
Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

AC
LE

04
4 Deep Learning for Lesion and Thrombus

Segmentation from Cerebral MRI

Apprentissage Profond pour la
Segmentation de Lésion et de Thrombus

dans des IRM Cérébrales
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Dr, Université Paris Sud (INSERM) Invité
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et le temps pour poursuivre mes idées, tout en m’aidant à me réorienter
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Introduction

It is teatime. Marie, 62, lifts her cup of black tea to her lips when her arm
goes suddenly numb. She manages to set down the cup but she has trouble
moving her arm. She is afraid, not knowing what is happening to her. But
her friend has the presence of mind to call an ambulance immediately. Thirty
minutes later at the hospital an MRI reveals the cause: stroke. Luckily Marie
arrived quickly at the hospital and can be treated with thrombolysis. She
can leave the hospital a few days later and she doesn’t retain any permanent
damage.

In this way or similar many people experience a stroke every day. Stroke
diagnosis is a fascinating combination of medical knowledge and physics.
Magnetic resonance imaging (MRI) is the most important real world applic-
ation of quantum physics which allows us to look into the brain of living
people without damaging them in any way. Combined with the medical
knowledge of the blood flow in the human brain this allows to identify the
thrombus which causes the problems. The MRI also gives away information
about the amount of damage the brain has sustained. The doctor now needs
to decide for one of four treatment options based on his interpretation of the
MRI. This is the point where things become difficult: for one the interpreta-
tion of the MRI needs a highly trained specialist and second a stroke requires
a treatment decision within minutes. Thus the interpretation of the MRI is
really only a quick look at the images by the doctor without the possibility
of a thorough evaluation. It is amazing that these specialists can gather
enough information for a treatment decision in such a short time. However
it has been shown that precise measurements of the lesion volume [1] and
thrombus length [2, 3] are good predictors for the patients response to the
various treatments.

And this is the starting point of this thesis. The goal is to provide an auto-
matic method for segmenting the lesion and the thrombus. This will im-
prove the interpretation of stroke MRI by giving numerical values for the
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relevant parameters instead of the rough guesses which are currently used.
The methods of choice for this kind of segmentation problem are machine
learning methods. This makes this thesis an intriguing subject combining
knowledge from the fields of physics, machine learning and medicine. This
multidisciplinary approach is also reflected in the structure of this thesis by
explaining the basics from each discipline separately. Of course it is indis-
pensable to understand what stroke is and how it works. This is explained
in the medical part (section 1.1). To understand the MR images it is neces-
sary to understand how they are generated, i.e. the physics of MRI (section
1.2.1). The medical and physical knowledge are merged in the interpretation
of the MR images (section 1.2). Then machine learning and its important
field deep learning are introduced in chapter 2. Together with a review of
existing automatic methods for stroke MRI (section 1.3) this is the basis for
exploring the stroke segmentation problem.

One of the big opportunities of this thesis is that it not only allows to ap-
ply machine learning to a real problem but also the problem is so complex
that it allows new insights into machine learning theory. New approaches on
neural network design are elaborated in chapter 3 and their application on
the stroke segmentation task is detailed in chapter 4. Altogether the sub-
ject of this thesis is very complex and encompasses three disciplines, physics,
medicine and machine learning. The latter has not seen any clinical applic-
ation in a stroke scenario yet. The complexity of the problems entails the
further exploration of machine learning theory. And the results can be dir-
ectly applied to a relevant problem of today’s medicine and will eventually
find its way to clinical practice. Most thesis subjects are either of theoretical
or applied nature and it is the special beauty of the stroke MRI segmentation
problem that it allows to have both.



Chapter 1

Stroke Diagnosis

1.1 Stroke

Stroke is a disease which affects the brain. It is one of the most lethal diseases,
responsible for around 22% of all deaths world-wide1. Therefore being the
number 2 cause of death after heart attacks regardless of social status. Those
who survive stroke are often left with major disabilities, requiring expensive
subsequent care. So it is not a surprise that stroke is subject to extensive
research.

There are three different types of stroke which share the same symptoms:

• Haemorrhagic Stroke

• Transient Ischaemic Attack

• Ischaemic Stroke

The first one is due to haemorrhage in the brain. The mechanisms leading
to haemorrhagic stroke are quite different to the other two and will not
be discussed here. This work is concerned with ischaemic stroke which is
caused by a lack of oxygen. The transient ischaemic attack shares the same
mechanism with the ischaemic stroke, with the difference that the cause
dissolves by itself and doesn’t need treatment. Therefore they are also called
warning strokes, as they indicate a elevated risk for stroke. In the following
the word stroke will always mean an ischaemic stroke.

1http://www.who.int/mediacentre/factsheets/fs310/en/
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1.1. STROKE 5

Figure 1.1 Schematic representation of an ischaemic stroke. The black dot rep-
resents the thrombus. Red lines are normal arteries and blue lines are arteries with
restricted blood flow. The infarct is brown and the penumbra is orange. Collateral
connections are indicated. Blood vessels and head adapted from [4]

This chapter will at first elaborate the formation of stroke and the resulting
symptoms. Then the possible treatments and the decision process leading to
a choice of treatment will be outlined.

1.1.1 The Mechanism of Stroke

Ischaemic stroke is the most common type of stroke. It is caused by a blood
clot (thrombus) which blocks an artery in the brain and the brain tissue
supplied by this artery suffers from a lack of oxygen (ischaemia). This
section looks at the details of this process and the consequences of ischaemia.

There are hundreds of possible causes which can lead to the formation of
a blood clot. Asian populations have blood clots for different reasons than
European or African populations. Thus the blood clot formation will not
be discussed here. One common possibility is stagnant blood, for example
a vein which has been cut off by sitting on it for hours during a long flight.



6 CHAPTER 1. STROKE DIAGNOSIS

The stagnant blood starts to coagulate and when the person moves again,
i.e. gets out of the plane, the coagulated blood makes its way to the brain
in the form of a blood clot.

The arterial tree of the brain consist of branches with ever decreasing dia-
meters who eventually become capillary vessels. These will then join again
in the venous system. Once a thrombus arrives in the brain he will become
stuck, when the artery diameter decreases (figure 1.1, black dot). This can
occur as a complete occlusion (no blood can flow past the thrombus) or a
partial occlusion (still some blood can pass the thrombus).

The area supplied by the blocked artery is then suddenly blocked off its
oxygen supply. This is the moment when a rescue mechanism kicks in. The
branches of the arterial tree are interconnected by so called collateral arteries
[4]. Usually there is no flow through these, because the blood pressure is equal
on both sides. Due to the occlusion by the thrombus the pressure drops in
the affected artery and blood flows through the collateral arteries, trying to
sustain the blood flow (figure 1.1).

But the flow through the collateral arteries is not enough to replace the
flow from the main artery completely. How much of the blood flow can be
recovered by collateral circulation depends on the individual. Some persons
might have few collateral arteries, other a lot [4]. Therefore the oxygen
supply in the affected area does not drop to zero, but rather to a severely
reduced level depending on the distance to the collateral connections (and
the thrombus in the case of a partial occlusion). A region with insufficient
blood supply is called an ischaemic region or sometimes hypoperfused tissue.

Due to this under-supply with oxygen the neurons’ K+ channels will stop
working [5] to reduce their oxygen consumption in order to stay alive. Os-
motic pressure then leads to a massive K+ outflow from the neurons which
causes a depolarisation of the cell membrane. Consequently the neuron be-
comes electrically inactive. This is the moment when the symptoms start
(stroke onset). Whatever the job of the affected region was, this functional-
ity will suddenly be lost. This can be literally anything, from motor skills
like walking or speech, sensory systems like sight or touch, to memory.

The under-supplied neurons will eventually die. Without oxygen supply they
die within 5 minutes [5]. Luckily even the tiniest amount of oxygen prolongs
their life considerably. Stroke patients with ischaemic tissue still living up to
24 hours and more after stroke onset have been reported [6]. As the oxygen
distribution is not equal in the ischaemic region, the neurons will gradually
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die over time. The region of already dead neurons is called infarct2 or
core (figure 1.1, brown region)[7]. The part of the ischaemic region which
is still alive is called the penumbra (figure 1.1, orange region)[7]. The loss
of tissue in the infarct is irreversible. Tissue in the penumbra can be saved
and returned to functionality by restoring the blood supply. Restoring blood
flow through the infarct can lead to haemorrhages [8], as the artery walls
suffer from the ischaemia as well and become weak. The infarct grows with
time, until it fills the whole ischaemic region. In turn the penumbra becomes
smaller with time until it vanishes.

The exact cell biological process of the transition from healthy to ischaemic
to dead is still subject to current research [9, 10, 11]. Here only one aspect
will be highlighted, because it is an important effect for a diagnosis tech-
nique3. As the ischaemia progresses the diffusion coefficient of the free water
molecules decreases. There are several hypothesis how this happens [12].
With decreasing oxygen level, the neuron is no longer able to keep up the
functionality of its cell membrane (cytotoxic oedema). More water may
now enter into the cells because of the osmotic pressure. Once the water
is inside the cells it has a reduced space for diffusion. Thus the diffusion
coefficient of water drops in the regions where the cell membranes dysfunc-
tion. Alternatively the swelling of the cells due to the water influx decreases
the extra cellular space. So the space for free water diffusion is reduced and
therefore the diffusion coefficient. The last hypothesis says that with the
cease of the cell function the transport of plasma inside the cell (cytoplasmic
streaming) is also stopped. As the transported plasma contains water this
is a contribution to the moving water which is measured with the diffusion
coefficient. The truth is probably a mix of the three. The decrease of the
diffusion coefficient is not yet the point where the cells die (ionic oedema),
but close.

Usually it takes between 6 and 12 hours for the infarct to grow to full size.
At this point some patients die, because they lost critical functionality. For
those who survive the infarcted tissue starts to swell after around 24 hours
[13]. This compresses adjacent regions of the brain and the pressure in the
brain rises. This compression can cause the death of even more tissue, which
in turn can lead to further disabilities or the patients death [8].

2In fact any tissue which died of ischaemia is called infarct.
3Diffusion Weighted Imaging, see 1.2.2
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1.1.2 Stroke Treatment

The goal of treating stroke is to achieve the best possible outcome for the
patient. Ethical problems will not be considered here4. In the scope of this
work, the best possible outcome is defined as saving the penumbra which
exists when the patient arrives at the hospital, without damaging any other
part of the brain.

Patients with elevated stroke risk can be pre-emptively treated with antico-
agulants, to prevent the formation of blood clots and therefore reduce their
risk to experience a stroke.

For most patients who already have a stroke the restoration of the blood flow
is the ultimate goal. Although for some patients this would be ill advised.
If the patient arrives so late at the hospital that the infarct has reached its
full size, the only treatment option is to consider decompressive therapy to
reduce the damage done by the swelling tissue [14]. For small infarcts this
might not be necessary.

If there is still a penumbra to save, the strategy is to restore the blood
flow with a recanalisation therapy (i.e. remove the thrombus). There are 4
possible options:

Thrombolysis The patient receives an injection of a product which dissolves
the thrombus and thereby restores the blood flow. The product in current
is tissue plasminogen activator (tPA) [15]. tPA cleaves the fibrogen which
is holding the blood clot together and thus dissolves it. This process can
take either some minutes or several hours, depending on the thrombus size,
composition and the surface which can be attacked by tPA.

Collateral circulation delivers tPA to the rear end of the thrombus, so it
can be attacked from two sides. Even though there is currently no clear
proof of the beneficial effect of good collateral circulation on the tPA-induced
re-canalisation rate, a good collateral circulation is correlated with a better
recovery of the patients [16]. A partial occlusion even allows tPA to attack the
thrombus on its whole length, resulting in fast disintegration of the thrombus
[17]. The treatment is simple to apply and has a high success rate for small
blood clots.

The main risk associated to this treatment is haemorrhage [18], especially
symptomatic intracerebral haemorrhage. Fibrogen is also present in vessel

4Indeed some people might prefer to rather die than be trapped in a unresponsive
wakefulness syndrome, or to forget who their parents are.
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walls and weak vessels can be destroyed by tPA. Also tPA will dissolve all
blood clots in the body. For example if a patient has a traumatic brain injury
because he fell over during the stroke onset, he might have blood clots in the
brain which prevent actual haemorrhage. Also women who have their period
might experience increased bleeding from tPA.

Furthermore there are thrombi which might not react to tPA because they
are not held together by fibrogen. In this case the treatment will fail.

Sequential Double IV Thrombolysis This emerging technique is an extension
to thrombolysis. It is developed at the Centre Hospitalier Sud-Francilien
(CHSF ) and currently an experimental treatment. One hour after throm-
bolysis with tPA, the re-canalisation success is controlled via MRI. If the
thrombus persists, a dose of tenecteplase is administered to speed up the
dissolution of the thrombus [19]. This method has seen good results, and is
a prime choice for resistant thrombi which are too distal for thrombectomy.

The risk of haemorrhage for this treatment is even higher as for single throm-
bolysis and has to be considered carefully.

Thrombectomy A recent development, the thrombectomy was a revolution
for the field of stroke treatment. It is the mechanical removal of the thrombus.
Usually this is done with a catheter which is inserted in the bloodstream and
pushed to the position of the occlusion. The approaches of how to extract the
thrombus with the catheter can be divided into stent retriever and contact
aspiration methods [20].

The re-canalisation rate achieved with thrombectomy is around 80% [21].
But it requires an experienced team of radiologists, who are available in
tertiary centers only. Furthermore it is currently limited to large arteries,
due to technical problems with small and distal vessels [22]. The outcome of
thrombectomy can be improved in combination with thrombolysis [21].

When there is no neuro-interventional team on site, the patient has to be
transferred to another hospital. This delays the treatment and gives the
infarct more time to grow.

Inserting a catheter in the brain always risks rupturing a vessel. The in-
teraction with the thrombus can also damage the vessel walls. Finally the
thrombus can break apart during the procedure and send smaller fragments
to more distal locations, causing multiple occlusions.

No Treatment As it might sound surprising, it is the best option for some
patients. When the risk of haemorrhage of the three methods above is too
high, the amount of tissue destroyed by the haemorrhage might be higher
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than the amount of tissue saved by a re-canalisation. This is the sad case of
having to accept to leave a part of the brain to die in order to save the rest.

From the options for treatment one must be chosen for each patient. There
are official guidelines for the line of action [23]. But they need to be viewed
as a rule of thumb and legal coverage for the treating medic. The treatment
decision has always to be an individual one.

The optimal treatment in the presence of a penumbra can be found by con-
sidering four factors:

• Reactivity of the thrombus to the treatment

• Risk of haemorrhagic transformation

• Time to re-canalisation

• Thrombus location

The reactivity of the thrombus to thrombectomy can be regarded as 100%.
The reactivity of the thrombus to thrombolysis depends on the composition
and size of the thrombus, the type of occlusion and the amount of collateral
circulation.

Thrombi with a high fibrogen content will be dissolved faster by tPA. The
thrombus size is important, as dissolving more material takes more time.
The bigger the surface on which tPA can work simultaneously is, the faster
the thrombus is dissolved.

Haemorrhagic transformations are the most dangerous complications which
are associated with the treatment of stroke [24]. The main factors giving rise
to an increased haemorrhage risk are old age, infarct volume, and chronic
renal failure [25] . Other risk factors are high blood pressure, a high glucose
level and major stroke severity [8]. Also the amount of microbleeds are a
strong indicator for the haemorrhage risk [26, 27]. In most cases the risk of
brain damage by haemorrhage is clearly too low to abstain from recanalisa-
tion therapy.

The time to re-canalisation is given by the time it takes to make the treat-
ment decision and to get the the patient to the treatment, plus the time of
the treatment. At last the location of the thrombus decides whether throm-
bectomy is a viable option.
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The following set of rules leads to the final treatment decision:

• If the risk of haemorrhage at re-canalisation is small enough, re-canalisation
therapy will be attempted.

• If the risk of haemorrhage is too large for thrombolysis, or the thrombus
will not react to tPA, therapy will be by thrombectomy.

• If the thrombus is too distal for thrombectomy, therapy will be by
thrombolysis.

In the remaining cases the time to re-canalisation will be considered, and
the quicker treatment will be chosen. Double thrombolysis is used if the
reaction to thrombolysis is present but slow (at 1 hour after the initial tPA
administration), and there is no haemorrhage to be expected.

This idealised decision process requires a lot of detailed information about
the patients state. In reality most of this information is only partially or not
available. The missing parts are replaced by the experience of the treating
doctor. This is why the success of stroke treatment is strongly dependent
on the diagnostic equipment and the experience of the team at the treating
hospital.

1.1.3 Diagnostic Strategies

There are various techniques to help with the diagnosis of the physiology of
stroke which is so important for the treatment decision (section 1.1.2). Most
of them are imaging methods based either on computer tomography (CT)
or magnetic resonance imaging (MRI). But even without machinery some
effects of stroke can be observed.

Before any imaging is applied there is a clinical test, where the ability of the
patient to move his body parts, to speak, to comprehend, and his reflexes
and sensory are tested. The results are combined into a scale called Na-
tional Institutes of Health Stroke Scale (NIHSS, [28]), which gives a rating
of the severity of the stroke. It also gives a prediction for the patient recov-
ery without treatment. For example a NIHSS greater than 16 indicates a
very high probability of death [29]. Taking the test results together with an
functional atlas of the brain allows to roughly locate the area affected by the
stroke. But this is only a rough region, which does not allow to differentiate
between dead and still living but function-less tissue. Furthermore there is
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no possibility to differ between haemorrhagic and ischaemic stroke without
imaging.

Based on CT, there are two methods:

Non Contrast CT (NCCT) CT by itself shows regions of dead tissues (ionic oed-
ema, [30]) in the brain. The thrombus itself can also be seen [31], supposing
a slice thickness smaller than the thrombus. This allows estimations of the
infarct size and the thrombus size. But the interpretation of NCCT is very
difficult and requires a very well trained radiologist.

CT Angiography (CTA) After injection of a contrast agent, which absorbs the
x-rays, the arterial tree can be made visible. In a stroke scenario parts of the
arterial tree are missing. With sufficient anatomical knowledge these missing
arteries can be guessed. This gives away the location of the thrombus and
allows an assessment of the penumbra. Note that the penumbra is only a
rough guess based on the radiologists and neurologists experience. Also the
missing arteries might not be identifiable due to the asymmetry of the arterial
tree.

MRI methods allows access to more different physical properties of the ex-
amined tissues. This resulted in a series of MRI modalities which are useful
for diagnosing stroke:

Diffusion Weighted Imaging (DWI) On the DWI regions with restricted dif-
fusion can be seen (cytotoxic oedema, [30]). This region corresponds to the
infarct and part of the penumbra and is also called lesion. On Apparent Dif-
fusion Coefficient (ADC) maps, which are calculated from multiple DWIs,
the absolute value of the diffusion coefficient can be accessed.

Fluid-Attenuated Inversion Recovery (FLAIR) FLAIR is a very anatomical
image. It allows to see the collateral arteries, which is a good way to guess
the penumbra [16]. And it serves to distinguish the lesions seen on DWI into
chronic and acute damage. This is important if there are lesions from old
stroke accidents, or other diseases like cancer.

Time of Flight Angiography (ToF) The arterial tree can also be depicted with
ToF. The information gained is identical to CTA. But the image quality is
slightly worse, due to technical limits (see section 1.2.4).

Susceptibility-Weighted Angiography (SWAN) Part of the blood flow and the
thrombus is visible on the SWAN image. This gives away the thrombus size
and location and the type of occlusion.
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At last there is one method which can be performed with either CT or MRI:

Perfusion Weighted Imaging (PWI) In PWI the speed with which the tissues
are perfused can be measured. Considering that the penumbra and infarct are
regions of hypoperfused tissue, these show up on PWI. But as the perfusion
is not equal in all the brain there rests some uncertainty.

With all these diagnostic methods, the thrombus location and size and the
occlusion type can be determined in theory. Also the infarct itself as well
as most of the penumbra and the collateral arteries can be recovered. The
only feature which is not available via medical imaging is the composition of
the thrombus. This constitutes already a good basis for the decision process
outlined in section 1.1.2.

1.2 Diagnosis on MRI

As this work is based on the analysis of magnetic resonance images all other
imaging techniques are forgone. This chapter is about the magnetic reson-
ance imaging (MRI) sequences used for diagnosing stroke and how to extract
the information from the corresponding images. At first, the basic nuclear
magnetic resonance (NMR) experiment will be reviewed. Then the most
basic pulse sequences and spatial resolution of the NMR signal will be ex-
plained. The last part concerns the basic ideas of the sequences used for
stroke analysis and the diagnosis on the resulting images.

1.2.1 The Basics of MRI

MRI is a spatially resolved version of the NMR experiment.

The NMR Experiment

For a detailed explanation of the NMR experiment the book ’Spin Dynamics:
Basics of Nuclear Magnetic Resonance’ by Levitt [32] can be recommended.
It contains a classical as well as a quantum physics derivation of the NMR
Basics, an introduction to the required maths and (quantum) physics and a
detailed description of the most common pulse sequences and experimental
setups. The following summary is based on this book.

Clinical MRI measures only hydrogen atoms. Thus only spin 1/2 particles,
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which correspond to the proton of a hydrogen atom, will be considered by
now. In the following part, the basic equation of motion of the spin of a spin
1/2 particle in an external magnetic field is outlined. For detailed derivations
please consult the above textbook.

The two eigenstates of the spin operator Î of a single spin 1/2 particle are
denoted as:

|α〉
|β〉

with the eigenvalues

Î |α〉 =
1

2
|α〉

Î |β〉 = −1

2
|β〉

Any state |ψ〉 of the spin can be written as a superposition of the eigenstates:

|ψ〉 = cα |α〉+ cβ |β〉

with the complex coefficients cα,cα and the normalisation constraint

|cα|2 + |cβ|2 = 1

The eigenstates are usually degenerate, but in the presence of a external
magnetic field (B0) their energy levels split (Zeeman effect). Without loss
of generality consider the magnetic field to be in direction z. The Hamiltonian
in this simple case is given by:

Ĥ0 = ω0Îz
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which depends only on the spin operator in z-direction. The energy of the
eigenstates is

Ĥ0 |α〉 =
1

2
ω0 |α〉

Ĥ0 |β〉 = −1

2
ω0 |β〉

with the Larmor frequency ω0 = −γB0. γ is the gyromagnetic ratio. The
difference of the energy levels is therefore ω0 and corresponds to the energy
needed or gained by changing the state |β〉 to |α〉.

The equation of motion of a spin in state |ψ〉 is given by the Schrödinger
equation:

d

dt
|ψ〉 = −iĤ0 |ψ〉

which has the solution

|ψ〉 (t) = exp
(
−iω0tÎz

)
|ψ〉 (t0) = R̂z(ω0t) |ψ〉 (t0)

This corresponds to a rotation in the x-y plane about the angle ω0t, given by
the rotation operator R̂z(φ). So a spin will precess around the z axis with
frequency ω0, once its value in z direction has been measured.

Now consider the interaction with an external radio frequency (RF) pulse of
phase φp, oscillating at frequency ωRF = ω0. The time dependent angle Φp

is given by Φp(t) = ωRF t+ φp. θRF denotes the angle of the RF pulse to the
B0 field and BRF is the maximum field strength of the oscillating RF field.
The Hamiltonian for this case is given by

Ĥ = Ĥ0 + ĤRF

ĤRF = −1

2
γBRF sin(θRF )R̂z(Φp)ÎxR̂z(−Φp)

and the corresponding Schrödinger equation by

d

dt
|ψ〉 = −iĤ |ψ〉
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When the pulse starts at t1 and ends at t2 with duration τ , the solution for
the change of |ψ〉 during the pulse is

|ψ〉 (t2) = R̂z(Φp(t2))R̂z(φp)R̂x(βp)R̂z(−φp)R̂z(−Φp(t1)) |ψ〉 (t1)

with βp = ωnutτ = |1
2
γBRF sin(θRF )|τ . The spin performs a nutation move-

ment around the z-axis with the nutation frequency ωnut during the RF pulse.
So the effect of an RF pulse is to increase the angle between the spin and
the z-axis. The longer the RF pulse, the larger is the increase.

Note that the effect of the RF pulse depends on the angle of the pulse to the
B0 field.

In the case of ωRF 6= ω0, the effect is the same, but the strength of the effect
(i.e. the change in angle of the spin) decreases drastically with increasing
difference |ωRF − ω0| .

In a real material, the magnetic field experienced by the spins in a nucleus is
modified by the other particles in the nuclei, the electron hull of the atom and
nearby atoms. These atoms are usually those from the molecule or crystal
lattice, the nucleus is embedded in. Therefore the Larmor frequency changes
to

ω0 = −γB0(1 + δ)

with the chemical shift δ. The effect of the chemical shift can be used to
determine the structure of molecules.

As an NMR experiment measures a sample of finite size it is mandatory to
look at the situation of multiple spins in a magnetic field. The spins in the
sample are considered as non interacting, for simplicity. The state of the spin
ensemble is described by the spin density operator

ρ̂ =

(
cαc∗α cαc∗β
cβc∗α cβc∗β

)
=

(
ρα ρ+

ρ− ρβ

)

where the overhead bars stand for the average over the whole ensemble and
c∗α for the complex conjugate of cα. This is a way to specify the states |ψ〉
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of all spins in the ensemble by averaging over the respective cα and cβ. The
values of the spin density operator allow statements about the macroscopic
behaviour of the spin ensemble.

