevoir une telle source à partir d'une fibre optique étirée. La fibre étirée possède un diamètre pouvant descendre à moins de 500 nm sur une longueur de quelques centimètres. Le faible diamètre de la section étirée favorise les effets non linéaires, tandis que les sections non étirées permettent de connecter avec de très faibles pertes cette fibre étirée avec les fibres des réseaux de télécommunication.Dans cette thèse, nous présentons donc une conception d’une nouvelle source de photons corrélés totalement fibrée à base de fibres standard de télécommunications (SMF28) étirées. Pour produire ces paires de photons nous utiliserons la fluorescence paramétrique due à la brisure de symétrie à la surface de la nanofibre en silice.Nous avons développé une technique de mesure par microscopie optique, qui permet de mesurer tout le profil de la fibre étirée avec une résolution nanométrique bien au-delà de la limite de diffraction.En parallèle, nous avons modélisé la susceptibilité non linéaire de surface de second ordre en prenant en compte l’aspect vectoriel de la propagation du champ optique dans une microfibre à deux ou trois couches. Dans un second temps, nous définissons les accords de phase modaux qui sont nécessaires pour l’obtention d’une forte fluorescence paramétrique. Nous dimensionnons cette nanofibre pour une bonne optimisation de l’efficacité de génération des paires. L'ensemble du processus de création de photons sera modélisé.