The ρ+ and ρ− are called coherences. They correspond to a net polarisation
perpendicular to B0. Here the phase of the complex number ρ− indicates the
angle of the polarisation. In thermal equilibrium ρ+ = ρ− = 0, which means
no polarisation in x or y direction. An existing coherence means that the
precession of the individual spins is, at least somewhat, aligned. In this case
it is said the spins are in phase.

The ρα and ρβ correspond to the population of the eigenstates |α〉 and |β〉 of

Îz. Note that most spins are in superposition states |ψ〉 = cα |α〉+ cβ |β〉 and
the population corresponds to the average values of |cα|2 and |cβ|2. If the
two populations are not equal this means there is an average polarisation of
the spins in direction of the magnetic field. It turns out that the populations
follow the Boltzmann statistics in thermal equilibrium. The populations in
thermal equilibrium can therefore be approximated by

ρequilibriumα =
1

2
+

1

4
B

ρequilibriumβ =
1

2
− 1

4
B

with the Boltzmann factor

B =
~γB0

kbT

Here ~ is the reduced Planck constant, kb the Boltzmann constant and T the
temperature. So at thermal equilibrium there is indeed a net polarisation of
the spins along the magnetic field.

Globally speaking, the spin density operator represents the macroscopic mag-
netisation of the sample arising from the ensemble of the individual spins.
The part in direction of B0 is given by the populations and the part perpen-
dicular is given by ρ−.

Under the influence of a RF pulse, the macroscopic magnetisation does very
much the same as the individual spin as shown above. The formal presenta-
tion of the equation of motion with the spin density operator is omitted as it
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is not necessary to understand the concept. The interested reader is referred
to chapter 11 of [32].

The angle of the magnetisation to the magnetic field can be modified at will
with a RF pulse of correct length at frequency ω0. Notably the angle can
not only be increased but also be decreased. Note that a change of the angle
implies an exchange between the diagonal and anti-diagonal elements of ρ̂.
After the RF pulse the magnetisation vector precesses around the z-axis.

There are some important RF pulses which have been given names corres-
ponding to their action on the magnetisation vector.

The (π/2)x pulse turns the magnetisation vector by 90◦ around the x-axis.
In the case starting in thermal equilibrium this turns the magnetisation from
the z-axis into the −y axis. This equalises the populations and transfers
their entire difference to the coherences.

The πx pulse turns the magnetisation vector by 180◦ around the x-axis. In
the case starting in thermal equilibrium, the pulse inverts the magnetisation
vector, so it points in −z direction.

More general, an (βp)x RF pulse turns the magnetisation vector around x-axis
by the angle βp = ωnutτp where τp is the length of the pulse. The subscript
()x denotes a rotation around the x-axis. This can be the y-axis as well.
If the subscript is not mentioned this means the axis of the rotation is not
important but it always lies in the x-y plane.

As any physical system, a spin ensemble, which has been disturbed from
its equilibrium state by a RF pulse, converges back to equilibrium. Both
population and coherence decay exponentially.

The decay of coherence is due to random small local fluctuations in the
magnetic field. This causes small variations in the precession frequency ω0.
Remember that ω0 depends on the magnetic field experienced by the spin.
The different precession speeds destroys the alignment of the precessing spins,
they dephase. This decay is called transversal or spin-spin relaxation and
decays with time constant T2. No energy is transferred but entropy increases.
Therefore it is irreversible.

The decay of population, known as longitudinal or spin-lattice relaxa-
tion, decays with time constant T1. The decay of the magnetisation in z
direction requires moving portions from the higher energetic state |β〉 to |α〉.
The released energy is exchanged with the surroundings via multiple mech-
anisms and transferred to vibration and rotation of molecules. For example
with the lattice in solids, hence the name spin-lattice relaxation. Of course
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this energy exchange is not reversible. For time t after the end of the RF
pulse the decay equations are

ρα(t) = (ρα(0)− ρequilibriumα )e
− t

T1 + ρequilibriumα

ρβ(t) = (ρβ(0)− ρequilibriumβ )e
− t

T1 + ρequilibriumβ

ρ+(t) = ρ+(0)e
(−i(ω0−ωRF )− 1

T2
)t−iΦ(t)

ρ−(t) = ρ−(0)e
(+i(ω0−ωRF )− 1

T2
)t+iΦ(t)

where Φ(t) = Φp(t+ (t2 − t1)).

In measurements of real samples the observed T2 times are much shorter
than the theoretical expectation. They are modified by static variations to
the magnetic field cause by imperfections in the magnet which generates the
B0 field and magnetic substances in the sample, which also modify the local
magnetic field. A spin experiences a local magnetic field Bl = B0 +∆B. The
modified lateral relaxation time T ∗2 is defined as

1

T ∗2
=

1

T2

+ |γ∆B|

In contrast to the dephasing caused by random fluctuations, the dephasing by
static differences in the magnetic field is reversible by reversing the direction
of precession. This is used to design experiments which measure T2 or T ∗2
explicitly.

As any moving magnet, the precessing magnetic moment of the spin ensemble
creates a RF signal, called the NMR signal. The NMR signal s is proportional
to the coherence ρ−:

s ∝ 2iρ−

Pulse Sequences

Armed with the knowledge about the magnetisation vector, how to manipu-
late it wit an RF pulse and how the resulting signal looks like, it is possible to



20 CHAPTER 1. STROKE DIAGNOSIS

design pulse sequences in order to measure specific effects. This part explains
the most basic pulse sequences. The pulse sequences are always assumed to
start in a state of thermal equilibrium.

Inversion Recovery The inversion recovery sequence is designed to measure
the T1 relaxation time. Remember that the NMR signal is proportional to
the coherence ρ−. Therefore T1 cannot be measured directly.

The trick is to invert the populations with a π pulse. The magnetisation
in z-direction starts to decay with T1. After a time τ the magnetisation is
turned into the x-y plane by a π/2 pulse. The population difference has been
entirely converted to coherence. The amplitude of the now measurable signal
corresponds to the magnetisation in z-direction at time τ but decays with
T ∗2 .

Repeating this experiment with different delays τ allows to track the decay of
the magnetisation in z direction. Of course one needs to wait for the thermal
equilibrium to be reestablished between two experiments. From the resulting
curve T1 can be calculated.

Spin Echo In order to measure T2 the effects of the static imperfections of
the magnetic field need to be negated. The reversible nature of the static
imperfections makes this possible.

The pulse sequence starts with a (π/2)x pulse, turning the magnetisation
into −y axis. The magnetisation now decays with T ∗2 . After a time delay
τ/2 a πy pulse is applied. This has the effect of flipping the spins about 180◦

around the y-axis. The amplitude of the magnetisation remains untouched,
but the direction of the precession is reversed. The spins still precess with
the same frequency as before given by the local magnetic field. After waiting
another period of τ/2 the spins rephase, and for one instant the effects of the
magnetic field imperfections are negated. The difference of the amplitude at
this moment to the starting amplitude is solely due to the lateral relaxation.

Repeating the experiment for different values of τ enables the calculation
of T2. As usual the thermal equilibrium has to be reached between two
experiments. If the NMR signal is measured during the experiment the
signal decays at first with T ∗2 and then rise again after the πy pulse due to
the rephasing spins. Therefore the name spin echo. After the spins have
rephased the signal decays again with T ∗2 .

Gradient Echo The idea of the gradient echo is the same as for the spin echo.
The precession direction of the spins is reversed and the rephasing allows to
measure the amplitude due to T2 alone.
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As the precession frequency ω0 = −γB0 is proportional to the magnetic field,
inverting the field inverts the direction of precession. The gradient echo starts
with a π/2 pulse. After the time period τ/2 the magnetic field is inverted
and after another period of τ/2 the signal is measured.

Once again T2 can be calculated from the amplitudes of repeated experiments
with different τ . As before the thermal equilibrium must be ensured between
two consecutive experiments.

Achieving Spatial Resolution

If a NMR experiment is done, there is only one resulting signal for the whole
sample. In other words, the spin density operator represents the spins of
the whole sample. As such this is not very useful for medical imaging. The
invention of the spatial encoding of the NMR signal by Lauterbur and Mans-
field [33, 34] was awarded with the Nobel price in 2003. They developed a
technique where the spin density operator can be made to represent only a
portion of the sample. As the space for real applications has the dimension
3 the encoding for the location of the measurement takes 3 steps.

Slice Selection Remember that the Larmor frequency ω0 depends on the field
strength of the applied magnetic field. If an additional magnetic gradient
field Bg(z) is applied in z direction, the resulting Larmor frequencies ω0 =
−γ(B0 +Bg(z)) now depend on the z position.

The action of an RF pulse with frequency ωRF on a spin with Larmor
frequency ω0 decreases rapidly with the difference of the frequencies ∆ =
|ω0 − ωRF |. So an RF pulse in the presence of a gradient field Bg acts only
on those spins whose ω0 matches ωRF and those with a very small ∆. In
geometrical terms this means only a slice of the sample, within a certain
range of z is excited by the RF pulse.

The thickness of the slice depends of the strength of the gradient field Bg.
As in reality no RF pulses with an infinitely sharp spectrum can be created
the spectral width of the RF pulse increases the width of the slice also.

The gradient for the slice selection is on during the exciting pulse sequence.
It is off during the measurement of the signal. This ensures, that only spins of
one slice are excited and that the measurement of the signal is not disturbed
by the gradient.

Frequency Encoding The selection of the slice takes place during the pulse
sequence. The same idea can be used to partition the slice into rows, if
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applied during the measurement.

During the measurement phase, an gradient field Bx(x) is applied along the
x-axis. This affects the Larmor frequencies ω0 = −γ(B0 + Bx(x)) to be
dependent on their position on the x-axis. Consequently the measured NMR
signal is now a mixture of all the Larmor frequencies found along the x-axis.

The amplitude corresponding to a specific row can then be found by analysing
the Fourier transform of the NMR signal. The maximum resolution achiev-
able with frequency encoding and slice selection depends on the strength of
the gradient fields and the bandwidth of the RF pulse

Phase Encoding The last direction cannot be recovered via the frequency
information. Here the phase of the signal is used.

Applying a gradient field By(y) = Gyy in y-direction once again causes the
spins to precess with different Larmor frequencies ωy = −γGyy+ω0 . Due to
the different precession speeds the spins dephase with respect to the y-axis
but stay in phase along the x-axis. The longer this gradient is active, the
higher the difference in phase becomes. The phase difference accumulated in
time τ is equal to −γGyyτ .

The phase of the spins cannot be measured directly. Recall the NMR signal
of an ensemble of spins:

s ∝ 2iρ− = 2iρ−(0)e
(+i(ω0−ωRF )− 1

T2
)t+iΦ(t)

To facilitate the notation let the RF pulse be of frequency ωRF = ω0, let the
initial phase factor Φ(0) = 0 and assume that the signal is measured at t = 0
:

s(0) ∝ 2iρ− = 2iρ−(0)

Now consider the effect of the gradient field By(y). It adds a phase of−γGyyτ
to the signal of the spin ensemble at position y:

s(0) ∝ 2iρ− = 2iρ−(0)e−iγGyyτ



1.2. DIAGNOSIS ON MRI 23

The signal of all spin ensembles along the y-axis is given by

s(0) ∝ 2iρ− = 2iρ−(0)

∫
y

e−iγGyyτdy

The important point here is that the term

∫
y

e−iγGyyτdy

can be interpreted as a superposition of waves with frequencies γGyy at time
τ . Measuring the signal at t = 0 for different times τ allows to apply the
Fourier transform to obtain the phase shifts −γGyyτ . The minimum number
N of different τi which allows to differentiate N points along the y-axis is N .
This stems from the Nyquist theorem for the sampling rate.

For phase encoding the maximum resolution is also limited by the strength
of the gradient fields and the bandwidth of the RF pulse.

From Encoding to Images

After seeing how the three spatial dimensions are encoded, they can be com-
bined into one measurement procedure:

• Select a slice with coordinate z

– Apply the gradient field Bg

– Apply the exciting pulse sequence

– Shut down the gradient field Bg

– Only spins in slice z are excited and will emit a signal

• Prepare phase shift for τi

– Apply the gradient field By for the time τi

– Shut down gradient field By
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• Prepare rows along x-coordinate

– Wait for the echo from the exciting pulse

– In that moment apply the gradient field Bx

– And measure the signal s(z,τi,x)

The resolution in y-direction is determined by the number M of τi. In x-
direction the resolution is determined by binning the signal into N bins.
For each slice the measurement procedure has to be repeated M times. Each
slice’s results are collected in an M×N matrix. This matrix is called k-space
matrix.

The MRI image for one slice is obtained by the 2D Fourier transform of the
corresponding k-space matrix. Assuming L slices the effort for this procedure
is L ∗M measurements. Images obtained by this procedure are called 2D
images, as the volume is covered by a sequence of 2D slices.

One drawback of this method is the time the spins need to return to equi-
librium. To get acceptable measurement times for clinical use there are gaps
left between the slices. This speeds up the measurement by omitting parts of
the volume. It also avoids crosstalk with the spins from a previously selected
slice and therefore the consecutive slices can be measured faster.

3D MRI In contrast to the slice and row selection by gradients the phase
encoding technique is not limited to a specific number of dimensions. All
three dimensions can be encoded by phase. The resolution is then limited
by the number of measurements, up to the technical limits. But the effort
increases to L ∗M ∗N measurements.

MR images from triple phase encoding are called 3D images, as they measure
the whole volume in one measurement and it uses a 3D Fourier transform of
the k-space matrix. Which has now the size L×M ×N .

3D images usually have a higher image quality as the noise decreases with the
amount of measurements. They also do not suffer from cross-talk artefacts
and no gaps are left in the measured volume. But they take longer to acquire
as 2D images of the same size. Also motion of the scanned object, or patient
in the clinical case, destroys the whole volume. In 2D images motion renders
only some slices useless.

Further Considerations In order to use any NMR pulse sequence in an MRI
experiment special care is needed. The gradients used for the spatial local-
isation interfere with the gradients of the pulse sequence. Combining the two
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requires advanced calculations. These need to take into account the actual
layout of the machine which generates the magnetic fields. It is out of the
scope of this work to talk about the construction details of an MRI machine.

Usual field strengths of the B0 field are 1.5 and 3 Tesla for routine clinical
use. Research scanners may have field strengths up to 7 Tesla. These high
field strengths can currently only be acquired with supra-conducting elec-
tromagnets, which in turn need liquid helium for cooling. Of course these
high fields disturb nearby electrical equipment, making an electromagnetic
shielding of the room necessary. This is done with massive copper plates.
An MRI machine is thus a very expensive machine.

The edge lengths of the voxels range from 0.5mm to 4mm in clinical scanners.
They could be smaller in theory but are limited by constraints to the scan
time. In a stroke examination this is the urgent need for a treatment. Most
other examinations could afford longer scan times. But a hospital needs to
make the scanner available for the most exams possible in order to reduce
the costs of a scan per patient. Therefore the resolution is reduced to the
minimum point where the medical doctors can still see the deceases they are
looking for. This is the reason why clinical MRIs are often of low quality.

1.2.2 DWI and ADC

Diffusion weighted imaging was developed in France in 1984 by Denis Le
Bihan [35]. Some years later it was discovered that ischaemic lesions in cat
brains were visible on DWI. After some trials it was quickly adapted to the
medical routine for stroke examinations.

Basic Idea Only the basic idea of DWI is described here. An elaboration of
diffusion on cellular level and the mathematics leading to the different pulse
sequences in use can be found in the review by Valerij Kiselev [36].

Spins which are moving during a spin echo experiment accumulate an addi-
tional phase. This is due to field inhomogeneities they traverse which in turn
constantly changes their Larmor frequency by small amounts. Consequently
their spin echo signal is reduced, i.e. they appear darker on the MRI. The
greatest phase shifts are acquired by spins moving in direction of the gradient
field, if a gradient echo sequence is used. This effect of the diffusion along
the gradient field can be increased with higher gradient fields to the point
where this effect dominates the image. In order to get rid of the directional
dependency the measurement is repeated with gradients in different direc-
tions and S is averaged over at least 6 measurements. The resulting image
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is called diffusion weighted image (DWI) and is bright for slow diffusion and
dark for quick diffusion.

At the cellular level, diffusion is a very complex process which depends on
the local micro-structure. Most importantly it is not isotropic. The diffusion
at one point is given by the diffusion tensor. The interaction of the diffusion
tensor and the NMR signal is quite complicated. For simplicity all the inter-
actions are summed up in one variable, the so called b-value. This is largely
dominated by the applied gradient field and thus b can be identified with
the gradient field for practical purposes. The signal amplitude can then be
approximated as:

S = e−bD (1.1)

where D is the apparent diffusion coefficient. It is a very crude model, which
ignores all cellular structure. b is dependent not only on the gradient fields
but also on time. Also D is a snapshot of the diffusion and subject to random
movement of the molecules. Therefore two measurements of D will result in
different values.

The apparent diffusion coefficient (ADC) can be recovered by looking at the
logarithm of the signal:

ln(S) = −bD

This is now a linear equation of b and D. By measuring the signal at dif-
ferent values of b, D can be calculated with simple regression. The ADC
is a quantitative measurement and thus studies of the numerical values are
possible.

The gold standard pulse sequence is echo planar imaging (EPI) and is used
for almost all clinical DWI [37]. It takes around 100ms and thus motion
artefacts are mostly eliminated.

Interpretation of DWI In consequence of equation 1.1, voxels with lower dif-
fusion coefficient have a higher value on the final image. As stated in section
1.1.1, neural tissue suffering from cytotoxic oedema has a lower diffusion
coefficient. Suppose the normal value of a tissue type is known then the
cytotoxic oedema can be seen as a region with increased value. Unfortu-
nately, as stated above, repeated DWI measurements give different numbers.



1.2. DIAGNOSIS ON MRI 27

Thus the normal value of the tissues cannot be known. Nevertheless the
variation in subsequent measurements is smaller than the increase in value
of cytotoxic oedema. So the regions with cytotoxic oedema appear whitish to
bright compared to the surrounding normal tissue. The part of the oedema
visible on DWI is also called lesion.

Another difficulty for the interpretation of stroke DWI is the bad resolution.
DWI in the CHSF stroke data-set (section 4.1) has a slice resolution of 256×
256 with 30 to 36 slices, depending on the brain height, and a slice thickness
of 3.6mm. In a voxel of 3.6mm height there are thousands of neurons. So
the signal is the average over all the neurons in a voxel. If only a part of the
neurons of a voxel are in the state of a cytotoxic oedema, the voxel’s value
will be only slightly increased. So the oedema on DWI will not have a sharp
border, but a gradual transition from normal to oedema.

So a lesion on DWI is an area brighter than the surrounding tissues of same
type in the same slice. Note that there is a small difference for the average
normal value from white to grey matter and the lentiform nucleus has a
lower base value. A developing oedema in the lentiform nucelus might look
like normal white matter but is already in a cytotoxic state. An example is
given in figure 1.2.

As the DWI is inherently an T2 image, everything which is bright on T2, will
also be slightly brighter on DWI. This T2 shine through can be eliminated by
calculating a so called exponential image, by dividing the DWI by an “DWI”
taken with b = 0. The natural logarithm of the exponential image is close to
the ADC.

Lesions which do not belong to an ischaemic lesion do not show a drop in
ADC as their intensity on DWI is due to T2 shine through. Old ischaemic
lesions, which continue to the state of ionic oedema, start to appear on the
FLAIR image and can thus be told apart from recent lesions (compare figure
1.4).

Artefacts on DWI In contrast to the other MRI modalities artefacts severely
disturb the diagnosis on DWI [37]. Therefore a short summary of the most
common ones is included here.

Luckily motion artefacts are not much of a problem, as they can be avoided
by using modern pulse sequences. More problematic are variations of the
magnetic field. The interface between bone and brain tends to create field
changes which change the Larmor frequency that much that it changes to
a frequency which corresponds to a different row or column in the spatial
encoding (see section 1.2.1). Thus the pixels at the interface are displaced
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Figure 1.2 DWI slice with a stroke lesion. On this slice the lesion is seen as
2 disconnected regions (1 and 2). Borders of the brain may also have increased
intensity (3 and 4) due to partial volume effects and eddy currents. The lentiform
nucleus (5) has a lower base value than the surrounding tissue. Therefore the
infarcted lentiform nucleus (6) has an intensity close to the normal tissue and is
not as bright as other parts of the lesion (1 and 2).

up to 8 pixels [37]. Additionally the amplitude is modified by the magnitude
of the shift of the magnetic field making them appear very bright (see figure
1.3).

On the same principle any magnetic field causing a shift larger than the
bandwidth of a voxel displaces the voxels in the phase encoding direction.
Causes are magnetic fields from tissue interfaces (a change in susceptibility),
chemical shift, and eddy currents [38]. They all displace the voxels usually
by 1 or 2 in the phase encoding direction. Thus they may accumulate the
intensity of several voxels into one, while leaving other voxels empty.

Brain borders are also influenced by partial volume effects from the cardiac
motion. Each heartbeat causes the brain to move a little bit. Thus the ratio
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Figure 1.3 Bone brain interface artefacts (2) appear very bright and can be easily
confused with nearby lesions (1). Also the cerebellum (3) has a higher intensity in
the same range as developing lesions

between brain and cerebrospinal fluid (CSF) in a border voxel pulsates. As
the signal intensities are very different for these two this can lead to strong
changes between subsequent measurements. Thus these voxels have a high
variance which falsifies the calculation of the ADC for these voxels.

Another artefact is the so called T2 shine-through. It arises from the fact
that DWI is basically a T2 measurement which has been tricked into being
sensitive for molecular motion by using very high gradient fields. But the
original T2 contrast still adds to the image. Thus lesions like tumours, which
are bright on T2 weighted images, are also bright on DWI and might be
mistaken for ischaemic lesions. Fortunately these do not affect the ADC.

Last but not least are the eddy currents. The change in the magnetic flux
from turning on and off the gradient fields induces currents in all metallic
parts of the MRI machine. This can result in persisting magnetisation of
these parts, which then overlaps with the field in the scanner. Thus the
magnetic field differs from the calculated one and the image is distorted.
Usually this is seen as shearing, shifts and scaling along a single axis of the
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a) b)

Figure 1.4 A sub-acute stroke lesion becomes visible on FLAIR a) and is very
bright with a well defined border on DWI b). In this state it is too late for any
treatment. Also the different resolution of FLAIR and DWI becomes apparent in
this direct comparison.

resulting image. These can mostly be compensated by shielding the coils and
calibrating the machine [37]. But they may still create problems at interfaces
between brain and CSF [38].

1.2.3 FLAIR

Fluid attenuated inversion recovery (FLAIR) is another technique from the
early age of MRI, published first in 1992 [39]. It consists of a modified T2

where the signal from the CSF is suppressed.

Basic Idea The T1 relaxation time of CSF is way longer than those of the
brain tissues. This can be used to effectively null the signal of CSF. After
an inversion (180◦) pulse the magnetisation is inverted and starts to decay
with T1 as described in section 1.2.1. So the magnetisation is anti-parallel to
the field B0. There is also a moment when the magnetisation becomes zero,
after a time TI, before it grows in direction of the field. TI is tissue specific,
as is the relaxation time T1.
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a) b)

Figure 1.5 On FLAIR a) the collateral arteries (C) are partially visible as fine
white lines. They indicate the regions of hypoperfused tissue where in this patient
a lesions is already visible on DWI b). It is clear that the actual size of the lesion
is largely different from the visible collateral arteries and that they are just an
indicator for the lesion.

Notably at the TICSF of the CSF the brain tissues have already regained
much of their equilibrium magnetisation. Thus at TICSF a spin echo pulse
sequence is started. The spins of the CSF have no magnetisation at this
moment and thus cannot be flipped while the spins of the brain tissue are
flipped. The result is a T2 spin echo without any signal from the CSF.

With this technique any tissue with known TI can be suppressed. At the
cost of tissue with similar TI having a decreased signal. Fat is such a can-
didate which often obscures information in MRI and thus is often subject
to suppression. FLAIR corresponds explicitly to the suppression of the free
water in the CSF.

Interpretation FLAIR images have the advantage that partial volume effects
in borders with the CSF are absent. So the T2 values close to brain-CSF
borders can be investigated.

All types of lesions which are characterised by a changes T2 value can be seen
on FLAIR. In a stroke scenario it helps to distinguish cytotoxic oedema from
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the infarct core. Thus if a lesion is seen on DWI, but not on FLAIR, it might
be reversible. If a lesion is seen on DWI and FLAIR and has a below normal
ADC value it is part of the infarct core and already dead tissue (figure 1.4).
Lesions seen on FLAIR which show no decrease in ADC correspond to other
diseases. For example leukoaraiosis is often encountered in connection with
stroke [40].

Another useful effect is that the collateral arteries show up on FLAIR [41].
Although the usual low resolution of FLAIR limits the visible amount, espe-
cially if they are (partially) in the gaps between the slices. It still allows to
estimate the area in which collateral circulation takes place (see figure 1.5.

1.2.4 ToF

Time of flight angiography is in its basic form stems from 1988 [42]. It allows
to get a clear signal from flowing blood without the need for a contrast agent.
This allows directly to create a map of the arteries.

Basic Idea If a spin is subjected to a series of RF pulses with a short repetition
time TR, it cannot reach its equilibrium state between the RF pulses. The
magnitude of the magnetisation decreases, until it reaches a steady state
magnetisation Mss:

Mss = M0
1− e−TR/T1

cos(βp)e−TR/T1

M0 is the magnetisation in thermal equilibrium and βp the flip angle of the
RF pulse, as described earlier. The series of RF pulses is called the saturation
pulse. A T1 measurement of the saturated spin yields a lower intensity

Now an entire slice is saturated and then T1 is measured after a short delay.
Material flowing into the slice, blood in a clinical application, was not sub-
jected to the saturation pulse. It shows the usual T1 intensity. Note that
flows inside the slice are not visible as these are subject to the saturation
pulse.

ToF can also be done in a 3D version with enhanced resolution. Here an entire
slab (a 3D volume) is saturated, i.e. the RF pulse contains all frequencies
corresponding to the slab. Then again the T1 is measured. As the slab is
bigger than one slice small vessels with slow flow are likely not to receive
blood which was outside the slab during the start of the saturation pulse.
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Figure 1.6 Maximum intensity projection of a patient with middle carotid artery
(MCA) occlusion. The artery stops suddenly at the point of occlusion (1).

Another effect is that blood which entered the slab during the saturation
pulse is not fully saturated and shows only a reduced signal which is still
higher than the signal from the saturated tissue. So 3D ToF shows a gradient
in the blood vessels depending on the point during the saturation pulse when
the blood entered. Imagine the blood flows from below into the slab, and a
human head is measured. The blood will be brightest on the entry-points, the
carotid arteries. It will then loose intensity, tracing the blood flow with time
until the signal drops to invisibility in the smaller branches. Thus human
heads are usually measured in two overlapping slabs, to increase the signal
of the upper part of the brain [43].

Interpretation Looking at the single slices of a ToF has usually little value.
A very skilled radiologist can trace the vessels slice by slice and reconstruct
the vasculature in his head. For everybody else there are maximum intensity
projections (MIP).

For a MIP the scanned 3D volume is projected to a plane. The intensity of a
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point on the plane is determined by the brightest point which was projected
onto it from the 3D volume. The projection plane can be rotated freely
around the 3D volume, creating the impression of looking at a 3D model of
the arterial tree.

With the help of this visualisation tool the arterial tree can be scanned
for missing branches or stenosis. A partial occlusion will be visible as a
stenosis with a branch of reduced intensity behind it. A complete occlusion
corresponds to a missing branch where an artery suddenly stops (figure 1.6).
This can be difficult to spot if the thrombus sits just behind a bifurcation.

The hypoperfused area can also be estimated by comparing the amount of
arteries on both sides of the hemisphere. But this is a very rough guess.

1.2.5 SWAN

Susceptibility weighted angiography is the newest amongst the techniques
used for diagnosis in stroke. It is a susceptibility weighted imaging sequence
tied to the manufacturer General Electrics. Similar sequences are available
from all major MRI manufacturers (SWI by Siemens, SWIp by Phillips, BSI
by Hitachi and FSBB by Canon) which produce almost identical images.
SWAN produces two images. The signal magnitude is called SWAN and is
easily read by humans. The signal phase is called phase image and useful for
distinguishing thrombus from artefacts.

Basic Idea SWAN is a susceptibility weighted sequence and is an exten-
sion to the T2* weighted imaging. According to General Electrics it is a
multi-echo T2* sequence combined with a special reconstruction algorithm
[44]. Technical details of the sequence have been presented at the ESMRMB
2008 conference [45] but the publication seems to be confidential and is not
available.

Interpretation The intended purpose of the SWAN was to show the veins.
Veins appear as fine black lines on SWAN whereas normal brain tissue is
white. The black appearance of the veins is due to the magnetic defect
caused by the iron atom of the deoxygenated haemoglobin in the veins. Iron
in oxygenated haemoglobin is in a different configuration and doesn’t pro-
duce a magnetic defect. The iron of the clotted blood in the thrombus is in
a similar configuration as the deoxygenated haemoglobin and causes a sim-
ilar defect in the magnetic field. Because of the high local density of iron
atoms in the thrombus this defect is larger than the one of the veins and the
thrombus appears as a black spot on the image (figure 1.7). Veins are easily
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a) b)

Figure 1.7 Slices of a SWAN with a thrombus a) and a calcification b) inside the
circle. Just by their appearance they are indistinguishable.

distinguished from the thrombus by their elongated form. Calcifications also
appear black on SWAN and can be easily confused with the thrombus but
they can be identified by looking at the phase image. Furthermore calcifica-
tions tend to appear always in regions of the brain where a thrombus cannot
appear, like the mid-sagittal plane.

On the phase image of the SWAN in sagittal view the thrombus appears as
a black vertical double cone with the cones touching at the points (figure 1.8
a)). At the touching point it is sourrounded by a white ring. A calcification
however appears as the same structure with inversed colors (figure 1.8 b)).

Microbleeds are very small haemorrhages and usually don’t provoke any
symptoms. They are constituted of a small amount of clotted blood in the
brain tissues and are another type of object which can be easily confused
with the thrombus. They appear as black dots, identical to the thrombus,
but they are usually smaller and not close to the arteries. As these small
bleeds are clotted blood they are technically identical to a thrombus. An



36 CHAPTER 1. STROKE DIAGNOSIS

a) b)

Figure 1.8 Sagittal view of a thrombus a) and a calcification b) on the SWAN
phase image. The pattern of the thrombus is black on top and bottom with a
white ring in the middle. The calcification shows the inverse pattern. Due to the
image resolution these patterns are smeared but the primary colour and the small
amount of the inverse colour around the middle are still visible.

increased number of microbleeds might indicate a vascular disease. Which
in turn can contraindicate thrombolytic therapy. Also other haemorrhages
appear as large black areas. They are usually larger than the thrombus and
easy to spot.

Special care is needed, if a thrombus intersects with a vein. Sometimes the
border between thrombus and vein is not clear.

All objects made from clotted blood, i.e. thrombus, microbleeds and haem-
orrhages, are subject to blooming artefacts. They appear bigger than they
are in reality. For the thrombus this effect can be partially estimated by
looking at the diameter of the artery it is attached to.

1.2.6 Diagnosis Pipeline

All of the above mentioned MRI modalities are used together in clinical stroke
diagnosis. Each MRI modality provides an extra piece of information and
all together they provide ample information for a treatment decision. All
together the MRIs take around 10 minutes to acquire. The first modalities
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can be already viewed while the last are taken to speed up the diagnosis.
The diagnosis pipeline is as follows:

• NIHSS

– Provides first estimation about the affected brain region before
the MRI

• DWI and ADC

– Provides size and position of the cytotoxic oedema

– Affected hemisphere

• FLAIR

– Provides the size of the core and in comparison with the cytotoxic
oedema from DWI an estimate of the penumbra.

– Allows to distinguish the lesion from the current stroke and old
lesions from previous incidents.

– Rough size of the penumbra can be estimated from collateral ar-
teries

• SWAN

– Allows to distinguish between ischaemic and haemorrhagic stroke

– Gives away the thrombus location and size. The lesion location
from DWI speeds up the search as the thrombus is nearby.

– The number of microbleeds helps with assessing the risk for haem-
orrhages through thrombolysis.

• ToF

– Verifies the thrombus position through missing parts in the arterial
tree.

With this information the treatment decision detailed in section 1.1.2 can be
done immediately.
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1.3 Automatic Feature Extraction from MRI

Extracting all the information described in section 1.2.6 by hand from the
numerous MRI slices is tedious. Furthermore the feature quality strongly
depends on the experience of the radiologist interpreting the images. Large
parts of the available information are not even considered in the standard
scenario because it takes too long to extract them. For example the lesion
volume on DWI has been shown to be a predictor for the patients outcome
in retrospective studies [1], but manually measuring the lesion volume would
take too much time in an acute case.

This is the point where (semi) automatic methods for the analysis of MRI
data come into play. A computer could measure the volume of a lesion in a
second where a human would need around 30 minutes. There were a lot of
tries to develop automatic methods for parts of the diagnosis pipeline above.
So far none of them was good enough to be generally accepted in clinical
routine.

Beginning with general considerations on working with MRI volumes, this
section will give an overview of the existing strategies for automatic feature
extraction which have been applied to the stroke MRI modalities.

1.3.1 General Considerations

Working with MRI data-sets comes with some restrictions compared to 1D
signals or conventional 2D images. They are true 3-dimensional volumes,
with grey values ranging between zero and several thousand for each voxel.
On one hand this opens up new ways of analysis, on the other hand it poses
some problems.

Data-Set Size One data-set may consist of multiple scans of one patient.
These may be from different modalities or different points in time. A stroke
data-set may consist of a DWI (which includes the ADC map and the b = 0
scan), a FLAIR, a ToF and a SWAN (with the corresponding phase image).

In DICOM format it would take up around 400 to 500 Mb of disk memory.
If converted to double precision values for analysis, it gets to the range of 1
Gb per data-set. Considering that standard algorithms 5 may easily take up
to 10 times the memory of the input variable, a workstation with at least 16

5Standard algorithms in this sense are common image analysis algorithms, which are
found pre-implemented in software packages like Matlab.
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Gb of RAM is mandatory. For comparing multiple exams at the same time,
this is still not enough. Having 32 Gb of RAM or more is recommended for
working comfortably with data-sets of this size. With the ongoing technical
development this will be probably a non issue in the future, but currently it
has to be considered.

There are some strategies to reduce the amount of data. Around 30 to 50% of
an MRI scan consists from the air around the head, which can be discarded
as it does not carry any useful information. As in stroke the interest lies on
the brain and the vasculature, skull stripping algorithms [46] are the method
of choice to reduce the volume. Furthermore many diseases of the brain are
limited to only one hemisphere, which in turn allows to exlude one half of
the data. All together this might cut the memory requirement for an exam
by up to 80%.

If a disease is restricted to certain anatomic regions, anatomic labelling [47]
can be used to reduce the amount of data further.

Data Quality Most MRI data stems from clinical scanners and hospitals
usually have a tight budget and time plan. The MRI machines need to
be available to many patients so scan times need to be short. So the scan
times are chosen as short as possible which reduces the image quality to the
minimum where they are still human readable.

Unfortunately humans are excellent at pattern recognition which means that
human readable is actually very difficult to read for a computer. The human
brain can correct for an astonishing amount of noise an distortions. Clin-
ical MRI tends to be of low resolution and plagued with artefacts. Thus
developing automatic methods on this type of data is a real challenge.

Imbalanced Data A single SWAN has around 70 million voxels. The throm-
bus captured on this modality has between 200 and 3000 voxels which is
less than 0.004% of the volume. Also on MRI of other diseases the actual
disease is very small compared to the volume of the scan. This massive im-
balance renders most machine learning algorithms useless for application on
the raw data. Pre-processing needs to define a region of interest to equalise
the balance in order to use machine learning methods.

Noise MRI data is affected by several sources of noise. One part comes
from the machine itself due to imperfect magnetic fields and thermal noise
in the coils used for generating and measuring the RF pulses. Another part
comes from the effect of doing a measurement in the quantum mechanical
sense which adds uncertainty to the result. Next up the line is the fact that
one voxel is averaged over all the different tissues inside which changes the
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result depending on the sample position. All this noise is amplified with the
massive amplification needed to measure the tiny NMR signals. Finally the
digitalisation and processing of the signals adds another layer of noise.

Gaussian and Poission noise occur in every measurement, while some other
types like Rician noise [48] may be mixed in. A sensible correction of the
noise can only be done on the signals themselves and is therefore best left
to the manufacturers of the MRI machine. Deconvolution techniques on
the final images are hopeless, as the point spread function is unknown and
location dependent. Also wavelet denoising is more likely to add gradients
to the images rather than to remove noise. The best approach might still be
not to do denoising at all, or to use a classical median filter. This is viable
because the signal of the diseases on MRI are far above the noise level most
of the time.

Evaluation of Automatic Methods Even though some frameworks for gener-
ating artificial MRI data exist [49], the gold standard for the verification of
algorithms are still manually labelled ground truths. Manual labelling might
take several hours per patient and needs to be performed by an experienced
radiologist. For once this is expensive and results in small training and test-
ing data-sets and it is subject to the problem of intra- and inter-observer
agreement [50]. Thus the performance of an algorithm is often rated by com-
paring the difference between the algorithm and the manual labels to the
inter-observer agreement.

1.3.2 Collateral Arteries Segmentation

Currently there is not a single publication concerned with the automatic
segmentation of the collateral arteries. Not on FLAIR or any other imaging
method.

Manual segmentation of the collateral arteries is not performed either. In
the studies which use the collateral arteries the amount of collateral arteries
is attributed a grade by experts [51], i.e. an indirect rough measurement.
On the FLAIR of the stroke data-set available for this work (section 4.1) a
sensible detection of the collateral arteries is not possible. Due to the gaps
between the slices they are only partially visible. A higher resolution FLAIR
would be necessary.
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1.3.3 Thrombus Segmentation

No automatic segmentation method for the thrombus on MRI has been pub-
lished yet. There are a small number of publications about the semiautomatic
segmentation of the thrombus on CT and CTA [52, 53, 54, 55, 56]. Only the
last three of them are about thrombus segmentation in the brain. They
have in common that they need a manual seed to get the algorithm started,
i.e. they are region growing algorithms and not able to find the thrombus
position by themselves.

In Egger et al. [52] the border of the thrombus is segmented manually on one
slice. This manual segmentation is then propagated to the next slices with
a graph cut algorithm. As the border of a thrombus on SWAN is usually
a strong contrast this could be applied to stroke MRI as well. But in cases
when veins cross the thrombus it will fail.

In Olabarriaga et al. [53] as well as in the previous method thrombi in
aneurysms are segmented. Such a thrombus encloses an artery. Here the
artery is first determined by manual start and end points and an additional
manual vessel border segmentation on one slice. Then a deformable model
is applied to segment the thrombus. In a deformable model a surface is
deformed by outer and inner forces. The outer forces are based on the grey-
level values of the image and draw the surface to points where a border
between a thrombus and other tissue is likely to be. The inner forces punish
derivations from a spherical shape, and keep the volume enclosed by the
surface compact. Given a proper seed-point, this could actually be used on
SWAN, as the inner forces would not allow the segmentation to grow too far
into crossing veins.

Qazi et al. [54] investigate the segmentation via thresholds. They conclude
that the thrombus can be segmented by user defined thresholds if other areas
are excluded. The vital point is that the area of the thrombus needs still to
be found by hand. This is not adaptable to MRI as a thrombus on SWAN
is not segmentable by a simple threshold.

Once again CTA is used by Santos et al. [55]. Manual seed-points were
placed before and after the thrombus and then the region of the artery was
obtained by intensity based region growing. The same was done with the
contralateral artery and their centerlines were mapped to each other by a
3D B-spline. Then the thrombus was assumed to be the part which was
missing in the occluded artery with respect to the contralateral artery. This
approach suffers from two major problems. The first is the asymmetry of the
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brain vasculature. The diameter on one side does not need to be identical to
the other side. Second this only works for partial occlusions, when there is
still blood flowing past the thrombus, or the artery is filled from behind via
the collateral circulation by the contrast agent. Even on CTA this appears
to be only 51% of the cases. It would be difficult to adapt this method to a
ToF as the collateral circulation is not fast enough to be detected by ToF.

Finally Riedel et al. [56] used an intensity based region growing which re-
quired the user to specify a seed point inside the thrombus. This time CT
images were used.

To summarise this there is currently no method to automatically locate the
thrombus. If the thrombus is located manually, intensity based region or
surface growing can delineate the thrombus on CT and should be able to do
the same on SWAN. With the restriction that veins, which are also black on
SWAN, might be adjacent to a thrombus and could perturb a region growing
approach. The solutions to the thrombus location and segmentation problem
which have been developed in this work are discussed in section 4.3.

1.3.4 ToF Arterial Tree Segmentation

Arterial tree segmentation is probably the best explored area of all stroke
MRI sequences with the first methods appearing in the early 90’s. The
available methods comprise a large range of fields from Hessian based filters
to machine learning models. A pretty extensive review of methods until
2009 is given by Lesange et al. [57]. Despite the numerous approaches it
remains an active area of research where new methods are published regularly
[58, 59, 60, 61, 62, 63].

The thrombus is found at the end of an artery where it sits and blocks the
blood flow. Intuitively this would give a segmentation of the arterial tree
a high values, as only all ends of arteries would need to be checked to find
the thrombus. Unfortunately it turns out that on the CHSF stroke data-set
(section 4.1) many arteries disappear far before the thrombus. Supposedly
the blood flow before the thrombus is sometimes too slow to appear on ToF.
So the arterial tree segmented from ToF of clinical quality has no predictive
value for the thrombus location.
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Figure 1.9 A developing lesion on DWI showing the different stages of develop-
ment. The lower left of the lesion (inside the box) has an intensity like the normal
tissue. Towards the right side of the lesion the intensity gradually increases. The
right part of the lesion is already well developed and shows strong borders. Most
publications only deal with well developed lesions and thus can exploit the high
intensity and strong borders. For the hyper-acute phase weak or no borders and
low intensities like on the left side make a major part of the lesions and complicate
the segmentation task.

1.3.5 DWI Lesion Segmentation

The lesion size on DWI is a popular predictor for patient outcome, and thus
numerous attempts have been made to segment the lesion on DWI. For a
review of automatic methods available until 2015 please refer to [64].

Stroke lesions are visible on several MRI modalities, depending on the lesion
age. The lesion age is usually divided into three categories: acute, sub-acute
and chronic. The hyper-acute phase is neglected in most publications because
it is very similar to the acute phase, but intentionally added here. Table 1.1
gives the appearance of the lesion on DWI with respect to the normal brain
tissue during the different phases.

Between the phases the hyper or hypo-intensities develop gradually. Also
the lesion is not one compact block. It consists of sub-regions with varying
degree of damage. Thus a lesion which appears acute on one side might
already be in an sub-acute state on its other side. On top of that, the degree
of hyper-intensity itself in an (hyper-)acute lesion does have a high variance
(compare figure 1.9).

For this work only hyper-acute lesions are of interest. Hyper-acute means
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Table 1.1 The different phases of stroke. The appearance of the lesion on DWI
ADC and FLAIR during the phases is given as well as the period of the phases.

Phase DWI ADC FLAIR Period

Hyper-acute hyper-intense hypo-intense not visible hour 0-12
Acute hyper-intense hypo-intense not visible day 1-7
Sub-acute hyper-intense not visible hyper-intense week 1-3
Chronic hypo-intense hyper-intense hypo-intense after week 3

within the first hours after symptom onset, i.e. the time when patients
arrive at the hospital usually. This is the area where the least publications
are available. In the sub-acute phase the crisp hyper-intense signal on FLAIR
makes lesion segmentation a task similar to tumour segmentation, for which
many algorithms already exist. Likewise in the acute phase the lesion is
already well developed with a clear border visible on DWI. The hyper-acute
phase on the other hand is very difficult because the lesion is starting to
develop and thus the border of the lesion might be anything from a soft
gradient to a sharp line. Also the amount of hyper-intensity is far from
its peak value. Some of these developing lesions show only a local hyper-
intensity on DWI with almost no hypo-intensity on ADC. The only way a
neurologist can identify these lesions is by symmetry, i.e. there is no similar
structure in the other hemisphere.

No published method specially targets the hyper-acute stroke lesion segment-
ation. However methods for the acute phase work to some degree. In the
following two recent methods are presented which demonstrated excellent
results for the acute phase and at the same time demonstrate different ap-
proaches towards the segmentation problem.

In today’s segmentation algorithms convolutional neural networks (CNN)
have become prevalent. They are also tried on the lesion segmentation prob-
lem. For example almost all submissions for the ISLES 2017 stroke lesion
segmentation challenge were based on CNNs with varying architecture, but
with rather mediocre results ( the best Dice coefficient being reported as
0.31). One example of a well performing architecture is given by [65].

The core idea of their method is to use a CNN (a EDD-net is used) to assign
a lesion probability to every voxel. This probability map is thresholded, and
the resulting connected components are fed to another neural network (the
MUSCLE-net) to classify the components into lesion and artefacts.

The EDD-net is fed with image patches, not with slices. This overcomes
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the problem that a lesion makes up only a small part of the MRI volume
which causes an under-representation of the lesion in the data-set. In the
patches corresponding to an area with lesion, the lesion is well represented.
The convolution layers of a CNN loose small details and thus also small
lesions. Their very simple but effective strategy to keep those small lesions is
to concatenate the original image patches with the extracted feature vectors
before the deconvolution layers of the EDD-net. The output is a lesion
probability map which is thresholded to obtain a binary mask. The lesion
and a couple of artefacts which are similar to a lesion are segmented in this
first stage (see section 1.2.2 for a description of the artefacts on DWI).

In the second stage, the binary mask is first decomposed into connected
components. For each component a input vector is constructed as follows:
multiple image patches of varying size with the component in the centre and
one corresponding patch with the probability map from stage one. These
input vectors are fed to the MUSCLE-net which determines which of the
components are artefacts and lesion.

It is remarkable, that Chen et al. achieved good segmentation results over a
large range of lesion sizes and intensity variations. Most other publications
avoid to show images of lesions with varying intensity. On the downside, by
the nature of the connected component analysis used, their algorithm will be
unable to separate lesion and artefacts if they are connected on the image.
And they missed some of the very faint parts of the lesion. Nevertheless it
is a remarkable work and they achieved unusual high Dice coefficients [66],
around 0.61, for small lesions. This CNN architecture is quite complicated
but similar results can be achieved with simpler CNNs (see section 4.4).

The second algorithm uses ζ images [67]. A value called ζ is calculated for
each voxel:

ζ =
1

k

k∑
i=1

(x− ni)−
1

k(k − 1)

k∑
i,j=1

(nj − ni) (1.2)

The first term is the average intensity distance between the intensity x of a
point and the intensities ni, i ∈ {1, . . . , k} of its k nearest neighbours . The
second term is the mean intensity distance between the nearest neighbours.
ζ is a measure of anomaly of a voxel with respect to its nearest neighbours. A
cube of 3×3×3 voxels is used as the neighbourhood. ζ is used in conjunction
with an atlas of normal ζ values. The atlas is constructed as follows:
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A number of DWIs of normal patients, without any lesion, are coregistered to
a template brain. Then the ζ values for each patient and voxel are calculated.
A normal ζ map is created by calculating the median of each voxel across
the patients.

To find the lesion of a patient, his DWI is also coregistered to the template
brain and his ζ values are calculated. The normal map is subtracted from
his ζ image. Regions with a value bigger than zero indicate regions of strong
anomalies. After some automatic adaptive thresholding, a binary mask of
the lesion is obtained.

This method has a very unique approach to lesion segmentation. It is the
only atlas based stroke lesion segmentation, one of the few unsupervised
methods and it can easily cope with the artefacts on DWI which tend to be
at roughly the same location for most patients. Also lesions which intersect
with the artefacts should not be a problem for this method. On the downside,
artefacts which are shifted to unusual positions during the coregistration step
will be detected as lesions. It is probably unsuited for weak lesions, as their
degree of anomaly is also weak compared to the artefacts. On the CHSF
stroke data-set (section 4.1) this method is not applicable, as the data-set is
too small to create a reliable atlas and no suitable coregistration template is
available.

Another approach is based on Fuzzy-C-Means ([68] and [69]). As the Fuzzy-
C-Means alone is not capable to delineate the lesions, both authors use the
strong edge of the lesion as an additional information. As detailed above,
the hyper-acute lesion does not necessarily have a strong edge. So for the
hyper acute case this approach is not very interesting. Nevertheless these
methods were tried (section 4.4.1) on the CHSF stroke data-set (section 4.1)
and delivered bad results, as expected.

Though not being a true segmentation method the approach by Nielsen et al.
[70] should be mentioned here. He used a CNN architecture reminiscent of a
SegNet [71] to predict the final lesion which would remain after treatment. It
is a bit out of the scope of this thesis to predict the development of the lesion,
but Nielsen’s work assures that CNNs can be used to process the lesion.
Also it might be interesting for future works, as the automatic prediction of
treatment success for the different treatment methods is planned as a follow
up to this thesis.

DWI lesion segmentation is not very different from any other lesion or tu-
mour segmentation task and thus hundreds of methods exist which might be
applicable. If the segmentation task is restricted to the hyper-acute phase
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the main properties of the lesion used by most algorithms, a strong edge
and a strong intensity change with respect to normal tissue, vanish. Thus
the number of methods who are promising drops to a few and there is none
which was designed for this specific case.

1.3.6 RAPID

RApid processing of PerfusIon and Diffusion (RAPID,[72]) is the only auto-
mated feature extraction pipeline which was developed for clinical use. It
uses perfusion and diffusion MRI.

From the perfusion MRI the time Tmax from contrast bolus application to
maximum intensity is calculated for each voxel. From the DWI the ADC
map is calculated. Both the Tmax and the ADC map are thresholded with a
patient independent threshold. After removal of small components the two
binary masks are compared. The mismatch between the two is the perfusion-
diffusion mismatch, an indicator for the penumbra.

RAPID provides a method to calculate the volume of the infarct core and the
perfusion-diffusion mismatch without the need for a trained radio/neurologist.
On the downside it operates with fixed thresholds. This means it cannot ad-
apt to individual variances of the patients. Thus the calculated values are
only a crude approximation. But they seem good enough to be worthwhile
for the treatment decision.

1.3.7 Summary: Automatic Feature Extraction

For none of the MRI sequences described in section 1.2 a fully automatic
feature extraction for the hyper-acute phase of stroke exists in literature. For
the thrombus on SWAN and the collateral arteries on FLAIR the literature is
a blank page. For the lesion there are a couple of methods for the acute phase
which are close enough to try them in an hyper-acute scenario, or to borrow
ideas from them. Furthermore ideas can be borrowed from segmentation
algorithms for brain tumour MRI or other diseases. The current trend for
segmentation algorithms is to use deep learning with CNN architectures.
This work is also oriented along these lines and sections 4.3 and 4.4 show
how to apply deep learning to the stroke segmentation problem.



Chapter 2

Machine and Deep Learning

The previously described problematic of stroke MRI segmentation has been
evoked decades ago but no solutions have been found so far. The traditional
image processing approach to image segmentation is obviously not flexible
enough for this type of problem. Or it must rather be said the problem is too
complex as that humans can engineer the needed filters and selection rules.
In the last years image segmentation contests are more and more dominated
by a class of supervised data driven methods, deep learning. Deep learning
is a subsection of machine learning. Machine learning itself is as old as
computers, originating in the need to fit models to measurement data. In
machine learning the human designs an algorithm, like a filter for an image,
and the numerical values for the algorithm are found, i.e. learned, by a
computer. This allows to test many strategies for a given problem without
having to worry about finding the best numerical values manually. Deep
learning refers to using large models where many processing steps are chained
together. These “deep” models have proven to be very powerful for a number
of tasks. The drawback to machine learning is that the learning part is very
resource demanding. This is the reason that in the past only small models
have been used and their application to images was mostly impossible due
to the limited computational resources available to researchers. With the
advent of GPUs for scientific computing the available computational power
drastically increased and machine learning with large models was suddenly
possible. They proved their power by achieving super-human performance
in the ImageNet challenge in 2015 [73]. Ever since deep learning models are
the gold standard for automatic image detection tasks.

This chapter aims to introduce machine learning, deep learning and some
of the models commonly used for bio-medical data-sets. It starts with some
necessary definitions and will then introduce the basics of machine learning.

48
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Figure 2.1 Slicing of a volume in five equally sized sub-volumes (left side) and
extraction of a larger slice from a volume (right side).

Following this the concept of deep learning will be introduced and building
upon that convolutional neural networks and recurrent networks. Finally
the Long Short Term Memory (LSTM) [89] based models as well as U-Net
variants are presented.

2.1 Definitions

2.1.1 Discrete Intervals

A discrete interval [a . . . b] with a, b ∈ N is a sequence of consecutive integers
which are defined by the intersection of the interval [a, b] with Z :

[a . . . b] = [a, b] ∩ Z (2.1)

2.1.2 Working with Volumes

Volumes in the sense of this work are hypercubes of an N -dimensional space
with a cartesian grid. Each position on the grid is attributed a value. Thus
the volume is a finite set of values (voxels) v(i1, i2, . . . , iN) : NN → R which
are indexed through their position on the grid, i.e. by N indices i1, i2, . . . , iN
with ik ∈ [1 . . . nk] . The nk are called the axis sizes of the volume. The
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Figure 2.2 Concatenation of two volumes A and B along different axis, forming
a new larger volume.

volume V can be written in a tensorial notation as:

Vi1i2...iN = {v(i1, i2, . . . , iN)|ik ∈ [1 . . . nk], k ∈ [1 . . . N ]} (2.2)

There are two major operations for manipulating volumes. The first is called
slicing which means to extract a sub-volume S from the volume by restricting
the range of one or more indices (figure 2.1). This can be written as:

Sj1j2...jN = (Vi1i2...iN )ik∈[a...b] a, b ∈ [1 . . . nk] (2.3)

Note that the sub-volume S is still in the same N -dimensional space as V .
But the axis size nk corresponding to the index jk of S is now smaller, i.e.
jk ∈ [1 . . . b− a+ 1] and nk = b− a+ 1. It may even happen that nk = 1.

The second operation is concatenation which means that two volumes V and
T are joined together (figure 2.2). This requires that for the axis sizes nk of
V and the axis sizes mk of T holds:

nk = mk ∀ k 6= l (2.4)

where l is the concatenation axis. The concatenation itself is defined as:

V ||lT = Cj1j2...jN =

{
Vi1i2...iN with ik = jk for jl ≤ nl

Ti1i2...iN with ik = jk, il = jl − nl for jl > nl
(2.5)

This definition of volume is aimed at working with real world volumes such as
MRI images or photographies. For these volumes one of the axis has a special
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name: the feature or channel axis and the remaining axes are called are the
image axes. For example a digital colour image usually has three axes. Two
axes define the image (image axes), and the third axis gives the red, blue
and green channel of the image (channel axis). Processing this image results
in extracting features for each pixel in the image. This creates a new image
with the image axes as in the original image and the channel axis becomes
a feature axis. The terms channel and feature are interchangeable. Which
one is used depends on the speaker having a signal processing (channels) or
machine learning (features) point of view. By convention in this work the
feature channel is always indexed by iN , i.e. the last axis.

2.1.3 Convolution

In general the convolution of two functions f, g ∈ L1(Rn) is defined as:

(f ∗ g)(x) =

∫
Rn

f(x− t)g(t)dt (2.6)

This can be restricted to the discrete convolution of two functions f : A →
R, g : B → R with A,B ⊂ NN :

(f ∗ g)(x) =
∑
y∈B

f(x− y)g(y) (2.7)

Note that A will be a finite set for all applications in this work. On finite
sets it can happen that (x − y) /∈ A. In this case there are two approaches:
the first one is to restrict the sum to values of y such that (x− y) ∈ A. This
is the “valid” discrete convolution:

(f ∗ g)(x) =
∑

{y∈B|(x−y)∈A}

f(x− y)g(y) (2.8)

The second option is to set f(x − y) = 0 ∀(x − y) /∈ A. This is commonly
called zero padding and allows (f ∗ g) to be defined on the same set A as f .
Therefore it is often referred to as the “same” (size) convolution:

(f ∗ g)(x) =
∑
y∈B

f(x− y)g(y) |f(x− y) = 0 ∀(x− y) /∈ A (2.9)
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Throughout this work zero padding is used, if not stated otherwise.

The common use case for convolutions in machine learning is their applic-
ation to volumes, as defined above. Some naming conventions have been
established for this. f becomes the input volume (or image) with axis sizes
nk and g is the convolution kernel with axis sizes mk. The x and y become
indices for the volumes f and g. The channel or feature axis has a special
role. By convention g is the identity along the feature axis and the output
of the convolution can have multiple features in contrast to the definition
above. The number of input features is nN , given by f . The number of
output features is no and a parameter of the convolution operation. This is
achieved by packing multiple convolutions into one operation, one for each
output feature. A from above is now the set of valid indices for the input
volume f and is defined as A = {(i1, i2, . . . , iN)|ik ∈ [1 . . . nk], k ∈ [1 . . . N ]}.
As there are multiple output features the kernel g gets an additional axis and
thus the indices of g are in the set B = {(j1, j2, . . . , jN+1)|jk ∈ [1 . . .mk], k ∈
[1 . . . N + 1],mN = nN ,mN+1 = no}. The resulting volume of the convolu-
tion operation has the same axis sizes as f except for the feature axis. The
convolution with zero padding written in the terms of volumes becomes:

ak = ik − jk + dmk/2e k ∈ [1 . . . N − 1] (2.10)

aN = jN (2.11)

fa1a2...aN = 0 ∀(a1, a2, . . . , aN) /∈ A (2.12)

(f ∗ g)i1i2...iN =
∑

j1j2...jN

fa1a2...aN gj1j2...jN iN (2.13)

de denotes the ceiling function. In many publications the kernel size is split
into a image and feature part, i.e. the convolution operation defined by
equation 2.13 would be described as a convolution with a m1×m2×· · ·×mN−1

kernel and mN input features/channels and mN+1 output features/channels.
The number of input features is determined by the size of the input image
f , i.e. known, and thus almost always omitted. This way of speaking is also
adapted in this work.

2.1.4 Maximum Pooling

An important operation for contemporary neural networks is maximum pool-
ing [74]. It is defined for a volume f : A → R, A = {(i1, i2, . . . , iN)|ik ∈



2.2. MACHINE LEARNING 53

[1 . . . nk], k ∈ [1 . . . N ]} and a setB = {(i1, i2, . . . , iN−1, 0)|ib ∈ [−Kb . . . K
b], b ∈

[1 . . . N − 1]} called window where either Kb = Kb or Kb = Kb − 1 with
Kb ∈ N:

maxpool(f,B)(x) = max
y∈B

f(x− y) (2.14)

Note that this operation looks for the maximum in a neighbourhood given by
B along the image axis. Unlike the convolution the channels are not mixed
in this operation. Often the maximum pooling operation is used for down-
sampling the volume by restricting x. This restriction is called striding
with stride s ∈ N and A is restricted to A′ = {(i1, i2, . . . , iN)|ik ∈ [1, 1 +
s, 1 + 2s, . . . 1 + nss], ns = dnk/se− 1, k ∈ [1 . . . N ]} with de being the ceiling
function. The strided maximum pooling operation is then:

x′ = 1 + sx (2.15)

maxpool(f,B, s)(x) = max
y∈B

f(x′ − y) (2.16)

The strided maximum pooling reduces the size of the input image by only
considering every sth entry along all image axes and discarding all others.
The concept of strides can be used for convolution operations as well and
with fractional strides can even be used for up-sampling [75].

2.2 Machine Learning

Machine learning is, in the widest sense, building machines which are able
to learn a task by observation of examples. Currently these machines are
computer programs and the algorithms are closely linked to statistics and
aimed at modelling probability densities which describe some data. Any of
the current models obey the same principle.

A model f(x, θ) has a set of parameters θ which determine the model’s be-
haviour. The model has the task to map an input x to an output y such
that y = f(x, θ). Consider x as a random variable drawn from an unknown
probability distribution P (X). To construct a perfect model the conditional
probability distribution P (Y |X) would be needed. But for real applications
it is unknown and only a set of inputs X and their corresponding outputs Y
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are known. The goal of machine learning is to estimate θ so that the pre-
dictions ŷ = f(x, θ) are as close as possible to the true values y. In an ideal
case not only the known examples X are modelled well, but the model really
models (has learned) the unknown probability distribution. In another point
of view machine learning solves an optimisation problem on a given data
set (X ,Y), though not all machine learning problems can be mapped to an
optimisation problem.

There are numerous ways of constructing the model f(x, θ) and a large part
of machine learning research is dedicated to improving the models or finding
better ones. The second big topic in machine learning is how to estimate
(=learn) θ.

The most used approach for parameter learning is to calculate ŷ = f(x, θ) for
a small set of specific examples and an initial random θ and then compare ŷ
to y with the help of a loss function L(y, ŷ) = L(y, f(x, θ)). The loss function
measures the similarity of ŷ and y and by convention smaller values of L(y, ŷ)
indicate higher similarity. Then by evaluating the first and sometimes the
second derivatives of L(y, ŷ) with respect to θ a small correction ∆ is cal-
culated such that L(y, f(x, θ + ∆)) < L(y, f(x, θ)). This is called gradient
descent and although many alternatives have been tried, up to date it is the
most efficient method for training neural networks and many other machine
learning methods.

2.2.1 Loss Functions

When speaking about a loss almost never the value of the loss function for
a single sample is meant. Rather the loss function is calculated either for all
available samples or a subset (mini-batch) and the mean of all the individual
values is called “loss”. This denomination is adapted here, although the
mean is omitted in the definition of the loss functions. There are many loss
functions in use for machine learning but only the most important two for
segmentation tasks are covered here.

Cross Entropy The cross entropy can be directly derived from the maximum
likelihood estimation. Be q(x, θ) the probability densitiy described by the
model and θ the model’s parameters. Furthermore suppose a set of samples
X from the true probability distribution of p(x).
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Then the parameters θML which give the best approximation of X by the
model is given by the maximum likelihood estimation:

θML = argmax
θ

∏
x∈X

q(x, θ) (2.17)

Taking the logarithm and scaling doesn’t influence θML and turns the product
into a sum, which is easier to handle:

θML = argmax
θ

∑
x∈X

log(q(x, θ)) (2.18)

= argmax
θ

∑
x∈X

1

|X |
log(q(x, θ)) (2.19)

= argmin
θ

∑
x∈X

−1

|X |
log(q(x, θ)) (2.20)

= argmin
θ

∑
x∈X

1

|X |
log

(
1

q(x, θ)

)
(2.21)

= argmin
θ

E

[
log

(
1

q(x, θ)

)]
(2.22)

Where the expected value in the last line is already the cross entropy H(p, q).
The dependency on p is shown below. Thus minimising the cross entropy is
equivalent to a maximum likelihood estimation of the model’s parameters.
In practise this works very well and therefore cross entropy is possibly the
most used loss function. More commonly the cross entropy is written as the
sum of entropy H(p) and Kullback-Leibler divergence D(p||q):

H(p, q) = E

[
log

(
1

q(x, θ)

)]
(2.23)

= E

[
log

(
1

p(x)

)]
+ E

[
log

(
p(x)

q(x, θ)

)]
(2.24)

= H(p) +D(p||q) (2.25)
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Dice Loss The Dice coefficient [66] has long been a measurement of the sim-
ilarity of two sets A and B, defined as:

Dice =
2|A ∩B|
|A|+ |B|

(2.26)

It has the nice property to be bounded in [0, 1] which is good for numerical
stability. A value of 1 means the two sets are identical and 0 means no
overlap. This can be easily turned into a loss function, the Dice loss:

LDice = 1− 2|A ∩B|+ α

|A|+ |B|+ α
(2.27)

Now 0 means identity of A and B to make it a loss functions which can be
minimised. And α is a small constant which serves to avoid division by 0 if
the sets are empty by chance. The Dice loss directly measures segmentation
quality and therefore automatically takes care of class imbalance. In prob-
lems with severe class imbalance, such as segmenting very small objects in
medical images the Dice loss may outperform the cross entropy. An examin-
ation of the convergence properties and a generalised version of the Dice loss
is found in [76].

2.2.2 Gradient Descent

The most common class of methods for minimising a loss function is gradi-
ent descent. Classical gradient descent looks at the loss calculated over all
available samples. Then the derivative ∆ = ∂

∂θ
L(y, ŷ) is calculated and the

parameters are updated as θnew = θ − η∆ with the learning rate η. This
is repeated until convergence. Unfortunately this method does not always
find a good minimum and may be stuck at saddle points or spurious minima.
Many variants of gradient descent have been developed to circumvent this
weakness or to speed up convergence. A contemporary overview of gradient
descent variants used in deep learning is given by [77].

Stochastic Gradient Descent Calculation of the loss over all available samples
tends to provide a smooth error surface which can cause problems with saddle
points. If there are many similar samples it wastes performance on recalculat-
ing almost the same gradient over and over. The stochastic gradient descent
calculates the loss only for a single example between parameter updates.
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This leads to very different gradients for each update. While this may slow
down convergence it also helps with leaving saddle points or local minima.

Mini-Batch Gradient Descent In this version the gradient is calculated over
a small subset of all samples, the “mini-batch“. The gradient is smoother
between updates than with stochastic gradient descent but still varies enough
to avoid the problems of classic gradient descend. Using mini-batches for
gradient descend is well established and used in conjunction with any other
improvements to gradient descend.

Momentum A ball rolling down a slope has a momentum which stabilises its
descent and makes the ball jump over small crevices without major changes
to its direction. On that idea a momentum term has been added to the
gradient descent [78], where a part of the last update −η∆last is added to
the current update:

θnew = θ − η∆− τη∆last (2.28)

With a momentum parameter τ . Ripples in the error surface have less influ-
ence and regions with gradients close to zero can be traversed quickly.

Adaptive Moment Estimation (Adam) Adam [79] has been used for training
all neural networks in this work. It keeps an exponentially decaying aver-
age of the first and second moment of the gradient in memory. This helps
quickly traversing planes with flat gradient like momentum and unlike mo-
mentum gets slowed down on steep slopes. Thus it is less likely to overshoot
a minimum following a steep descent and has less problems with oscillations
around minima.

2.3 Deep Learning

Building a house from bricks is much simpler than building a house in one
production step. This is the core idea to deep learning. Instead of having one
highly complex model f(x, θ) with millions of parameters θ, which is very
difficult to train, simpler steps are chained together. Dividing the model into
a sequence of smaller models, f(x, θ) = f1(f2(f3(. . . , θ3), θ2), θ1) , has the
advantage that at each stage fi of the model there are only few parameters
θi to consider. This leads to easier parameter estimation. At the same
time the chaining of (non-linear) models produces a highly complex model
with immense modelling capacities. So the whole model is complex, but the
individual steps are kept rather simple and thus relatively easy to learn.
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The building blocks fi(x, θi) can be basically any machine learning method.
But in the last years the usage of neural networks as building blocks has
become so prominent that many people confuse deep learning with deep
neural models or deep convolutional neural networks. The reason of the
high interest in neural models is very simple: they are easy to train, fast at
evaluation and many software packages are available which allow building
these models with ease. It doesn’t mean that these are the best possible
models, but for now they deliver the best known results.

2.4 Neural Networks

Neurons in a human brain inspired this machine learning method. Still it is
very far from being a model of the human brain. A neuron receives electrical
impulses (action potentials) from incoming connections of other neurons.
The connections to the neuron are via chemical synapses which transforms
the incoming action potentials into postsynaptic potentials. When the sum
of all postsynaptic potentials exceeds a threshold voltage (ca. -55 mV) the
neuron itself fires, i.e. sends an outgoing action potential. As well known a
network of these neurons (a brain) can solve an amazing number of tasks.
Reason enough to copy this concept.

2.4.1 Perceptron

The perceptron aims at modelling a single neuron. The incoming connec-
tions form an input vector ~x where each entry in ~x is one connection. Each
incoming connection in a neuron is connected via a synapse which can mod-
ulate the ”strength“ of the connection. This is reflected in the perceptron
by multiplying ~x by a weight vector ~w. The threshold voltage becomes a
threshold value b. So the output y of a perceptron is

y = Θ(~wT~x+ b) (2.29)

where Θ is the heaviside step function. The original perceptron [80] is a
linear classifier and therefore rarely used nowadays.
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Often more than one output value is desired. For this the weight vector is
replaced by a weight matrix W :

~y = Θ(W~x+~b) (2.30)

For modelling non linear functions the heaviside step function is replaced by
a nonlinear function called activation function F :

~y = F (W~x+~b) (2.31)

This version of a perceptron is called a fully connected or dense layer. Every
entry of the output ~y is influenced (connected) by every entry in ~x. Popular
choices for the activation function are sigmoids (e.g. the logistic function or
the hyperbolic tangent) and recently the rectified linear unit (RELU) [81].

For good performance in nonlinear tasks the perceptron is extended to the
multilayer perceptron. Here n perceptrons are chained together:

~y = Fn(~bn +WnFn−1(~bn−1 +Wn−1 . . . F1(~b+W1~x))) (2.32)

For n = 2 (and this holds for higher n as well) the universal approximation
theorem [82, 83] states that the multilayer perceptron can approximate con-
tinuous functions on Rk up to arbitrary precision. For higher precision the
number of parameters (or rows) in W1 needs to be increased.

There are two ways of speaking about multilayer perceptrons. In one each
intermediate result of an operation Fi is called a layer. In the other each
operation Fi is called a layer, which will also be the convention used in
this work. The word layer comes from the graphical representation of the
perceptrons and is used for the operations in any neural network. Note that
in general there are many possible operations apart from a dense layer.
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2.4.2 Neural Networks
Apart from the multilayer perceptron there are many ways to build a network.
They can be divided into two major types:

Feed Forward Networks The multilayer perceptron is the prime example of
a feed forward network. In a feed forward network the input ~x is processed
in steps such that each step only uses results of past steps back to ~x. Thus
the network can be represented as an acyclic graph which starts with ~x and
ends with ~y.

Recurrent Networks In contrast to the feed forward network a recurrent
neural network (RNN) can be a cyclic graph. A step can be dependent on
the result of a future step, or even its own result. Also network models with
a memory (i.e. ~y depends not only on ~x but also on all other inputs the
model has seen in the past or future) fall under the definition of a recurrent
network. This comes from the fact that ”memory“ can be represented by a
self loop in the model.

Both types are constructed as a sequence of operations, also called layers,
with simple to calculate gradients. This structure makes training with gradi-
ent descent (section 2.2.2) quite easy. Via the chain rule for derivatives the
derivative of the loss can be calculated analytically for each layer. This res-
ults in the gradient of each layer being dependent on the derivatives of the
following layers. This can be seen as the error being propagated ”backwards“
through the network in order to calculate the gradients of the individual lay-
ers. Hence the name ”backpropagation“ for training of neural networks with
gradient descent.

There are many choices for layers. The most popular ones are dense layers
(equation 2.31), convolution layers (equation 2.13) and maximum pooling
layers (equation 2.14).

2.4.3 Convolutional Networks

Networks built exclusively from fully connected layers can in theory model
any continuous function. This also works for images if they are linearised in
order to be represented as a vector ~x. In practise two problems arise which
make the use of fully connected layers undesirable.

The first is that fully connected layers are not translation invariant. This
is easily understood with an example of image classification. Assume that
handwritten numbers have to be detected on an image. Once the network
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has learned to detect the number ”2“ in the left upper corner of the image
it will do so quite well. But if the number ”2“ is moved to any other part
of the image it will no longer be recognised as the number ”2“. Thus the
training set needs to contain an example of the number ”2“ in any possible
position on the image. For handwritten numbers this is doable, but tedious.
For a set of natural images it may not be possible to acquire images with all
the possible translations of an object and with high resolution images (i.e.
many possible translations) the size of the training database would become
unmanageable.

The second problem is that the number of parameters grows with the input
and output size. For image segmentation tasks the input is an image and
the output is a (segmented) image as well. An image of resolution 512× 512
has 262144 pixels. With ~x and ~y of that size the matrix W of a single
perceptron would already have 68 719 476 736 entries. When working with
32 bit numbers this would correspond to 256 Gb of memory requirement. So
the models are too large for contemporary hardware.

The solution to both problems is the usage of convolutions. A convolutional
layer is written as

y = F (W ∗ x+ b) (2.33)

where the convolution is defined as the discrete convolution in equation 2.13.
The number of parameters in W now becomes a free choice as the matrix
multiplication is gone and convolution is defined for two signals of arbitrary
length. This solves the hardware issues, as the models size can be arbitrarily
scaled. Also the input and output no longer needs to be a vector but can be
a matrix or any higher order tensor.

The translation invariance comes from the fact that the convolution kernel
W is the same for every possible position of the input. So once the network
learns to recognise a number on one position on the image it automatically
will recognise it at any position.

The introduction of convolutions to neural networks suddenly made them
viable for image processing and classification tasks. Since then convolutional
neural networks (CNN) have become the most powerful and widely used
machine learning tool and have made tasks possible which were deemed to
difficult before.

But the use of convolutions comes with a cost. In a fully connected layer the
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Convolution

Maxpool

Pixel

Figure 2.3 An input image (bottom) is reduced in resolution with alternating
convolution and maximum pooling layers. The convolution layers have a kernel
size of 3 and the maximum pooling layers a window size of 2 and a stride 2. With
5 operations the final pixel on the top has a receptive field of 18. Note that the
receptive field grows exponentially with the number of maximum pooling layers.
This example also nicely demonstrates the pyramidal structure emerging from
multi-resolution techniques

output has access to all inputs. In a convolution an output pixel has only
acces to the part of the input given by the size of the convolution kernel.
This part of the input which is available to the final layer in a network is
called receptive field . The goal of all CNN architectures is to increase this
receptive field until it is large enough for the task at hand. For most image
analysis tasks this is the entire input image. Using large convolution kernels
is not possible as the computational complexity and amount of parameter
grows quadratic with the kernel size. Therefore the kernel sizes are set to
3× 3 or 5× 5 in most architectures.

But the receptive field can be linearly increased by stacking convolutional
layers. With two 3 × 3 layers following each other, the last one can “see” a
4×4 neighbourhood in the input layer. By stacking 3×3 layers, the receptive
field increases by one per convolution. Which means a lot of convolutions
must be stacked to have a receptive field as large as a reasonable input image.
The increase in receptive field per convolution can be drastically higher when
using maximum pooling layers [74] with a stride of 2. The stride induces a
subsampling of the image to a lower resolution. Figure 2.3 illustrates the
effect of alternating convolution and pooling layers on the receptive field.
With such a pyramidal structure of sufficient depth the last convolution will
have access to a (down-sampled) version of the whole image. For image
segmentation tasks this down-sampled image is once again up-sampled to the
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copy

maxpool 2x2
up-conv 2x2

conv 1x1

conv 3x3, ReLU

Figure 2.4 The U-Net architecture. Arrows represent operations and cubes rep-
resent feature maps where the height of the cube stands for the number of feature
maps and the width and depth of the cubes for the size of the feature maps. It
is clearly visible that the U-Net uses a pyramidal structure for feature extraction,
i.e. a sequence of feature maps of decreasing resolution. Then from the smallest
resolution there is an inverse pyramidal structure of up-sampling steps which lead
to a pixel-wise segmentation in the end.

original size in an inverse pyramid pattern. This concept has been known
for a long time [84] and is widely applied in todays CNNs. Tsung-Yi Lin et
al. [85] have a good overview of CNN architectures which use such pyramid/
multiresolution techniques.

2.5 Models

From the multitude of neural network models only some are useful for seg-
mentation tasks. The existing architectures which inspired this work or were
actually used are explained in this section.

2.5.1 U-Net

Three years after the breakthrough of convolutional neural networks for im-
age classification tasks [86] the U-Net [87] set a new standard for the segment-
ation of bio-medical images. It was not the first to be applied to bio-medical
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image segmentation tasks, but it combined multiple ideas which made it
outperform its precedessors. It is de facto the archetype of a convolutional
neural network for image segmentation.

As any classic convolutional neural network the U-Net subsequently down-
samples the input image in a compressing branch. At this stage features
at multiple resolutions are extracted (figure 2.4 left side). The resolution is
halfed with a maximum pooling layer and the number of features at each
resolution is doubled with a convolutional layer.

This is followed by an upsampling branch which increases the resolution back
to the input space (figure 2.4 left side). Notably transposed 2D convolutions
are used for upsampling, i.e. the upsampling operation is learned. The other
notable part is the use of skip connections, (figure 2.4 grey arrows, the copy
operation). The idea behind the skip connections is to use the features which
were extracted in the downsampling branch again during the upsampling in
order to preserve fine-grained details. This is one of the key-points which
allows this model to produce segmentations with pixel precision.

Finally the classification layer uses 1× 1 convolutions adopting the principle
of the all convolutional network [88]. This avoids fully connected layers and
their drawbacks all-together.

The U-Net has been successful in a number of bio-medical image segmenta-
tion tasks and is well accepted. As it combined all characteristics of a modern
convolutional neural network it is a good reference model.

2.5.2 Long Short Term Memory (LSTM)

Early recurrent networks had a problem remembering information for long
periods, like several thousand time steps. Hochreiter et al. [89] introduced a
special memory cell which was able to retain information for extended periods
of time. The LSTM can read and write to its memory. More important this
memory is never passed through an activation function. This effectively
combats the vanishing gradient problem and makes training this model very
stable.

The original LSTM works with a series of input signals ~xt. It has a so called
hidden state ~ht and cell state ~ct of the same size as ~xt. The cell state ~ct is
the models memory. The hidden state ~ht is the model’s prediction of ~xt.
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Figure 2.5 Visualisation of the operations defining the LSTM (equations 2.34 to
2.40. The gates which decide which part of the information to pass on are orange.
Green is the update to the memory cell.

With the Hadamard product ◦ the LSTM is defined by the equations

~A = ~ht||1~xt (2.34)

~ft = σ(Wf
~A+~bf ) (2.35)

~it = σ(Wi
~A+~bi) (2.36)

~ot = σ(Wo
~A+~bo) (2.37)

~dt = tanh
(
Wd

~A+~bd

)
(2.38)

~ct+1 = ~ft ◦ ~ct +~it ◦ ~dt (2.39)

~ht+1 = ~ot ◦ tanh(~ct+1) (2.40)

Where σ is the logistic function and the W are weight matrices and ~b biases.
What looks like a complicated model at first is very straightforward with the
proper explanation. The basic idea is that the model takes the input ~xt and
the previous prediction of the current input ~ht, updates its internal memory
~ct to ~ct+1 and then makes a new prediction ~ht+1 based on ~ct+1, ~ht and ~xt.
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For convenient notation the ~xt and ~ht are concatenated into a single vector ~A
(equation 2.34). The forget gate ~ft (equation 2.35) decides which part of the

memory should be either erased or kept. Thanks to the logistic function ~ft
contains values between 0 and 1. Thus in the left term of the memory update
(equation 2.39) every entry of the memory ~ct is multiplied by 1 (i.e. kept),
by 0 (erased) or by some value ]0, 1[ (i.e. the memory is gradually lost). On
the same idea the input gate ~it (equation 2.36) decides which part of the

memory ~ct needs to be updated. The memory update ~dt (equation 2.38) is

calculated from ~A and passed through a hyperbolic tangent. This activation
function serves to squash the input between -1 and 1 which is necessary to
avoid numerical instabilities by growing numbers in ~ct. With ~ft and ~dt the
memory is updated to ~ct+1. Finally the prediction ~ht+1 (equation 2.40) is
made by reading a part of the memory. Which part of the memory is read
is determined by the output gate ~ot (equation 2.37). The hyperbolic tangent
in equation 2.40 once again restricts the output range to the interval [−1, 1].
The data flow in the LSTM is illustrated in figure 2.5.

The original LSTM could have multiple parallel memory cells ~ct, but as in
practice mostly only one memory cell is used the description of the LSTM
was limited to one ~ct. All the gate functions (equations 2.35 to 2.37) are
fully connected layers (equation 2.31) with a sigmoidal activation function
thus the LSTM is a recurrent neural network.

Also the role of ~ht is not strictly fixed to be a prediction of ~xt. In fact it
can be any series of predictions which is connected to the input series ~xt.
For example if ~xt was the number of people who entered (or left) a building

in the last hour then ~ht could be the current number of people inside the
building (with an appropriate scaling so it fits the output range [−1, 1]).

Peephole LSTM An important modification of the LSTM is the addition
of ”peepholes“ [90]. Each gate can also use the memory ~ct for its decision.
Thus what is written to and read from the memory is also dependent on the
memory itself. Peepholes are added by modifying equation 2.34 to

~A = ~ct||1~ht||1~xt (2.41)

whereas the remaining formulas are not modified. In many circumstances
this improves the performance of the LSTM.
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Figure 2.6 Backpropagation through time illustrated at an example LSTM
with four inputs. The LSTM is unfolded in time which makes it look like an
ordinary feed forward network. But each gray box is indeed the same LSTM with
the same parameters. In the forward pass (first line) all hidden and cell states
are calculated. Then the losses for all pairs of hidden state and the corresponding
ground truth y are calculated. Then the errors are backpropagated as if it were a
feed forward network, producing a gradient ∆t for each step t. The final gradient
∆ for the parameter update is ∆ =

∑
t ∆t.

2.5.3 Backpropagation Through Time

Recurrent neural networks (RNNs) can be trained by backpropagation
through time. For this the network is unfolded, which means the loops
in the network are turned into feed forward connections by replicating the
networks structure. An unfolded LSTM is shown in figure 2.6, row one. After
unfolding the network is represented as a directed acyclic graph where the
original RNN is repeated over and over. In this unfolded representation most
RNNs are very deep networks, which makes it clear why RNNs are counted
as deep learning methods. But in contrast to a feed forward network many
layers share their weights.

The unfolded network is trained with backpropagation (i.e. gradient descent,
section 2.2.2), as if every layer had its own set of weights. The final gradient
for a parameter is the sum of all individual gradients which where calculated
for that parameter throughout the unfolded network. For example if a para-
meter w appears m times in the unfolded network it will receive m different
gradients ∆t. The gradient for w is then

∑m
t ∆t.

The calculation of the gradient by backpropagation through time is illus-
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forward

prediction

backward
concatenate

Figure 2.7 The principle of the bidirectional RNN illustrated for a bidirectional
CLSTM working on a 3D volume. The forward model (left side) processes the
volume slice by slice until the target slice. The backward model (right side) starts
from the top and processes the slices in reverse order until the target slice. The
output of both models for the target slice is concatenated (middle) and then passed
through a classification layer to produce the prediction. The forward network sees
only the data from the bottom to the target slice and the backward network sees
only the data from the top to the target slice. The concatenated network outputs
then contains information about the whole data volume and thus allows predictions
which take the whole volume into account.

trated in figure 2.6 at the example of an LSTM with four inputs. Here the
main advantage of the LSTM can be seen, the error which is backpropag-
ated through ~ct never passes through an activation function. So all errors
passed into the memory persist back to the first input and are not dimin-
ished. This allows the LSTM to be correctly trained on inputs with long
range dependcies.

For real time series with thousands of inputs the unfolded network might be-
come so large that it results in hardware problems. In these cases the back-
propagation is truncated at a specified depth ( truncated backpropaga-
tion through time). The loss at time t is only propagated back to time
t− k where k < t. Although this is then only an estimate of the gradient it
is still sufficient for training in many cases.

2.5.4 Knowing the Future

While the LSTM is well suited to prediction tasks on time series, sometimes
the knowledge about future events is necessary for a correct prediction. For
example if traffic jams should be predicted along a road then t is not the time
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but the location on this road. Suppose ~xt would be the traffic density then
a good prediction for the risk of a traffic jam might need the information
of the traffic density up and down the road from the loaction t. With the
LSTM model above only the ~xt−k, k ∈ N would be known to the memory
of the model. So the term future is relative to t and means the following
data-points. Of course the following/future data points need to be already
known to be integrated into the prediction. According to [91] there are two
strategies to incorporate knowledge of future events into an LSTM model.

Bi-directional RNN First is the bidirectional RNN approach [92]. For this
approach the entire signal must be known. Two LSTM models are trained in
parallel, one on the normal input series (forward) and the other one on the
inversed input series (backward), starting with the last input then the second
last and so on (compare figure 2.7). Thus for every t there are two hidden

states ~h1,t and ~h2,t from the two models available. ~h1,t contains information

only about the past and ~h2,t information only about the future. Together
they have the information about the whole signal and the final prediction
f(~h1,t,~h2,t) is made using both hidden states. This method has the drawback
that two models need to be trained and thus the amount of parameters and
training time are doubled.

Delayed Input The second approach is delaying the signal by a delay τ .
This means that the hidden state ~ht gives not a prediction for time t but
a prediction for the past time t − τ . Consequently the prediction made
for t − τ using ~ht has access to all future events which passed in the time
window [t−τ, t]. Thus a bit of the future is available for predictions. But the
drawback is that for an input time series of length N only N − τ predictions
can be made effectively excluding the end of the time series from predictions.
This can be circumvented by extending the input time series with τ fake
inputs of zero or constant value. But when τ becomes large the model needs
to deliver a prediction reconstructed from memory alone while dealing with
a repeated zero input. Imagine that τ becomes larger than the size of the
memory ~ct, then predicting τ steps at the end of the signal becomes nearly
impossible. Thus the method of delaying the input, while being resource
friendly, is restricted to delays which are short compared to the whole input
length. In contrast to the Bi-directional approach the delayed input can
be applied to real-time problems. For example a camera stream could be
processed in ”almost“ real time with a delay of some seconds.



70 CHAPTER 2. MACHINE AND DEEP LEARNING

2.5.5 Convolutional LSTM

Introduced by Shi et al. [93], the convolutional LSTM (CLSTM) brought
the power of LSTMs to the world of images. Instead of a series of values
(a signal), it takes a series of images as input, where each image may have
multiple channels as well. In the interest of a more general definition in this
work the CLSTM is defined for volumes using the notation from section 2.1.2.

The CLSTM corresponds to a LSTM with peepholes where the dense layers
have been replaced with convolutions. Thus the input no longer needs to be
a vector but can be a more general series of volumes X t

i1i2...iN
. Of course the

hidden state H t
i1i2...iN

and the cell state Ct
i1i2...iN

become volumes too. There
is little change to the equations, they become

A = Ct
i1i2...iN

||NH t
i1i2...iN

||NX t
i1i2...iN

(2.42)

ft = σ(Wf ∗ A+~bf ) (2.43)

it = σ(Wi ∗ A+~bi) (2.44)

ot = σ(Wo ∗ A+~bo) (2.45)

dt = tanh
(
Wd ∗ A+~bd

)
(2.46)

Ct+1
i1i2...iN

= ft ◦ Ct
i1i2...iN

+ it ◦ dt (2.47)

H t+1
i1i2...iN

= ot ◦ tanh
(
Ct+1
i1i2...iN

)
(2.48)

Note that the equations 2.43 to 2.46 now have convolution operations. Special
care has to be taken with the biases which are still vectors with length nN .
The addition of the vector happens along the channel axis iN as

(Ci1i2...iN +~b)iN=t = (Ci1i2...iN )iN=t + bt (2.49)

So each element bt of the vector~b is added as a scalar to the slice (Ci1i2...iN )iN=t.
The weights W are now convolution kernels.

Apart from the change to convolutions and that the input can now be an ar-
bitrary tensor the convolutional LSTM works exactly the same as the LSTM
with peepholes. But the convolutions introduce a new drawback to this
method, the receptive field (section 2.4.3) is restricted to the size of the con-
volution kernels. This severely cripples the CLSTMs capabilities to capture
spatial patterns, as seen in the experiments in section 3.1.3. Therefore a
CLSTM is never used separately but always multiple are used in a variety of
architectures.
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Figure 2.8 Visualisation of the operations defining the CLSTM (equations 2.42 to
2.48. It is almost identical to the LSTM (figure 2.5 apart from the added peephole
connection (the left downward arrow) and the change from matrix multiplication
to convolutions.

Architectural Principles for CLSTM

There are three types of architectures in which CLSTMs are used. All have
in common that multiple CLSTMs have to be trained.

CLSTM Stacks The inventors of the CLSTM [93] used a stack of four CLSTMs.
Stack means that the output of one CLSTM becomes the input of a follow-
ing CLSTM, very much like convolutional layers are stacked to create deep
networks. Through this stacking the receptive field is increased as it is in
CNNs.

Multi-Resolution Pyramid These architectures are integrating the CLSTM
as a building block into multiresolution architectures similar to the U-Net
(section 2.5.1). For example the convolution layers in the downsampling
path can be replaced by CLSTMs [94, 95] or the copy operations of the U-
Net are replaced by entire CLSTMs [96]. These architectures fully profit
from the massive increase of the receptive field through a multi resolution
method and at the same time can treat input series as compared to single
inputs of an U-Net.
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Multi-Directional CLSTMs Especially for 3D volumes one axis is treated as
the ”time“ axis of the input, i.e. the input is a series of 2D images. Along
the time axis the CLSTM can capture everything thanks to its memory,
i.e. along the time axis the receptive field is infinite. To remedy the small
receptive field of the CLSTM, each of the three axes of the 3D volume is
used as ”time“ axis. This yields three different 2D input series, one for each
axis of the 3D space. On each of the three input series CLSTM models are
trained, and thus for each of the three directions there is a model which
knows the entire input. In a bidirectional approach (section 2.5.4) on each
of the input series two CLSTMs are trained. This approach is for example
used by [97] and [98], though the latter are using not exactly a CLSTM but
a closely related LSTM variant.
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Chapter 3

New Approaches

The problem of stroke MRI segmentation has proven too difficult to be
solved with established segmentation methods from literature (see section
4.3). Thus it was necessary to improve and adapt these methods. This
research has led to new insights about neural network architectures. It res-
ulted in two new building blocks for neural networks, the transfer block and
the logic block and a couple of architectures which use them. Notably this
solves the inherent problems of the CLSTM. The CLSTM suffers from a
small receptive field and current workarounds lead to huge models which
are cumbersome to train and thus the CLSTM is rarely used. The logic
block removes the receptive field restriction and the leads to the logic LSTM
which provides all benefits of the LSTM while working on volumes like the
CLSTM. At the same time a logic LSTM uses less parameters than a compar-
able CLSTM in contrast to previous works [93, 94, 95, 96, 97, 98] which used
considerably more parameters than the CLSTM. This chapter describes the
technical details of these innovations as well as the experiments to validate
them.

3.1 Transfer Block

3.1.1 Motivation

In recent years convolutional neural networks have become the preferred tool
for pattern recognition. One big part of their success lies in the translation
invariance. The other part is the fact that through a clever choice of archi-
tecture the network is able to make decisions considering the whole image.

Section 2.4.3 describes how the receptive field can be increased by alternating

74
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convolutional and maximum pooling layers. This leads to pyramidal network
structures (see figure 2.3). CNNs have been very successful for image tasks,
but how do they actually work?

The common way to think about what happens in these networks is to think
of them as a series of feature extractors. Features are extracted subsequently
at multiple resolutions. Also the extracted features have to be robust in
the sense that they convey useful information for the following resolutions,
i.e. they survive the down- and up-sampling operations. The features in the
middle of the feature pyramid, after down-sampling and before up-sampling,
are very descriptive for the task at hand. Here the close similarity to auto-
encoders becomes apparent.

Another way of looking at the inner workings of these models is that inform-
ation is transferred across the image, so that each pixel in the final layer has
access to the whole image. Or at least a big part of it. Thus the receptive
field can be seen as the information intake area. Stacking convolutional lay-
ers is currently the only way to transfer information across the image which
is applied in practise. From a historical viewpoint, fully connected layers can
do the same job but come with the main problem that they are not transla-
tion invariant. That means they need to learn to detect an object for every
possible location of that object separately. For decent image sizes the num-
ber of weights to learn becomes so big that contemporary hardware cannot
handle this. Thus fully connected layers have been relegated to classification
layers at the end of pyramids where the number of pixels has become small,
as for example in the Alex Net[86].

But even models with stacks of convolutions regularly report having several
ten million variables [87, 86]. So there arises the question: are there al-
ternative ways to transfer information across an image, i.e. to increase the
receptive field?

The new transfer block is one alternative which has the advantage that it
uses less parameters than a comparable feature extraction pyramid. As it is
so small the transfer block can also be a building block within more sophist-
icated architectures.

3.1.2 Transfer Block Definition

The proposed ”transfer block“ is a new building block for neural networks
architectures. It provides an alternative to pyramidal feature extractors and
uses significantly less parameters. Thus the “transfer block“ allows to build
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Convolution

Transfer Layer

ConvolutionMax Pooling with different

window sizes

Input Image 6 feature maps 6 feature maps 6 feature maps 2 feature maps

Figure 3.1 An example of the whole transfer block where m = 3 and the list
of window sizes L contains only two entries. The input image is passed through
a convolution layer which produces 6 feature maps. Each of the 6 feature maps
is then subject to a maximum pooling operation with stride one, where 3 are
processed with the first window size in L and the other 3 are processed with
the second window size in L. The 3 each feature maps for the two maximum
pooling operations are displayed side by side here for visualisation purposes. In
the definition the 6 feature maps are always one stack.

more lightweight models compared to contemporary CNNs.

The Transfer Block consists of three layers. The core part is the transfer layer
which is enclosed by two conventional convolutional layers. This transfer
layer builds upon the idea that information needs to be transferred across
the image in order to have a maximum receptive field for the final neuron.
This is achieved through multiple maximum pooling operations [74] with
different window sizes.

Be maxpool((Ii1i2i3)i3=t, B) the maximum pooling operation from equation
2.14 but restricted to the feature map t of the 2D image I with window size B
and stride 1. Suppose a list of window sizes L where L(j) is the window size
number j with a total number of nw window sizes. Be the multiplicity m an
integer number and suppose that the number of channels of the input image
n3 = mnw. The input to the transfer layer is an image I of size n1× n2× n3

and the output is of the same size. On each of the input channels a single
maximum pooling operation is performed and the result is the output for the
corresponding channel. Each available window size in L is used on m distinct
channels. To formalise this define an index u = jm+ k with k ∈ {1, . . . ,m}
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and j ∈ {1, . . . , nw }. Then the channel u of the output image O of the
transfer layer is :

(Oi1i2i3)i3=u = maxpool((Ii1i2i3)i3=u, L(j)) (3.1)

The transfer layer is preceded by a convolutional layer with a kernel of size
w × w × nin × nstart. The output goes through another convolutional layer
with a kernel of size w×w×nstart×nout. The choice of nout is rather uncritical
and almost any value works well. We use nout = nstart/m. Both convolution
layers are followed by ELU [99] as activation function.

Each of the three layers has its purpose in this architecture. The initial
convolution layer learns m features for each window size, which means the
learned features are specific for the neighbourhood size given by the window
size. The transfer layer distributes these features in a neighbourhood cor-
responding to the respective window sizes. The final layer has access to the
features of the neighbouring pixels, which allows access to spatial orienta-
tions of features. This is very important as without the final layer the exact
borders of objects cannot be determined due to the indifferent nature of the
maximum pooling operation towards positions.

The parameters to choose for the transfer block are the window sizes L
and the multiplicity m. To transfer information across the whole image, the
largest window size should be two times the input image size, i.e. 2 max{n1, n2}.
The smallest window size should be 1 in order to preserve the finest details.
Choosing the window sizes as powers of 2, i.e. 1, 2, 4, 8, 16 etc, seems to be
a good choice for keeping the model small and gives decent results for most
cases. For more complicated tasks it may be necessary to use more window
sizes, mostly around the size of the relevant objects. For example if a task
contains many objects with a size of around 40 pixels it may be useful to use
window sizes of 38, 40, 42. The multiplicity m decides how many features are
learned for each window size and can be used to tune the network’s size. If it
is chosen too small, the network may be unable to learn the task. But even
for complex problems m ≤ 10 turned out to be reasonable. At last there is
also the kernel size w. Using kernel sizes of w = 3 seems to be very popular
with most CNN architectures. Setting w = 5 for the transfer block leads to
a faster convergence, larger kernels than that seem to provide no improve-
ment. Initialising the weights of the convolution kernels with the method of
Kaiming et al. [100] works reasonably well. An example of the transfer block
with specific configuration is given in figure 3.1.
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transfer
conv 1x1

conv 5x5, ELU

Figure 3.2 The Transfer-Net architecture. In contrast to the U-Net all feature
maps have the same resolution, only the number of feature maps changes in each
step. The information transfer across the image is done by the transfer layer
instead of a multi-resolution pyramid.

With only two convolutional layers the transfer block is a very small archi-
tecture in terms of learnable parameters. The multiple resolution steps of
feature extraction pyramids are translated to multiple window sizes. As the
maximum pooling has no learnable parameters, the transfer block is very
lightweight compared to a feature extraction pyramid. The power of the
transfer block is demonstrated in the following experiments, where it achieves
comparable performance to a feature extraction pyramid while having only
a small percentage of a feature pyramid’s learnable parameters.

3.1.3 Experimental Validation

In two experiments architectures containing the transfer block are compared
to the U-Net model described in section 2.5.1. The U-Net was chosen because
it is the archetype of modern convolutional networks used for bio-medical
image segmentation tasks and achieved good performance in many applic-
ations. To prove that the tasks are not too simple and that the transfer
layer is responsible for the good results, a simple reference network with two
convolutional layers is included. For evaluating the results not only the loss
is used but also the Dice coefficient [66] which is the standard measure for
segmentation quality.

Architectures

All of the following network architectures are implemented in Pytorch 1.
Convolution layers are chosen to keep the output size the same as the input
size by padding the input image with zeros. Also all architectures are followed

1pytorch.org
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transfer
conv 1x1

conv 5x5, ELU

Figure 3.3 The Double Transfer-Net architecture. With this architecture we
show how simple transfer layers can be chained together. Chaining transfer layers
results in a deeper architecture. Our second experiment shows that the deeper
version is indeed better at complex tasks.

conv 1x1
conv 5x5, ELU

Figure 3.4 The Reference-Net architecture represents the most basic convolution
neural network architecture. It suffers greatly from a small receptive field. As ex-
pected our first experiment showed that it has trouble with objects that are larger
than the convolution kernels. This weakness can be overcome either by adding
a single transfer layer to the architecture (Transfer-Net), or by adding so many
convolutional layers that the chained convolution kernels extend the receptive field
to the whole input image (U-Net).

by a softmax layer (not explicitly stated below) and cross entropy is used as
loss function. The loss is minimised using Adam [79]. The best learning rate
for each architecture has been determined experimentally.

U-Net The U-Net [87] (figure 2.4) consists mainly of a feature extraction pyr-
amid followed by an expanding path which up-samples the features to the
space of the original image. A special feature of the U-Net are its skip con-
nections which allow it to preserve fine grained details. The implementation
used here is almost identical to the original paper, with only two differences.
First for the input image more than one channel is allowed. Second the crop
operation is not implemented, thus the output image of this U-Net imple-
mentation has the same size as the input image. This change has no effect
on the number of parameters, but increases the execution time slightly as
the final images are a few pixels larger. The original U-Net works with five
different resolutions and is called U-Net 5 in the following. A smaller variant
which works with four different resolutions is also included in the experiments
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a) b) c)

Figure 3.5 One example of the circles validation-set. The binary image a) had to
be segmented according to the ground truth b). The U-Nets and the Transfer-Nets
perfectly segmented the image and delivered exactly b). The result of the R-Net
is shown in c). As the receptive field of the R-Net is not large enough to capture
the largest circles entirely it has trouble discerning the corners of the large and
middle circles as they are identical.

and called U-Net 4.

Transfer Net (T-net) Here the transfer block from above is included in the
simplest possible architecture (figure 3.2). It has a first 5 × 5 convolutional
layer, then a transfer layer, a second 5×5 convolutional layer and then a 1×1
convolutional layer for the classification, as recommend by [88] . The window
sizes are 1 for the smallest and then 2k + 1, k ∈ {1, 2, 3, . . . } for the larger
window sizes until the largest possible for the given image. Odd window
sizes are used because Pytorch’s maximum pooling function currently has
problems keeping the image size constant with even window sizes.

Double Transfer Net (DT-Net) This sample architecture shows how to chain
transfer blocks together in order to create deeper architectures (figure 3.3). It
starts with a 5×5 convolutional layer followed by a transfer layer, another 5×
5 convolutional layer then another transfer layer and a final 5×5 convolution
layer followed by a 1× 1 convolution for classification. All other parameters
are identical to the transfer Net.

Reference Net (R-Net) This is a reference architecture (figure 3.4) which is
used to demonstrate that it is the transfer layer which is responsible for the
results and not the fact that two convolutional layers are chained together. It
is identical to the Transfer Net but without the transfer layer. Thus it starts
with a 5×5 convolutional layer followed by a second 5×5 convolutional layer
and then the 1× 1 convolutional layer for classification. The parameters for
the convolutional layers are always chosen identical to the Transfer Net.
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Figure 3.6 Development of the loss a), c) and the Dice coefficient b), d) on the
training and validation set for the circles data-set.

Synthetic Data

As a simple example of multi class segmentation binary images of size 64×64
with circles with a radius of 3, 4 and 5 pixels are generated. The circles are
placed randomly and do not overlap but may touch each other. Each size
of circle is a class for segmentation. The training-set was 20 images and the
test-set 10 images. All five architectures were trained on this data-set with
the configuration as in table 3.1.

As expected the U-Nets learn this task quickly and the DT-Net and T-Net
show no problems as well (see figure 3.6). The Reference Net already fails
this task (compare figure 3.5), as its receptive field is smaller than the size of
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the circles and thus it cannot measure the surface or diameter of the circles.
This first test shows already that the information transfer via the transfer
layer works well.

Table 3.1 Network configurations for the circles experiment and their final Dice
score which is identical for training and test-set.

Model Kernel Size Parameters Learning Rate m Dice

U-Net 5 3 31030788 0.001 - 1.0
U-Net 4 3 7696388 0.002 - 1.0
DT-Net 5 136679 0.0005 10 1.0
T-Net 5 14109 0.002 10 1.0
R-Net 5 14109 0.005 10 0.92

3.1.4 BraTS

For the second experiment a real data set which is renowned for its diffi-
culty is chosen. The brain tumor segmentation (BraTS) [101] challenge is
a recurring challenge attached to the MICCAI Conference. Each year the
segmentation results become better, but the problem is an ongoing research.
For this experiment the high grade glioma part of the BraTS 2017 data-set2

is used. It contains multi-modal MRI of 210 patients which were manually
segmented by experts, i.e. a ground truth is available. On these image three
different classes have to be segmented from the background. The enhancing
tumor, the necrotic and non-enhancing tumor and as a third class the per-
itumoral oedema. This makes it an ideal real data-set for supervised learning
of a multi-class segmentation task. It was also chosen to provide a publicly
available reference.

Training Data Preprocessing The data-set is divided into 100 patients for
learning, 4 for validation and left 106 aside as test set. This partition was
chosen because the first idea had been to compare the different models by
their Dice on the test set. But as the validation set was not used to de-
termine the end of the training there is technically no difference between the
validation and test set. As the purpose of this experiment is only to compare
the models, the validation and training set are sufficient. So the test set
was never used in the end. Four different MRI modalities (compare figure

2www.med.upenn.edu/sbia/brats2017.html



3.1. TRANSFER BLOCK 83

100000 300000
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai
ni
ng

 L
os

s

U-Net5
U-Net4
DT-Net
T-Net
R-Net

100000 300000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai
ni
ng

 D
ice

U-Net5
U-Net4
DT-Net
T-Net
R-Net

a) b)

100000 300000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Va
lid

at
io
n 
Lo

ss

U-Net5
U-Net4
DT-Net
T-Net
R-Net

100000 300000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io
n 
Di
ce

U-Net5
U-Net4
DT-Net
T-Net
R-Net

c) d)

Figure 3.7 Development of the loss (left column) and the Dice coefficient (right
column) on the training and validation set of the BraTS data-set. The curves
have been smoothed with a moving average filter to make them more discernible.
Remarkable is that the validation loss doesn’t seem to correspond to the validation
Dice. The reason is that the loss is a ”soft“ function which can decrease by a large
margin without changes in the classification performance.

3.8 a)-d)) are available, which means that the input image has four chan-
nels. The MRI were prepared identically to the stroke data-set (section 4.1),
i.e. normalised with respect to the intensity value of normal tissue (section
4.2.2), sampled to provide an equal distribution between ill and sane tissue
(section 4.1.1) and augmented (section 4.1.2) with adding a constant and
random crops.
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a) b) c)

d) e) f)

g) h) i)

Figure 3.8 One patch out of the BraTS validation-set.
The input image a)-d) consists of the MRI modalities
Flair a), T1 b), contrast enhanced T1 c) and T2 d).
The ground truth is seen in e). The following are the
predictions of the five networks: U-Net 5 f), U-Net 4
g), DT-Net h), T-Net i) and the R-Net j).

j)
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Table 3.2 Network configurations for the BraTS experiment and their final Dice
score on the training and validation set.

Model U-Net 5 U-Net 4 DT-Net T-Net R-Net

Kernel Size 3 3 5 5 5
Parameters 31032516 7698116 141929 19359 19359
Learning Rate 0.001 0.002 0.0005 0.002 0.002
m - - 10 10 -
Training Speed τ 10737 15032 13322 28761 48767
Training Dice 0.96 0.82 0.87 0.80 0.64
Validation Dice 0.89 0.51 0.77 0.51 0.49

Training All five networks are trained in parallel on this data set, which
means that each network receives the identical batches in the same order
during training. The networks are configured as in table 3.2 and were trained
on an Nvidia Tesla V100 GPU. There was no explicit stopping criterion for
the training and the training was continued long after changes in the loss
were visible in order to test if over-fitting would appear. The training curves
from the run with the highest overall Dice scores are presented in figure 3.7.

Convergence During the training of these models the U-Net would con-
verge to very different solutions in the same training configuration, often not
reaching its potential. The convergence of the U-Net and the DT-Net are
compared in figure 3.9. In contrast to the transfer block based networks, the
U-Net seems to be inherently unstable. The figure shows only the validation
Dice, but the training loss and Dice show the same behaviour. This could
be an effect of the network size, but it may be interesting to investigate this
further.

Training Speed Each network architecture has a different impact on the
training time. To asses this the training speed τ was measured in patches
per minute (see table 3.2). Please note that the test implementation of
the transfer block is a naive implementation of the formulas and Pytorch’s
maximum pooling is not very efficient for large window sizes. The pooling
operation with the largest window size of 129 × 129 is equivalent to creat-
ing a new image and filling it with the maximum of the input image. But
implementing this as the latter is 216 times faster than the pooling imple-
mentation. So the training speed of the transfer block can be much faster
with an intelligent implementation.
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Figure 3.9 Validation Dice for multiple runs for the U-Net 5 a) and the DT-Net
b). The network configurations are identical between runs. The U-Net is highly
unstable, different models trained in the same configuration converge to largely
different solutions. With a bit of bad luck a well performing U-Net wouldn’t have
shown up in these experiments and the conclusion would be that the U-Net 5
is outperformed by the DT-Net. This actually happened in the first few runs.
The DT-Net however always converges to similar solutions and is therefore more
reliable.

Results This real data-set is a way more difficult task than segmenting circles,
which allows to see a real difference in the capabilities of the different network
architectures. Looking at the loss values the networks are well separated
(figure 3.7). But a look at the Dice score shows a lower loss value does not
necessarily indicate a better segmentation performance. The networks based
on the transfer block perform well. Of course it is not the expectation to
beat the U-Net 5 with a network which has only 0.44% of the parameters.
But the DT-net comes remarkably close in terms of performance and clearly
beats the U-Net 4 which still has 56 times more parameters. Even the T-Net
beats the U-Net 4 on the validation set while having less than 20 thousand
parameters compared to more than 7 million of the U-Net 4.

This proves that the transfer block works, and that it delivers performance at
an astonishingly low parameter cost. Segmentations of one patch are given
in figure 3.8. Here the quality of the segmentation of the DT-Net and T-
Net is visible. They are very close to the ground truth and the U-Net 5
segmentation while the U-Net 4 segmentation is clearly worse.
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3.2 Logic LSTM

All segmentation architectures based on CLSTM use multiple CLSTMs (see
section 2.5.5). This is due to inherent problems in the CLSTM itself. Its
memory ct allows it to store information from the past, but for the purpose
of prediction it stays a single convolution layer. That means a single CLSTM
has the same problems as a single convolutional layer, i.e. a small receptive
field (see section 2.4.3. The authors of CLSTM based segmentation methods
[97, 94, 96, 95] solved this problem with the same approach as for CNNs by
stacking layers. Of course this blows up the number of parameters in the
models.

A new more elegant approach solves the receptive field problems of the
CLSTM and leads to the logic LSTM. The latter is built on two new concepts,
the double pass and the logic block.

3.2.1 Double Pass

Developed from the idea of the delayed input (see section 2.5.4) the double
pass allows to incorporate the future as well the past of a finite known signal.
Basically the model sees the signal twice with a delay equal to the signal
length.

First the entire signal is fed to the model, the memory pass, but the model’s
output is ignored. So all that rests from the memory pass is what the model
stores in its memory. Then the signal is fed a second time to the model,
the prediction pass. This time the model’s output is recovered as prediction.
This is visualised in figure 3.10. So for each time step (or slice in the case of
MRI) in the signal the model produces a prediction using the current data
item plus its memory. The memory contains information about the whole
signal, i.e. past and future. Furthermore between the time step t in the
memory pass and the time step t in the prediction pass exactly the signal
length number of steps n passes. This allows the information of step t to be
processed for n steps and as a result the prediction from a double pass model
is from a deep network. Whereas in the bi-directional approach (section
2.5.4) the prediction for step t is immediate and thus from a shallow network.
Also the bi-directional approach uses two distinct models where the double
pass uses only one and thus saves 50% of the parameters. It will become
apparent in the tests below that the double pass is indeed superior to a bi-
directional approach. So compared to the bi-directional approach the double
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memory pass prediction pass

prediction

Figure 3.10 The double pass technique displayed at the example of a 3D volume.
The recurrent network reads the slices of the volume twice. In the memory pass (
left side) it registers important features to its internal memory. In the prediction
pass (middle) it produces a prediction for each slice. The steps from the first
time it sees a slice and the moment it provides a prediction (indicated by darker
colour) allow the network to process the information in the slice over many steps.
This recurrent processing results in the prediction (yellow) being from a deep
network. In the bi-directional approach (figure 2.7) the prediction is done on the
first encounter of a slice and thus from a shallow network.

pass provides better information processing at the identical computational
cost while using only half of the parameters.

3.2.2 Logic Block

The logic block builds heavily on the insights of the transfer block. It is
designed to replace the convolution layers of the CLSTM (section 2.5.5) and
uses a transfer layer to increase the receptive field. As it is an extension of
the CLSTM its notation is used here.

For the logic block a partitioning of ht and ct is defined:

ct = cc ||4cl (3.2)

ht = hc||4hl (3.3)

r = cc ||4hc||4xt (3.4)

l = cl ||4hl (3.5)

A = ct||4ht||4xt (3.6)

I.e. the hidden state ht is split into a convolution part hc with n4c channels
and a logic part with n4l channels and likewise for the cell state ct . With
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Figure 3.11 Visualisation of the data-flow in the logic block. The colours corres-
pond to the channel numbers. Green = n4x , red = n4l and blue = n4c .

this re-partitioning the logic block is defined as:

r′ = Wr ∗ r +Wb ∗ l + br (3.7)

G = T (Wg ∗ r + bg)||4l (3.8)

l′ = Wl ∗ (G) + bl (3.9)

L(A) = r′||4l′ (3.10)

The convolutions Wr and Wg are of size w×w, where as Wl and Wb are 1×1
convolutions and T is the transfer layer described above (equation 3.1).

What happens in the logic block is easier to see in figure 3.11. The convo-
lutional parts cc and hc are concatenated with the input. The upper blue
branch is the convolutional layer known from the CLSTM, it just receives an
additional bias from the logic path (equation 3.7). The red path parting in
the middle corresponds to a transfer block without the final convolution layer
(equation 3.8), instead it is merged with the logic parts cl and hl through a
1× 1 convolution.

So there is the convolutional branch which works like the original CLSTM
(figure 3.11 upper line), working mostly on texture. Then there is the logic
branch which exclusively uses 1×1 convolutions (figure 3.11 lower line). This
part is like a voxel wise fully connected layer and is able to make decisions for
a single voxel, without being distracted from input of neighbouring voxels.
The logic branch still can take into account the global situation through the
input from the transfer layer (figure 3.11 middle line). In the theory part of
the transfer block (section 3.1) it was said that the transfer layer needs to
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be followed by a w × w convolutional layer with w > 1 in order to negate
the orientation loss through the maximum pooling. As the logic block is
designed for a recurrent network, the convolution layer before the transfer
layer adopts this job. The 1 × 1 convolution after the transfer layer is here
favourable to ensure clean voxel wise decisions.

Comparing the logic block to a convolution of a CLSTM with n4hidden
=

n4c + n4l it turns out that the logic block has 33% to 40% less parameters
than the convolution kernel, depending on the kernel size w.

In order to calculate this assume identical window sizes of w × w for the
convolutions Wf , Wi, Wo, Wd, Wr, Wg and that the number of channels of
the hidden and cell state of the convolutional LSTM n4hidden equals n4c +n4l ,
in order to have the same number of channels for both models. Denote the
number of channels of the input as n4x . Then the number of parameters for
the simple convolution Nc and the logic block Nl is:

Nc = w · w · (2n4l + 2n4c + n4x) · (n4c+n4l) + (n4c + n4l)

Nl = w · w · (2n4c + n4x) · n4c + n4c corresponds to Wr ∗ r + br

+ w · w · (2cc + n4x)n4l + n4l corresponds to Wg ∗ r + bg

+ 1 · 1 · 2cl · n4c corresponds to Wb ∗ l
+ 1 · 1 · 4cl · n4l + n4l corresponds to Wl ∗ (G) + bl

To simplify the calculus assume that n4c = n4l = n4x = a:

Nc = 10w2a2 + 2a (3.11)

Nl = (6w2 + 6)a2 + 3a (3.12)

lim
w→∞

Nl

Nc

= 0.6 (3.13)

For small convolutions kernels like 3× 3 the logic block has roughly 67% (at
a = 10) of the parameters of a comparable convolution in the convolutional
LSTM. With taking the limit w →∞ this descends to 60% which is a clear
advantage for the logic block.
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3.2.3 Logic LSTM

The logic block L(A) (equation 3.10) replaces the convolution in the CLSTM
and thus defines the logic LSTM:

A = ct||4ht||4xt (3.14)

ft = σ(Lf (A)) (3.15)

it = σ(Li(A)) (3.16)

ot = σ(Lo(A)) (3.17)

dt = tanh(Ld(A)) (3.18)

ct+1 = ft ◦ ct + it ◦ dt (3.19)

ht+1 = ot ◦ tanh(ct+1) (3.20)

Each gate has of course its own weights, indicated by the subscripts to L(A).
The working principle of the logic LSTM is the same as for the CLSTM. It
writes to its memory and then reads from it to make a prediction. But the
convolution operations have been replaced by logic blocks. Their transfer
function provides the logic blocks with a receptive field which is as large as
the input. Thus the use of the logic block eliminates the problem of the low
receptive field of the CLSTM. Thus a single logic LSTM can do the same job
for which an entire stack of CLSTMs was necessary.

Thus the logic LSTM can be wrapped in a simplistic architecture. It is
preceded by a single convolution layer which increases the number of channels
to n4Input

. This allows to control the number of input channels to the logic
LSTM and thus gives a fine grained control over the models size. Also this
first convolutional layer already extracts features which proved to make the
training easier. The logic LSTM is followed by a 1 × 1 convolution and a
softmax layer to provide the final prediction, as recommended by [88]. The
hidden state ct and the cell state ct are initialised with zeros. The model is
trained with the double pass approach (section 3.2.1) and cross entropy is
used as loss function (section 2.2.1).

3.2.4 Experimental Validation

With three experiments on synthetic data sets the massive improvements of
the Logic LSTM over the convolutional long-short term memory (CLSTM)
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Figure 3.12 The logic LSTM looks very similar to the CLSTM (figure 2.8). The
convolution has been replaced by the logic block (blue box).

are shown. Furthermore a 3D U-net [102] and the CLSTM based method
of [96] are included to provide a thorough comparison with established seg-
mentation methods. It turns out that the logic long-short time memory
(logic LSTM) provides significant advantages over these as well.

Three different data-sets are generated, each one designed to test a specific
capability of the models. All are segmentation tasks on binary volumes of
size 32× 32× 24 and have a massive class imbalance, i.e. at least 98% of the
volume’s voxels are background.

Different Heights This experiment tests the model’s ability to measure along
the i3-axis. For a medical data-set this corresponds to remembering inform-
ation across slices or across time if the input is a video. Two bars of 4 voxels
width are randomly placed in the volume, parallel either to the i1 or i2 axis.
The bars may cross each other at a 90◦ angle. In the i1 or i2 plane the two
bars are not distinguishable, but they have different heights in i3 direction.
One is one voxel high and the second 4 voxels. The task is to segment the
higher bar.

Different Diameters In contrast to the previous experiment which focused
on the i3-axis, this one is purely about object detection in the i1 or i2 plane.
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A B C
Figure 3.13 The objects used for the simple logic experiment. B is a bar with a
3× 3 voxel cross section and C corresponds to a sphere with a radius of 4 voxels.
A is the combination of both shapes.

Disks with a radius of 3, 4 and 5 voxels and a height of one voxel are randomly
placed but are not allowed to overlap, but they can touch. Through the
random distribution the slices contain one to three disks. The task is to
segment the disks with radius 4. What makes this task difficult is not only
the need to differentiate between very similar objects but also that there is
no correlation along the i3-axis.

Simple Logic The last two experiments can be solved with local decisions.
But the last experiment tests if the model is able to make global decisions,
taking into account the whole volume. Three 3D objects A, B and C (see
figure 3.13) are placed randomly without overlap. Object A is always placed.
Object B is placed with 50% probability and Object C is placed with 70%
probability. The task is to segment object A if and only if object C is
present in the volume. Object B is similar to object A and serves only as a
confounding object. Three things are tested in this experiment: if the model
can distinguish separate objects, if it can recognise objects by their shape
and if it can implement a logical AND operator.

A standard CLSTM cannot solve these tasks as it has no access to future
slices. For example in the first experiment it cannot know if a bar will
continue on the next slice, i.e. is to segment, or not. Thus a double pass
CLSTM (DP-CLSTM) and a bidirectional CLSTM (Bi-CLSTM) are included
in place. This also allows to verify that the double pass is a valid replacement
for a bidirectional approach.
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The following five models participate in the experiments. All models are
followed by a softmax layer to produce the probability maps for the classes
and trained using cross-entropy with a learning rate of 0.001.

DP-CLSTM The CLSTM [93] trained with the double pass approach as de-
scribed above. Convolution kernels are of size 5× 5 and the hidden and cell
state have n4hidden

= 10 channels. A 3 × 3 channel increasing convolution
layer increases the channel number to 8 before the CLSTM cell. The output
of the CLSTM is passed through a 1× 1 convolution layer which reduces the
number of channels to 2.

Bi-CLSTM Two CLSTMs are trained in a bidirectional manner [92]. Their
output is concatenated along the channel axis i4. It is wrapped with the
same channel increasing and reduction layer as the DP-CLSTM.

Logic LSTM The logic LSTM described above with the following configura-
tion: n4Input

= 8, m = 2 and n4c = 2.

CLSTM-U-Net The architecture by Arbelle et al. [96] is basically a U-Net
[87] where the channel increasing layers have been replaced with CLSTMs
and with 4 different resolutions instead of five. For our experiments the
CLSTMs needed to be replaced by bidirectional CLSTMs. The number of
start channels after the first channel increasing layer is set to 8.

3D U-Net The 3D version of the U-Net features batch normalisation layers
and also works only with 4 different resolutions [102]. Like all other models
the number of start channels after the first channel increasing layer is set to
8.

While the first task was learnt by all five models, the ones using CLSTMs are
taking 10 times more iterations to converge than the logic LSTM. For the
3D U-Net this task is almost trivial thanks to its 3D convolution operation
which can directly measure the height of the bars.

But what was an advantage becomes detrimental in the second experiment.
Here the 3D U-Net struggles because there is no correlation along the i3
axis and most of the convolution kernels need to be set to zero, effectively
making them 2D convolutions. It learns the task but does not achieve a
perfect segmentation, always misclassifying some stray pixels. The CLSTM-
U-Net performs on the second task almost like on the first one.

The real revelation for the second task are the results of the Bi and DP
CLSTM. As the context along the i3 axis is useless the Bi-CLSTM behaves
like a single convolution layer. Its 5 × 5 convolution kernel is too small to
capture the entire circles and as a consequence it cannot differentiate between
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Figure 3.14 Development of the loss (left column) and Dice coefficient (right
column) on the training set (first row) and the validation set (second row) for the
“simple logic” experiment. Our method, the logic LSTM (red), converges very
quickly and is thus only visible on the very left side of the plots. The Bi and DP-
CLSTM show clearly a classic case of over-learning. Finally the CLSTM-U-Net
demonstrates that the validation error and the segmentation performance are not
necessarily related.

the circles of radius 4 and 5 and fails to learn the task. The DP-CLSTM
however delivers a much better result. Even though the segmentation was
not perfect, few random voxels were wrongly classified, the correct circles
were segmented. It sees the circles already in the memory pass, and when it
sees them again in the prediction pass it can use information from its memory
ct. From the memory pass to the actual segmentation 24 images are passed
through the network, which makes it a network of depth 24. Apparently this
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Table 3.3 Summary of the trials on the synthetic data-sets. It includes the number
of the models parameters N . For each experiment the success on the task is given,
as well as the (approximate) number of iterations to convergence ρ.

Model Bi-CLSTM DP-CLSTM Logic LSTM CLSTM-Unet 3D U-Net

N 56330 28270 22138 910386 1193762

Experiment: Different Heights

Success Yes Yes Yes Yes Yes
ρ 50 000 50 000 4 800 45 000 2 300

Experiment: Different Diameters

Success No Yes Yes Yes Yes
ρ - 80 000 5 500 38 000 30 000

Experiment: Simple Logic

Success No No Yes Yes No
ρ - - 7 400 99 000 -

is enough to increase the receptive field to the necessary size for the circles
segmentation task. This validates the double pass approach. Not only is it
a replacement for the bi-directional approach, it also halves the amount of
parameters needed while maintaining the same amount of computations and
adds some additional value in the form of a larger receptive field.

The logic LSTM has no trouble learning the second task. This confirms
that the transfer layer T increases the receptive field to the whole image, as
intended.

In the last experiments both Bi and DP-CLSTM fail due to their inherent
problems with the receptive field. Also the 3D U-Net fails. It achieves a
perfect result on the training set but is not able to generalise to the validation
set. Only the CLSTM-U-Net and the logic LSTM learn the third task and
can provide a perfect segmentation on the validation set (figure 3.14). Thus
the logic LSTM effectively solves the receptive field problems of the CLSTM
while avoiding the use of multiple CLSTM as it is done in other solutions
[97, 94, 96, 95]. The last experiment also verifies that the logic block is indeed
able to implement basic logic.

The three experiments have shown that the logic LSTM is on par with estab-
lished segmentation methods and can segment taking the whole input volume
into account. Looking at the models parameters a decisive advantage of the
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logic LSTM becomes apparent: it uses less than 3% of the parameters of
the established methods! On top of that the logic LSTM is easy to scale to
arbitrary input sizes without a significant growth in the number of paramet-
ers. The 3D U-Net on the other hand expands from 1 Million to 48 Million
parameters if a fifth resolution is added, which would be necessary for larger
input volumes.



Chapter 4

Stroke MRI Segmentation

The main goal of this work is to find the signs of stroke relevant for dia-
gnosis on MRI using machine learning techniques. The most relevant are the
lesion and the thrombus. So this translates to the task of an automatic seg-
mentation of lesion and thrombus from stroke MRI. This chapter describes
the data-set and pre-processing steps and the results achieved with different
automatic methods.

4.1 Stroke Data-Set

The stroke data-set was obtained through the support of the neurology group
of the Centre Hospitalier Sud Francilien lead by Prof. Didier Smadja. It
contains cranial MRI of 65 stroke patients with a thrombus in the middle
cerebral artery. The MRI modalities available for this data-set are DWI B0
ADC FLAIR ToF, SWAN and the corresponding Phase. 61 of the patients
show a thrombus on SWAN, but some exams are lacking the Phase image.
Thus there are only 58 patients with a thrombus visible on SWAN where all 7
modalities are available. All 65 patients have a visible lesion. The MRIs were
acquired from a 1.5 T and a 3 T General Electrics MRI machine. DWI B0
and ADC share the same resolution, as they are from the same acquisition.
The other modalities differ with the resolutions given in table 4.1.

The number of slices is different between modalities because of the different
slice thickness of the acquisitions. It differs also between patients as the
number of slices is adjusted to the height of the patients head. So a scan
from a person with a large head has more slices than the scan from a person
with a small head. A further complication is that the head’s position within
the scanned volume is not guaranteed to be the same across scans. In order to

98
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Table 4.1 Sizes of the volumes obtained for the different MRI modalities.
filler text to create a distance to the table

Modality Slice resolution Number of slices

DWI/ B0/ ADC 256× 256 24 to 38
FLAIR 512× 512 24 to 40
ToF 512× 512 124 to 184
SWAN 512× 512 72 to 216

2730 8149 13568 18987 24406 29825 35244 40663
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Figure 4.1 The size distribution of the lesions a) and thrombi b) in the CHSF
stroke data-set. Most of the lesions are small which confirms that the MRI are
from the hyper-acute phase of stroke. For the purpose of this figure the lesion or
thrombus was calculated as the union of the multiple segmentations available for
each patient.

spatially link the modalities a co-registration is necessary (see section 4.2.1).

For both the lesion and the thrombus manual segmentations are available.
Each patient has been segmented by at least two neurologists. The inter-
observer agreement, measured in terms of the Dice coefficient (section 2.2.1),
was 0.69±0.15 for the lesion and 0.61±0.18 for the thrombus. This is a
result which is comparable to the inter-observer agreement of the ISLES
2015 stroke lesion data-set [64] of 0.7. Furthermore a Dice of 0.7 is close to
human capacities for objects of this size. As no protocol was established on
how to segment exactly and none of the neurologists had ever before done
a manual segmentation, this is an astonishingly good result and shows the
high expertise of the neurology group of the CHSF.
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The distributions of the lesion size (figure 4.1 a)) clearly shows the predom-
inantly small lesion sizes in the data set with a median size of 2920 voxels.
This is due to the MRI being taken in the hyper-acute phase of stroke where
the lesions are still developing and have not reached their final size. The
distribution of the thrombus sizes (figure 4.1 b)) reminds of a Poisson dis-
tribution, which is not surprising considering that the thrombus size can be
considered a random event due to the many possible causes for a thrombus.
It also shows that the thrombi are rather small objects, with a median size
of 542 voxels which makes it difficult to find them.

4.1.1 Sampling

Sampling in this context is the creation of sub-images from an MRI for the
use in a machine learning method. This is necessary because the whole MRI
of a patient is too large to be processed in one piece. This in turn means
that the machine learning models don’t see the whole MRI. The sub-images,
called patches, have to show relevant parts of the brain in order to produce
high-performance models. For example a thrombus has an median size of
542 voxels. If patches are randomly sampled from a SWAN with roughly 40
million voxels the chance is high that the thrombus never appears on a single
patch. Because of this class imbalance the models trained on these patches
can never learn what a thrombus looks like. Other problems which arise are
border problems, where thrombi situated at the edges of a patch have not
enough context to be correctly identified. Then there are also objects which
look very much like the thrombus and are likely to cause false positives.
These “likely false positive” objects are also rare with respect to the millions
of voxels in an MRI.

To counter all these problems a specific sampling strategy has been chosen
which ensures that the training sets contain relevant data. Border problems
are avoided by an overlapping patches approach as proposed by Ronneberger
et al. [87]. That means that the border of a patch is ignored and only the
predictions of the centre, where enough context is available, are used. As
the predictions are only for the centre of the patches it is safe to create the
patches in a way that the relevant information is centred. The class imbalance
is eliminated by choosing an equal number of patches with thrombus and
“likely false positive” objects. During training it is assured that every second
image in a mini-batch shows a thrombus and every other shows a “likely false
positive” object. This forces the models to concentrate on the differences
between thrombus and “likely false positive” objects. Easier to learn non-
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thrombus tissues are learned alongside as non-thrombus tissues are always on
the patches surrounding the thrombus. The patch size has to be chosen small
enough that a thrombus makes up a relevant amount of voxels in the patch
(at least 1%) and large enough that the surroundings are visible. “Likely
false positive” objects are defined as areas with the same intensity range as
the thrombus inside the brain. This sampling method applies to the lesion
as well.

4.1.2 Data Augmentation

Data augmentation is the process of increasing the size of a training set by
adding altered versions of the already existing samples. It is used when the
training set is too small to generate a model which generalises well. Also the
CHSF stroke data-set is small as it has only 65 patients.

The data augmentation step is part of the training schedule. During training
each patch is “augmented” (= transformed) before being used. If the patch
is reused, it is augmented differently. This means the method never sees the
original patches from the sampling step (section 4.1.1 ). As the augmentation
includes random steps this also means that the training set is of infinite size
and never repeats. This allows learning decent models from small data-sets
and almost eliminates over-fitting.

For the stroke data set random crops and adding of a constant were used as
data augmentation steps. Random crops in connection with the sampling of
patches works as follows: The patches are sampled at a size which is larger
than the size intended for training. For example the model is trained on
64 × 64 then the patches are sampled at 74 × 74. Then during training a
64 × 64 image is cut from the 74 × 74 patch at a random location but such
that the 64×64 image is entirely contained in the 74×74 patch. The number
of possible random crops for a patch is determined by the size difference of
the patch and training image size.

4.2 Pre-Processing

The MRIs are pre-processed in various steps before they can be used for
training a model. Denoising is not part of the pre-processing pipeline because
the MRI are denoised during acquisition. The remaining noise is not of
a relevant magnitude. But various normalisation steps are indispensable,
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notably intensity normalisation and spatial alignment.

4.2.1 Co-Registration and Data Format

All the MRI modalities have different resolutions. As the patient may move
his head between scans the head position and inclination may be different as
well. To bring all images to the same resolution the co-registration algorithm
of the SPM 12 toolbox1 for Matlab is used. The co-registration target is the
SWAN, as it has the highest resolution. A down-sampling of the SWAN may
loose the thrombus, compared to this a quality loss from up-sampling and
rotating the other images is negligible.

Another use for the SPM 12 package is the data format conversion. The
MRIs extracted from the picture archiving system (PACS) of the CHSF are
in DICOM format. This format is very inconvenient to work with as it is
basically a container for all sorts of image and other data. It is transformed
to the Nifti file format which offers file compression and is generally easier
to load and write than DICOM files. In the case of the CHSF DICOM files
the MRIs are stored as an unordered collection of slices, which makes it
necessary to figure out which slice belongs to which modality and which are
the previous and following slices. The header which contains the order of the
slices is in some unreadable non standard format. The SPM 12 package did
a good job at sorting out the different modalities but for some patients the
DWI and B0 were exchanged and had to be manually corrected.

4.2.2 Normalisation

MRI is a qualitative and no quantitative measurement [103], i.e. the intensity
values and range of repeated measurements of the same patient are different
even though it appears to be the same image to human eyes. Across patients
this variability is even higher (compare figures 4.2 a) and c)). Therefore a
normalisation of the images is necessary to obtain repeatable results with
automatic processing of the images.

Luckily the MRIs all have a common characteristic. Most of the brain is
composed of healthy tissue which is visible as a large peak in the histogram
of the voxel intensities, as indicated by the red lines in figure 4.2. This peak
is only overshadowed by the peak corresponding to the empty space around

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Figure 4.2 Two examples of the intensity normalisation of the SWAN histogram.
Note the location of the peak corresponding to the healthy brain tissue (red line) in
the original histograms a) and c). Both histograms show this peak, but its location
is different. This illustrates why intensity normalisation of MRI is important. Then
the intensity values are divided by the peak intensity value and the normalised
histograms b) and d) are obtained. Note that this histogram shows intensity values
of the brain only, the very large peak around zero of the empty space around the
head has been removed for readability. The histograms of other MRI modalities
are very similar and the normalisation process is identical.

the head. But with the brain mask from the skull stripping step (section
4.2.3) this peak can be removed easily and the peak of the healthy tissue
is the dominant peak in the histogram of the brain. The peak’s centre is
not always the highest point, as seen in figure 4.2 c). Therefore the peak’s
centre is determined by fitting a mixture of two Gaussians to the histogram.
The MRI is normalised by dividing it by the peak value, i.e. setting the
value of the peak to 1. Thus on the normalised images the most obvious
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a) b)
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Figure 4.3 Two iterations of the skull stripping algorithm. The image is divided
into 3D cubes a). Then the cubes are classified into inside and outside according
to the mean intensity of the cubes. The outside cubes adjacent to inside cubes are
labelled as border b). Outside cubes are excluded from further calculations and
inside and border are divided into smaller cubes c). Then the smaller cubes are
once again classified into inside outside and border d). This process is repeated
until the smallest cube size is reached.

reference point, the healthy tissue, has always the same value. Should the
centre estimated with the mixture of Gaussians be slightly incorrect this has
no effect because of the small added constant from the data augmentation
step (section 4.1.2) where it is shifted anyway. This normalisation method
is a simplified version of the normalisation by histogram landmarks of Nyul
et al. [104]. Throughout this work only normalised MRIs are used, with two
exceptions.
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The ADC measures an approximation of the diffusion coefficient and the
phase of the SWAN measures the phase of the RF signal. Both are quantit-
ative measurements of physical quantities without need for a normalisation.

4.2.3 Skull Stripping

Skull stripping is the process of extracting the brain from an MRI image. In
most MRI sequences only the skull is visible amongst the non brain tissues
hence the name. The process is very important for two reasons: reduction of
the data size and anonymisation. The MRI contain the facial bones which
would allow the reconstruction of the face. Removing these bones renders the
MRI anonymous. Then the brain makes up less than one quarter of the MRI
volume and knowing where it is reduces the computational load significantly.

Skull stripping is a well known task and a good overview is given by [46].
Unfortunately this vast selection of methods is not applicable to the CHSF
stroke data set. All skull stripping methods use T1 or T2 weighted images
and the stroke data-set has neither. On the other hand the brain can be
almost perfectly segmented on DWI. There are only some bone artefacts and
a few other points with high intensity.

Upon this observation a new skull stripping algorithm for DWI was de-
veloped. The singular high intensity points outside the brain are too large
to be eliminated with a median filter and they may be connected through
fine bridges with the brain so a thresholding of the DWI combination with
a connected component analysis doesn’t work as well. The solution is a
multi-resolution algorithm which is able to eliminate small objects outside
the brain and can still segment the brain with high precision.

The algorithm is:

Input A volume V where objects to segment are bright. A start number of
cubes k. A threshold τ , which can be set manually. Here it is calculated
as τ = mean(V ) + std(V ). With std(V ) being the standard deviation
of the intensity values in V .

Do Divide V into k3 non overlapping cubes of size dn1/ke×dn2/ke×dn3/ke
and store them in a list of active cubes L. If the dimensions ni of V
are not evenly divisible by k some cubes at the border of the V will be
of smaller size. As the border of the image doesn’t contain brain this
is irrelevant, they will be eliminated in the first iteration.
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While The axis sizes of all cubes in L are > 1

Do All cubes C in L are labelled as “inside” if mean(C) > τ and
“outside” if not. Cubes labelled “outside” which are adjacent to
an “inside” Cube are labelled “border.

Do All cubes labelled ”outside“ are removed from L.

Do Each cube C in L is divided into 8 sub-cubes of equal size. C is
removed from L and its sub-cubes are added to L.

Do Construct a new volume B with the same size as V . The voxels corres-
ponding to a cube in L get the value 1, all others get the value 0. The
largest component in the binary image B is found with a connected
component analysis and labelled as brain. All voxels in B which are
not labelled as brain are set to 0.

Return B

The algorithm is visualised in figure 4.3. Small cavities in the brain will be
ignored by the algorithm but the ventricles will be labelled as non brain as
well. Also larger crevices like the ones between the hemispheres. To produce
a classical skull stripped brain these holes need to be closed. This is done
with ray tracing shadows along the three main axis of the volume. That
makes a total of 6 shadows which are cast. Regions which are covered by
at least 4 shadows are certainly inside the brain and are added to the brain
label.

After the first step this algorithm treats only the relevant regions of the
volume, which makes it very efficient. It can be run in a couple of seconds
and therefore it is well adapted to be used in a real clinical scenario. This
also sets it apart from other skull stripping techniques which often calculate
complicated contours and are rather slow.

4.2.4 Lesion Enhancement

As explained in section1.2.2 the lesion can be seen on DWI but is easily
confused with a couple of imaging artefacts. ADC tries to remedy this but
has the disadvantage that it is a very crude approximation of the diffusion
coefficient. The directional dependency of the diffusion coefficient and local
imaging artefacts are disregarded by ADC and can render small lesions in-
visible (compare figure 4.4 b)). Remember that the ADC is calculated from
the logarithm of the MRI signal (i.e. the DWI):
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a) b)

c) d)

Figure 4.4 Some lesions are very small and barely visible on DWI a). On ADC
b) they completely disappear as the assumptions of the ADC calculation are not
true. The B0 c) however captures all defects of the magnetic field and can be used
to remove most artefacts and increase the lesion visibility. The enhanced image d)
clearly shows the lesion and all major artefacts are removed.

ln(S) = −bD (4.1)

Where the diffusion coefficient D is approximated as the apparent diffusion
coefficient by linear regression from measurements with different magnetic
fields b. The linear regression is not able to entirely capture the complexity
of the diffusion process.

But the actual interest is in the lesion and not the diffusion coefficient. The
lesion is visible on DWI but obstructed by complex interactions of the brain
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and the magnetic field. Most of the artefacts seen on DWI are due to mag-
netic inhomogeneities and unwanted magnetisation of metallic parts of the
MRI machine which also alter the magnetic field. The impact of b on the
artefacts is negligible because b is really small compared to the other mag-
netic fields. Luckily there are two measurements from the DWI sequence, the
DWI and the B0. The B0 is taken with b = 0, so no diffusion effects are seen
but most artefacts still appear on this image. So all the complex interactions
which are lost on the ADC are directly measured on B0! Then the actual
DWI captures the diffusion process with the help of the additional magnetic
field b. But unfortunately B0 and DWI are not directly comparable.

In section 4.2.2 the need of a normalisation was discussed. It turns out that
this normalisation also makes the B0 and DWI comparable. An enhanced
image E can be calculated as

E = DWInormalised −B0normalised (4.2)

from the normalised DWI and B0. All the magnetic background interactions
are simply subtracted from DWI and the interaction related to diffusion
remain with high values. It turns out that regions with restrained diffusion
have positive values on E and normal regions have negative values. The
normalisation has introduced a natural threshold with the value of 0 for
indicating lesion regions. The thresholded E (figure 4.4 d)) clearly enhances
the lesion and diminishes artefacts compared to DWI. Therefore the enhanced
image was included in all supervised lesion segmentation approaches (section
4.4).

4.2.5 Evaluation Metrics

The quality of the results of an automatic segmentation method has to be
quantified. For this the segmentation provided by the method is compared
to a ground truth, which is the manual segmentation by an expert. The
most common evaluation metric for evaluating segmentations of bio-medical
images is the Dice coefficient (section 2.2.1) which measures the overlap
of two segmentations but also takes into account their cardinality. This de-
pendency on cardinality makes it difficult to tell which value of the Dice
coefficient indicates a good segmentation result. A perfect segmentation is
identical to the ground truth and gives a Dice of 1. If there is no overlap
the Dice is 0. Usually a segmentation where the border is displaced only
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by one pixel from the ground truth is considered a good segmentation. But
for this case the Dice varies depending on the surface or volume of the seg-
mented object. Thus the Dice is not an absolute measurement of quality
and a good Dice has to be defined with respect to the inter-observer Dice
on the given data-set. For this the same image is segmented by multiple
experts and the Dice of the experts’ segmentations, the inter-observer Dice,
is calculated. For the thrombus segmentation task on the CHSF data-set
the inter-observer Dice is 0.61 and for the larger lesion it is 0.69. For even
larger objects like lungs good Dice coefficients are above 0.9 [105]. If the
Dice coefficient between the automatic segmentation and the ground truth is
close to the inter-observer Dice the segmentation is considered to be human
level performance, i.e. good. While the Dice captures the overlap there are
other factors which determine the segmentation quality.

In a classic classification task the number of false positives and false neg-
atives plays an important role. False positives are voxels which have been
segment but are background whereas false negatives are voxels which are
not segmented but are part of the ground truth. For the stroke segmenta-
tion task this is not a useful metric as these numbers do not correspond to
anything a human would perceive, i.e. they are not visually related to the
ground truth. What a human sees on a segmentation are connected compon-
ents and if these components correspond to the components of the ground
truth. Thus a useful metric for segmentation quality is the number of false
positive components and the number of false negative components similar to
the definition in [65]. For this a connected component analysis [106] is used
to partition the segmentation S into a set of connected components S. Also
the ground truth T is partitioned into a set of connected components T . The
number of components in the segmentation which have no overlap with the
ground truth is the number of false positive objects (FP).

fp = {s ∈ S|s ∩ T = ∅} (4.3)

FP = |fp| (4.4)

Likewise the number of components in the ground truth which have no over-
lap with the segmentation is the number of false negative objects (FN).

fn = {t ∈ T |t ∩ S = ∅} (4.5)

FN = |fn| (4.6)

The importance of these measures is intuitive. If false positive objects are
present the segmentation would point the medical doctor to regions of the
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brain where there is not thrombus. False negative objects mean the real
thrombus has not been found. This information is complemented by the
average size of the false positive objects (FP size) and the average
size of false negative objects (FN size).

FP size =
1

|fp|
∑
a∈fp

|a| (4.7)

FN size =
1

|fn|
∑
a∈fn

|a| (4.8)

Together with the size of the objects on the ground truth this helps to de-
termine how important the false positive objects are with respect to the
ground truth. For example a lesion could have a size of 10 000 voxels. If
there are false positive objects in the segmentation with a size of 30 voxels
they are just small spots which would not disturb diagnosis. However if the
false positive objects are within the size range of the actual objects which
should be segmented the segmentation has to be considered bad, even if the
dice coefficient might not indicate this.

Of course the segmentation performance is not measured on one segmentation
alone but on an entire test-set. Thus the FP, FP size, FN and FN size given
for the test-sets below are actually the average over the whole test-set. The
last metric used in this work is the detection rate Dr which has to be
defined for a whole test-set. Be a the number of patients in the test-set
where S ∩ T 6= ∅ and b the total number of patients in the test-set. Then
Dr = a

b
. This definition can lead to a situation where the detection rate can

be 1 and at the same time FN is not zero. The reason is that some patients
can have multiple thrombi where only one is detected and the detection rate
counts only if something was detected. Nevertheless the detection rate is still
a valid measure because on the one hand multiple thrombi are rare and on
the other hand the secondary thrombi usually don’t influence the treatment
decision.

4.3 Automatic Thrombus Segmentation

Segmentation of the thrombus is a very difficult task. It cannot be seen
directly on the MRI images. Instead its presence is indicated by a secondary
effect. The thrombus is constituted by clotted blood, which contains a lot of
densely packed haemoglobin proteins which in turn contain iron atoms. This
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high local iron concentration causes a defect in the magnetic field of the MRI.
Most MRI sequences compensate for magnetic field defects which renders
the thrombus invisible. But on susceptibility weighted imaging sequences
this defect is visible as a dark spot. Usual clinical T2* sequences are of too
low quality, due to time constraints in a stroke scenario, to see anything but
the largest thrombi. Other susceptibility weighted imaging sequences, for
example the susceptibility weighted angiography (SWAN), produce higher
quality images in the same time where even the magnetic defects of small
thrombi are visible.

So physics dictate which MRI modalities should be used to detect the throm-
bus. These are certainly the SWAN and possibly its phase. The ToF may
give additional clues in as some arteries may show up as black on SWAN
and thus could be sorted out using the ToF. The other MRI sequences have
no value for detecting the thrombus. Preliminary experiments with spectral
analysis, classical image processing, i.e. texture, filters and similar methods
lead to the insight that the thrombus has identical characteristics as any
other dark area. Also principal component analysis, independent component
analysis, empirical mode decomposition, clustering algorithms and support
vector machines could not find the thrombus. Therefore it was clear that
the clue to finding the thrombus lies not in the voxel values or local texture
but rather in the shape of the thrombus. It turns out later that shape alone
is not sufficient and the context/ location is also an important factor. Very
strong shape detectors are neural networks, and using these lead to the first
results for thrombus detection.

4.3.1 Multi-Directional U-Net

The U-Net (section 2.5.1) is a very successful method for bio-medical image
segmentation. Thus it was also tested for thrombus segmentation. The
models are trained from scratch on the CHSF stroke data-set. The first
trained U-Nets didn’t deliver even remotely useful results. It turned out that
the class imbalance between thrombus and other tissues was too massive.
This lead to the sampling scheme described in section 4.1.1 which mostly
fixed the class imbalance. With this sampling the U-Net started to learn
that dark thin objects have to be segmented, resulting in a model which
segmented all dark areas like veins. And there are so many dark areas on
susceptibility weighted angiography (SWAN) (see figure 4.7 a)) that this
is no useful segmentation either. Even training the model with a leave-
one-out cross validation scheme [107] didn’t help. So it was clear that the
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a) b)

c) d)

Figure 4.5 A tube, representing a vein, and an ellipsoid, representing a thrombus,
are cut along different planes b)-c). Both veins and thrombi appear black on SWAN
and a slice of the SWAN represents a cut through their respective geometries.
Depending on the alignment of thrombus and arteries with respect to the slice
they may look identical, see b) and d). Only on certain cuts their different shape
becomes apparent c). This illustrates why a pure 2D approach can never reliably
identify the thrombus and the 3D notion is required.

training data-set was insufficient for the U-Net model. This has been solved
by creating a new training data-set with a special focus on the areas where
the already trained model has problems.

To force the model to focus on the differences between thrombus and dark
areas a new training set was sampled as follows: All patients in the training
set were segmented with the previously trained U-Net model. From this
segmentation false positives were noted. The new training set is sampled very
similar to the previous sampling scheme, just that the patches with ”likely
false positive objects“ are replaced by patches with known false positive
objects. Then the already trained model is retrained on new training set.
This improved the model to the point that it learned to segment dark round
objects with very high sensitivity. But the problem is that on SWAN there
are many dark round objects. The resulting U-Net segmented an average of
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a) b) c)

Figure 4.6 SWAN slices of the three planes along which the three different U-Net
models work: axial a), coronal b) and sagittal c).

133.6 false positive objects per patient. A sample prediction of this model is
seen in figure 4.7 d).

Consultation with the neurologists of the CHSF revealed that the context
available from a single slice of the SWAN is not enough to identify a throm-
bus. For example a vein with flow perpendicular to the slice produces a black
spot indistinguishable from a thrombus (compare figure 4.5). This excuses
the U-Net for its bad performance. To improve this segmentation results the
three dimensional context needs to be included. For this three separate U-
Nets are trained (with the retraining method above) on different orientations
of the MRI. One is trained on axial slices, one on coronal slices and one on
sagittal slices (see figure 4.6).

The three models provide three different scores s1, s2, s3 for each voxel (figure
4.7 d)-f)) which need to be merged for a final decision. A simple majority
vote would underestimate the size of the thrombus. Thus the label merging
is split into two parts. At first possible thrombi are extracted and in the
second part these candidates are classified into thrombus and non thrombus.

For the first part a new volume V is created where each voxel is assigned
the maximum max(s1, s2, s3) out of the three scores. V is then thresholded
at a value of 0.4 and the resulting binary map is divided into connected
components. To decide whether one component should be a thrombus or
not, the scores (s1, s2, s3) are used again. If all three scores are bigger than
0.7 for one voxel in the component, i.e. s1 > 0.7 ∧ s2 > 0.7 ∧ s3 > 0.7, then
the component is validated as a thrombus (figure 4.7 c)).

This architecture merging multiple U-Nets along multiple directions, the
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a) b) c)

d) e) f)

Figure 4.7 Results for the multi-directional U-Net. A SWAN image a) showing
a thrombus. The thrombus location is given by the manual segmentation b). The
segmentation from the merged predictions c) is very close to the ground truth.
d), e) and f) are the predictions from the U-Nets in axial, coronal and sagittal
direction. Each of the U-Net identifies a couple of the dark spots as a thrombus.
But only the true thrombus is found by all three U-Nets, the other spots are always
discarded by at least one U-Net. It is also visible that the size of the thrombus
is underestimated by two of the U-Nets which made the first part of the label
merging step necessary.

multi-directional U-Net, achieves a detection rate of 77.4% with a Dice coef-
ficient of 0.415. On average it still detects 1.26 false positive objects. The
three U-Nets can only capture information along three planes which is still
not enough. Adding more models which work on even more directions should
yield better results. Nevertheless this is a respectable first result and notably
the first thrombus segmentation method from MRI added to literature [108].
But the thrombus segmentation will be improved by the following true 3D
method which can leverage the whole context.
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4.3.2 Mask R-CNN

A different CNN based architecture was tested by Markus Eppelsheimer in his
master’s thesis [109] on the CHSF stroke data-set. He used a mask R-CNN.
This method comes from the semantic segmentation field and was designed
to segment objects like cars and animals on photos. The architecture itself
is rather complicated. It uses a Res-Net 101 [73] to extract features from
the images. This is a pre-trained network which has been trained on a large
data-base of real world images. The core idea of using a pre-trained network
is that the features for something as complex as real world images are also
present in medical images, i.e. lines, curves, dots, texture patters etc.. The
features from the Res-Net are then input to another network (the so called
region proposal network) which proposes regions of interest on the image
where objects to segment may be present. The Res-Net features from the
regions of interest are then scaled to a pre-defined resolution by the so called
RoI align layer and then passed into a small CNN, the network head, for
pixel wise segmentation.

Only the region proposal network, the RoI align layer and the network head
are trained and have a relatively low amount of parameters, whereas the
pre-trained Res-Net is not modified. This allows to profit of the feature
extraction power of a large network as the Res-Net 101 while not having to
train it.

The Mask R-CNN was trained on entire slices of the SWAN instead of the
patches used for the other methods. Eppelsheimer evaluated the results of
the Mask R-CNN slice by slice. To make them comparable to the results
of this thesis they were reevaluated using the same method as for the other
architectures tested in this thesis. The results are integrated with the other
methods in tables 4.3 and 4.4. It turns out that its results are similar to
the U-Net in that it finds all black spots on the image but is unable to
differentiate between the thrombus and other black objects. This confirms
the observation from the U-Net that a 2D method is unable to segment the
thrombus reliably.

4.3.3 Logic LSTM

The logic LSTM described in section 3.2.3 has been designed for the task
of thrombus segmentation. It has been tested on synthetic examples for its
capacities to distinguish similar objects depending on the context in an very
imbalanced data-set. It performs well on the task of thrombus segmentation,
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too. To show the advantages of the logic LSTM it is compared to a 3D U-Net
[102] which is trained under identical conditions.

The patients from the stroke data-set which show a thrombus are split into
two halves, the first serves as training set and the second as test set. One
patient from the training set is set aside as validation set. For training
patches are sampled according to the sampling scheme in section 4.1.1. The
learning rate is set to 0.001. Two logic LSTM models (Th 1 and Th 2) and
the 3D U-Net are trained with the configurations given in table 4.2.

Table 4.2 Configurations of the two logic LSTM models and the 3D U-Net model
trained for thrombus segmentation

Model Patch Size Batch Size m n4c n4Input
Modalities

Th 1 64× 64× 14 10 4 3 16 SWAN
Th 2 64× 64× 14 10 4 3 16 ToF SWAN

Phase
3D U-Net Th 64× 64× 16 4 - - 32 SWAN

To obtain the final segmentation the probability maps produced by the net-
works were thresholded at a value of 0.5. Also the models Th 1 and Th 2
were merged by multiplying their probability maps and thresholding it at a
value of 0.25. The segmentation results are given in table 4.3. It turns out
that the biggest problem is to actually find the thrombus because there are
many false positives. Thus the following discussion is focused on reducing
the false positives and the actual segmentation quality (the Dice coefficient)
is of minor interest.

The 3D U-Net architecture is almost identical to the U-Net used above, just
that 3D convolutions are used on 3D inputs instead of 2D. It turns out that
the 3D U-Net shares the problems of the U-Net. It only manages to detect
black spots but it doesn’t manage to differentiate between thrombus and
non thrombus. On average the 3D U-Net detects 208 objects on the test set
which is worse than the U-net. Certainly this could be improved by using
the same cross validation and retraining scheme as for the U-Net. But one
3D U-Net model already needs around 4 days to train on an NVIDIA Tesla
V100 GPU so this is not feasible.

In contrast the logic LSTM model Th 1 produces less than 30 false positives
despite being trained under the same conditions. This already shows that the
logic LSTM is a more robust model. Adding other MRI modalities doesn’t
really improve the results. The model Th 2 has a lower number of false
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positives but has a lower detection rate. But what is interesting is that the
models Th 1 and Th 2 detect different false positives. This observation lead
to the idea to use the two models as ensemble (Th 1 & Th 2). The merged
model only has 3.3 false positive objects on average but the detection rate
drops to 0.93. This is already a largely better result than the multi-directional
U-Net approach (section 4.3.1).

From these results it is clear that the thrombus detection is a very difficult
problem and the SWAN alone is not sufficient. Additional clues for the
location of the thrombus used by the medical doctors are their anatomical
knowledge combined with the patients’ symptoms. The patients’ symptoms
are not really retrievable in a retrospective study and currently cannot be
retained past the anonymisation step. But there is another clue which is
available: the location of the lesion which can be acquired from DWI (section
4.4). Unfortunately the lesion is often outside the patch size chosen for our
models and increasing the patch size is not an option due to constraints in
computational power. What is possible is to segment the lesion separately
and use it in a post processing step to filter the false from the true positives.

It turns out that adding the lesion indeed improves the results significantly.
The thrombus needs to be in the blood stream which supplies the lesion
region. For all patients in the data base this is in front and below of the lesion,
as well as between the outer border of the lesion and the mid-sagittal plane.
To avoid calculating the position of the mid-sagittal plane it is assumed that
the thrombus is not further inward than 50 voxels from the inner edge of
the lesion. This excludes the unaffected hemisphere and is far enough for all
thrombi. Sometimes the thrombus can be inside the lesion, so the selection
rule with respect to the lesion is:

Thrombus selection by lesion position The valid location for the thrombus
is inside a cube given by the lesion location. It is below the upper edge of
the lesion, in front of the rear edge of the lesion and between the outer edge
of the lesion and 50 voxels inward of the inner edge of the lesion. The inner
edge is the one closest to the mid sagittal plane (which can be replaced by
the centre of the MRI volume for calculation purposes).

This selection allows to discard many false positives. Using the lesion the
number of false positives drops massively for all models (table 4.3 lower
part). But the relative performance of the models stays the same. The U-
Net and 3D U-Net still detect more than 40 false positives which is far from
a reliable detection. The merged logic LSTM model Th 1 & Th 2 improves
to only 1.5 false positive objects with a detection rate of 93%. This would be
good enough to use it in a semi automatic fashion where the medical doctor
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would only need to decide between two possible thrombi. This shows the
importance of the lesion as an indicator for the thrombus location. Also the
lesion is such a strong feature that the threshold for the probability map
becomes non-relevant. For the merged logic LSTM model Th 1 & Th 2 the
threshold could be lowered to 0.02 without really affecting the number of false
positives. The lowered threshold provided a slightly better Dice-coefficient.

The average size of the false positive components is certainly below 100 voxels
for all models. However the smallest thrombus in the data-set has a volume
of 350 voxel. Of course this observation can be used to improve the segment-
ation results. Discarding all objects which are smaller than 300 voxels yields
the results in table 4.4. Most false positives vanish. The results from the
U-Net models are still mediocre while the logic LSTM delivers almost perfect
results. The merged model Th 1 & Th 2 even manages to have zero false
positives. This can be called a true automatic thrombus detection! Together
with the lesion as additional feature the threshold can be lowered which leads
to a detection rate of 100%. This is a perfect result.

To emphasise the difficulty of the thrombus segmentation task the segmenta-
tion on two particularly difficult patients is shown in figure 4.8. The first row
shows a patient which has been trembling during the MRI acquisition and
thus the image is very blurry. To a human eye the thrombus is barely recog-
nisable. Nevertheless the logic LSTM identifies the thrombus. The second
row shows a patient with many micro bleeds. Micro bleeds are little haemor-
rhages of the same size as the thrombus which don’t provoke any symptoms.
As they are constituted of clotted blood they are identical to a thrombus in
terms of appearance on MRI. The only way to identify a micro bleed is by
the context, i.e. its location with respect to the arterial tree and the lesion.
Still the logic LSTM can tell the difference where other methods fail.

These experiments show that the thrombus segmentation from SWAN is a
very difficult task. Established segmentation methods (U-Net and 3D U-Net)
are very good at pattern recognition. But it turns out that the pattern alone
is not sufficient as there are many objects with identical patterns. A more
advanced model, the logic LSTM, shows that it is capable to incorporate
context information which largely improves its results over the U-Net, 3D
U-Net as well as the multi-directional U-Net. Even the improved models still
produce some false positives. Post-processing of the segmentation with the
knowledge of the lesion location and minimum size of the thrombus allows
to achieve a perfect thrombus detection. The thrombus is detected in 100%
of all patients with no false positives. This is the first reliable thrombus
segmentation. Thus the logic LSTM can be truly used for an automatic
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Figure 4.8 Two examples of thrombus segmentation by the logic LSTM. The first
column is the SWAN, the second column the ground truth and the last column
the segmentation given by the ensemble of models Th 1 & Th 2. The first row
shows a patient with strong movement artifacts, but despite the excessive blurring
of the image the logic LSTM still finds the thrombus. The second patient shows
that the thrombus is very similar to many structures on SWAN.

detection of the thrombus. Of course this approach needs to be verified with
a larger data-set but is very promising and certainly a candidate for clinical
application.

The logic LSTM also has a number of other advantages. It uses less than
3% of the parameters of established segmentation methods, it can be trained
with an even smaller number of samples, it is a more robust model and it
is not only an object detector but can also take into account simple logical
conditions. Notably it is very good at telling apart very similar objects. This
makes it an interesting method for other applications as well.
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Table 4.3 Segmentation results for the thrombus. The lower part gives the results
obtained by using the lesion location as additional feature. The columns are the
Dice coefficient, the mean number of false positive objects ”FP“ and their average
size ”FP Size”, the mean number of false negative objects ”FN“ and their average
size ”FN Size” and the detection rate Dr.

Model Dice FP FP Size FN FN Size Dr

Thrombus detection

U-Net Th 0.08 133.6 94.0 0.14 353.8 0.96
Mask R-CNN 0.056 229.7 215 1.48 643.5 1.0
3D U-Net Th 0.035 208.3 83.8 0.25 263.9 0.89
Th 1 0.16 29.8 76.3 0.25 121.1 1.0
Th 2 0.10 22.2 38.1 0.43 240.6 0.89
Th 1 & Th 2 0.19 3.3 29.6 0.39 239.5 0.93

Thrombus detection using lesion

U-Net Th 0.18 47.7 93.5 0.14 353.8 0.96
Mask R-CNN 0.17 67.8 194.4 1.48 643.5 1.0
3D U-Net Th 0.14 44.0 81.9 0.25 263.9 0.89
Th 1 0.28 10.7 62.6 0.25 3121.1 1.0
Th 2 0.15 6.6 39.7 0.46 242.6 0.89
Th 1 & Th 2 0.22 1.5 24.8 0.43 241.9 0.93

4.4 Automatic Lesion Segmentation

While the thrombus is only a small dark spot on SWAN, the lesion is the
damaged area and can be almost as big as a hemisphere. Just the larger
size makes it easier to segment and lesion segmentation has already been
studied as explained in section 1.3.5. Please recall that all those studies have
been in the acute phase or even later. The stroke data-set used here has
patients in the hyper acute phase of stroke. Which means that the lesion is
developing, can be small and has no well defined border (figure 1.9). This
makes it a more difficult task than the cases which have been studied already
in literature. DWI has numerous artefacts which are as bright as the lesion,
which is not discussed in most studies. In the hyper-acute phase of stroke
some artefacts are visually indistinguishable (through the similar size and
equally fuzzy borders) from the lesion and thus artefact detection becomes a
major concern. Thanks to the innovative lesion enhancement pre-processing
(section 4.2.4) most artefacts can already be eliminated but some still remain.
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Table 4.4 Segmentation results for the thrombus where objects of less than 300
voxels volume have been deleted. The lower part gives the results obtained by using
the lesion location as additional feature. The columns are the Dice coefficient, the
mean number of false positive objects ”FP“ and their average size ”FP Size”, the
mean number of false negative objects ”FN“ and their average size ”FN Size” and
the detection rate Dr.

Model Dice FP FP Size FN FN Size Dr

Thrombus detection, size > 300

U-Net Th 0.08 8.4 545.6 0.14 353.8 0.96
Mask R-CNN 0.056 40.1 810.2 1.48 643.5 1.0
3D U-Net Th 0.035 14.8 516.8 0.25 263.9 0.89
Th 1 0.16 1.4 459.3 0.25 121.1 1.0
Th 2 0.10 0.14 369.25 0.43 240.6 0.89
Th 1 & Th 2 0.19 0.0 - 0.39 239.5 0.93

Thrombus detection using lesion and size > 300

U-Net Th 0.19 3.1 515.4 0.14 353.8 0.96
Mask R-CNN 0.17 11.0 723.0 1.48 643.5 1.0
3D U-Net Th 0.14 2.5 524.6 0.25 263.9 0.89
Th 1 0.28 0.36 386.6 0.25 121.1 1.0
Th 2 0.15 0 - 0.46 242.6 0.89
Th 1 & Th 2 0.28 0.07 389.5 0.32 196.9 1.0

4.4.1 Fuzzy Clustering

Fuzzy clustering is a popular unsupervised method for medical image seg-
mentation. In the context of this work the unsupervised methods have been
studied by Andrea Roncoli. He compared the methods by Tasi et al. [69]
and Muda et l. [68] as well as basic fuzzy C-means (FCM) and improved
upon these methods. Essentially the method by [68] is completely useless
for emerging lesions as it only uses FCM to find a threshold and thus only
works with well defined bright lesions while also segmenting all possible arte-
facts. Tsai et al. [69] provide a method for detecting artefacts and while the
numerical values for their parameters had to be adjusted to make it work
on the CHSF stroke data-set it detects some artefacts. Still the results are
mediocre.

Andrea Roncoli could improve the method. His FCM based method is de-
scribed in his master’s thesis [110]. The Dice coefficients achieved with these
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unsupervised methods are given in table 4.5. For an unsupervised method
Roncoli’s result is not bad and actually comparable to the latest published
result using a CNN [65] with a Dice score of 0.61.

Table 4.5 Dice score for the lesion segmentation task for the three fuzzy clustering
methods on the CHSF stroke data-set.

Mehtod Muda et al. Tsai et al. Roncoli et al.

Dice 0.46 0.53 0.63

4.4.2 U-Net

Clustering methods have their advantages in being very small and fast mod-
els. But overall better results are expected with supervised deep learning
methods. As for the thrombus the first tried method is the U-Net. It was
trained on 64 × 64 patches using DWI and the enhanced lesion image (sec-
tion 4.2.4) with a batch size of 100, 32 start features and with a leave-one-out
cross validation scheme [107]. With a Dice score of 0.59 it achieved the per-
formance which is expected by a CNN on this kind of problem ( [65] achieved
a Dice of 0.61). This is still below the inter-observer agreement of 0.68 and
notably the U-Net has trouble with artefacts.

4.4.3 Logic LSTM

The logic LSTM has shown on the thrombus segmentation task that it is able
to tell apart very similar objects. As the lesion segmentation is an easier task
than the thrombus segmentation the logic LSTM really excels at this task.
The data-set is divided in half, like for the thrombus segmentation, into a
training and test set with one patient set aside as validation set. The learning
rate is set to 0.001. Two logic LSTM models (Le 1 and Le 2), an U-Net and
a 3D U-Net are trained to segment the lesion with the configurations given
in table 4.6.

The segmentation results of all four networks are given in table 4.7. The
3D U-Net once again suffers from the small training set while the U-Net
generally learns to detect the lesion but fails in some cases. The logic LSTM
model Le 2 detects the lesion in every patient. A few false positive objects
of minor size are found. Upon manual inspection it turns out that these are
very close to the main lesion and might even be part of the lesion, depending
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Figure 4.9 Two examples of developing lesions in the hyper-acute phase of stroke
(first column). The lesion is currently growing and has no clearly defined borders
but rather shows gradients towards the normal tissue. The second column shows
the ground truth and the third column the lesion probability given by the model
Le 2. Please note that our algorithm correctly identified the contra-lateral artifact
visible in the first row.

on definition. So it is an almost perfect result. However by merging the two
models Le 1 and Le 2 the average number of false positives can be reduced
to 0.6. As the false positives constituted an insignificant amount of voxels
anyway the Dice coefficient only changes at the fourth digit after the decimal
point. The logic LSTM achieves a Dice coefficient of 0.69 which corresponds
to the inter-observer agreement of 0.68. So this result is a segmentation of
the lesion on human level. Notably it is the first lesion segmentation which
achieves this performance and a better result cannot be achieved on this type
of data-base. Two especially difficult cases are displayed in figure 4.9. They
show the gradual borders of the developing lesion and contra lateral artefacts
which only trained experts can identify as such.
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Table 4.6 Configuration of the networks for the lesions segmentation task. E is
the enhanced image from section 4.2.4.

Model Patch Size Batch Size m n4c n4Input
Modalities

Le 1 128× 128× 16 4 4 4 32 DWI E
Le 2 256× 256× 14 2 4 4 32 DWI E
U-Net 128× 128× 1 100 - - 16 DWI E
3D U-Net 128× 128× 16 4 - - 32 DWI E

Table 4.7 Segmentation results for the lesion. The columns are the Dice coeffi-
cient, the mean number of false positive objects ”FP“ and their average size ”FP
Size”, the mean number of false negative objects ”FN“ and their average size ”FN
Size” and the detection rate Dr.

Model Dice FP FP Size FN FN Size Dr

U-Net 0.59 6.8 70.4 1.3 61.9 0.96
3D U-Net 0.34 31.4 231.4 1.7 19.4 1.0
Le 1 0.64 2.2 4.3 2.2 62.4 1.0
Le 2 0.69 3.4 35.4 1.4 20.0 1.0
Le 1 & Le 2 0.69 0.6 44.7 1.8 51.3 1.0



4.4. AUTOMATIC LESION SEGMENTATION 125



Chapter 5

Conclusion and Perspectives

5.1 Summary

The starting point for this thesis was the detection of thrombus and lesion
from stroke MRI using machine learning methods. For this goal a data-
set with images of 65 patients was provided by the CHSF neurology group.
After exploring the details of the acquisition technique, MRI, and studying
the medical implications of a stroke it was possible to decide which of the
images could be used for thrombus detection and which for lesion detection.

The thrombus segmentation task proved to be particularly difficult. Tradi-
tional machine learning and image processing methods were without success.
After studying the problem it was clear that texture or statistical features
are not sufficient and the usage of a shape detector was necessary. Convolu-
tional neural networks are currently the best shape detectors and the U-Net,
which is specialised on bio-medical images, was used. Training the U-Net on
the Stroke data-set was difficult and resulted in the development of a new
sampling method to relieve the class imbalance. This lead to the insight that
2D methods can find the thrombus but will inevitably produce hundreds of
false positives. Of course trying a 3D U-Net would have been an idea but
the NVIDIA 1070 GPU available at that point did not have enough RAM to
actually train one. Later, when an NVIDIA Tesla V100 GPU was available
it turned out that the 3D U-Net is not powerful enough for the thrombus
segmentation task. Thus the U-Net was extended to a multi-directional U-
net by merging three separate U-Nets which work on the axial, coronal and
sagittal slices respectively. Although not true 3D this allowed to find the
thrombus in 77.4% of all patients but on the downside with a small number
of false positives. Inspired by the way medical doctors find the thrombus
by looking at the series of slices a recurrent network architecture, the logic
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LSTM, was designed. It processes the MRI volume slice by slice and has
a memory through which it can transfer features from slice to slice. This
allows to use the full 3D context while using only a 2D method. The lo-
gic LSTM alone achieves results far superior to the U-Net, and when used
in an ensemble of two it can reliably find the thrombus with a detection
rate of 100% and produces no false positives. Furthermore the logic LSTM
is more efficient than the U-Net, using only 3% of the U-Nets parameters.
So this work presents the first reliable thrombus detection from stroke MRI
something which could not be achieved by competing architectures.

With the logic LSTM giving such good results for the thrombus it is no
surprise that it also excelled at the easier task of lesion segmentation. A
new pre-processing step makes the lesion much more visible and established
segmentation methods have no problem finding it. However the lesion in the
hyper-acute phase of stroke is still difficult to delineate precisely because it
is gradually developing and has no well defined borders. The logic LSTM
improves upon this point and contributes the first lesion segmentation with
human level performance. No other method before achieved a Dice score as
high as the inter-observer agreement on the stroke lesion segmentation task.

Not only the stroke MRI segmentation tasks have been solved, the develop-
ment of the logic LSTM also brought some theoretical insights in the field
of neural network design. With the transfer block the standard method
for increasing receptive fields, multi-resolution pyramids, has a new compet-
itor which uses much less parameters. Also the convolutional LSTM has
undergone a detailed analysis and its weaknesses have been identified and
leveraged. Resolving these lead to the logic LSTM.

5.2 Future Work

The new solutions to the stroke segmentation problem are very promising so
the future plan is to validate these on a larger data-set and to integrate it
into a software for clinical application. Hopefully this will become a valuable
tool for the treatment decision for stroke patients. But it does not need
to stay a tool for measuring the lesion and thrombus size. As it has been
shown that the thrombus and lesion size are good predictors for the patient
outcome after treatment this is a candidate for automation. Possibly the
patient outcome can be predicted with respect to the treatment option. This
could be helpful to choose the most favourable treatment for the patient.
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On the theoretical side there are many interesting aspects to investigate.
The methods for increasing the receptive field for a neuron deserve more
attention. The proposed transfer block increases the receptive field in only
one step and it was shown that it performs comparable to a fully fledged multi
resolution method. But the features extracted by the transfer block are only
local, combined with a spatial information given by the different window
sizes. It would be interesting to see how the local plus spatial information
compares to multi-resolution features in different use cases and if they are
truly interchangeable. Also there may be other ideas on how to increase the
receptive field. From an applied point of view the transfer block offers small,
i.e. cheap, networks which could unblock applications of deep learning in
areas where computational power is limited like automobile applications or
real-time clinical use cases. Also the “logic” part of the logic LSTM provides
opportunities for studying the information processing in recurrent networks.
The logic LSTM itself is a first step in connecting visual information with
logic processing which surpasses the element of correlation and statistics
which is the basis of current CNNs. Maybe the logic LSTM can master tasks
which go beyond segmentation such as controlling a (industrial) process or
be the basis of such an architecture.
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segmentation des lésions AVC’. Master’s thesis, Université Evry Val
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Deep Learning for Lesion and Thrombus Segmentation from Cerebral MRI
Keywords: Deep Learning, Segmentation, MRI

Deep learning, the world’s best set of methods for identifying ob-
jects on images. Stroke, a deadly disease whose treatment requires
identifying objects on medical imaging. Sounds like an obvious com-
bination yet it is not trivial to marry the two. Segmenting the lesion
from stroke MRI has had some attention in literature but thrombus
segmentation is still uncharted area. This work shows that contem-
porary convolutional neural network architectures cannot reliably
identify the thrombus on stroke MRI. Also it is demonstrated why
these models don’t work on this problem. With this knowledge a
recurrent neural network architecture, the logic LSTM, is developed
that takes into account the way medical doctors identify the throm-
bus. Not only this architecture provides the first reliable thrombus
identification, it also provides new insights to neural network theory.
Especially the methods for increasing the receptive field are enriched
with a new parameter free option. And last but not least the logic
LSTM also improves the results of lesion segmentation by providing
a lesion segmentation with human level performance.

Apprentissage Profond pour la Segmentation de Lésion et de Thrombus dans
des IRM Cérébrales
Mots Clés: Apprentissage Profond, Segmentation, IRM

L’apprentissage profond est le meilleur ensemble de méthodes au
monde pour identifier des objets sur des images. L’accident vascu-
laire cérébral est une maladie mortelle dont le traitement nécessite
l’identification d’objets par imagerie médicale. Cela semble être une
combinaison évidente, mais il n’est pas anodin de joindre les deux.
La segmentation de la lésion de l’IRM cérébrale a retenu l’attention
des chercheurs, mais la segmentation du thrombus est encore inex-
plorée. Ce travail montre que les architectures de réseau de neur-
ones convolutionnels contemporaines ne peuvent pas identifier de
manière fiable le thrombus sur l’IRM. En outre, il est démontré
pourquoi ces modèles ne fonctionnent pas sur ce problème. Fort de
cette connaissance, une architecture de réseau neuronal récurrente a
été développée, appelée logic-LSTM, capable de prendre en compte
la manière dont les médecins identifient le thrombus. Cette ar-
chitecture fournit non seulement la première identification fiable
de thrombus, mais elle fournit également de nouvelles informations
sur la théorie des réseaux neuronaux. En particulier, les méthodes
d’augmentation du champ récepteur sont enrichies d’une nouvelle
option sans paramètre. Enfin, le logic-LSTM améliore également les
résultats de la segmentation des lésions en fournissant une segment-
ation des lésions avec un niveau de performance humaine.
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