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Spécialité de doctorat : Automatique
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Abstract

Automation of everyday vehicles becomes a societal, economic and technological issue. This
task of driving automation is suggested as one of the major solutions to make transportation
safer, more comfortable and potentially more environment friendly. Automated systems
are gradually implemented in recent vehicles through Advanced Driver Assistance Systems
(ADAS). However, they are often limited to warning systems and a partial delegation of
control, or only applied under controlled and constrained conditions.

This thesis work is part of the development of a self-driving car in highway environments.
More precisely, it aims to propose a uni�ed architecture of trajectory planner and decision-
maker taking into account the limitations of the environment and the available data within
the current development of sensors technologies (distance limitations, uncertainties).

On the one hand, the method generates sigmoid trajectories in a continuous spatiotempo-
ral representation of the evolution space, which is reduced beforehand by modeling collision-
free intervals in nominal conditions of driving. The sigmoid parameters are subsequently
optimized with a simulated annealing approach that uses the decision-maker algorithm as
the evaluation function for the generated trajectory. It thus makes it possible to elude both
the discretization and position/speed decoupling problems. On the other hand, the aggre-
gation of fuzzy logic and belief theory allows decision making on heterogeneous criteria and
uncertain data. The proposed framework also handles personalization of the vehicle's behav-
ior, depending on the passengers' risk perception and an aggressive or conservative driving
style.

The presented approach was �nally evaluated and validated in a simulation environment,
and then in a test vehicle. The planning block was integrated into the existing vehicle's
architecture, interfaced with the localization, obstacles' perception and control blocks.

Keywords: Self-driving cars, Motion planning, Decision making, Trajectory generation,
Intelligent Transportation Systems





Résumé

L'automatisation des véhicules est un enjeu sociétal, économique et technologique important
et d'actualité. Cette tâche de délégation de la conduite est proposée comme l'une des so-
lutions majeures pour rendre les transports plus sûrs, plus confortables et potentiellement
plus respectueux de l'environnement. Des systèmes automatisés sont progressivement im-
plantés dans les véhicules récents à travers les systèmes avancés d'aide à la conduite (ADAS).
Cependant, ils se limitent essentiellement à une délégation partielle de la conduite, ou à leurs
applications dans des conditions contrôlées et contraintes.

Ce travail de thèse s'inscrit dans le développement d'un véhicule autonome en milieu
autoroutier. Plus précisément, il s'agit de proposer une architecture uni�ée de génération de
trajectoires avec une prise de décision prenant en compte les limitations de l'environnement
et des informations disponibles actuellement sur un véhicule automatisé.

La méthode propose d'une part de générer des trajectoires sous forme de sigmoïde dans
une représentation spatiotemporelle continue de l'espace de navigation, préalablement ré-
duit par la modélisation d'intervalles sans collision en condition nominale de conduite. Les
paramètres de la sigmoïde sont ensuite optimisés par une stratégie de recuit simulé utilisant
l'algorithme de prise de décision comme fonction d'évaluation de la trajectoire générée. De
cette manière, les problèmes de discrétisation et de découplage position/vitesse sont évités.
D'autre part, l'agrégation des théories de logique �oue et des croyances permet une prise de
décision sur des critères hétérogènes et des données incertaines. Le formalisme présenté o�re
la possibilité d'adapter le comportement du véhicule aux passagers, notamment selon leur
perception du risque et leur souhait d'une conduite souple ou sportive.

L'approche développée a �nalement été évaluée et validée en environnement de simulation
puis sur un véhicule de test. La brique de plani�cation a alors été intégrée à l'architecture
existante du véhicule, en aval des briques de localisation et de perception des obstacles et en
amont de la brique de contrôle.

Mots clés: Véhicule autonome, Plani�cation de mouvement, Prise de décision multi-
critères, Génération de trajectoires, Systèmes de transports intelligents
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Since the last decade, the development of automated and autonomous vehicles has spread
worldwide among universities, software companies and the automotive sector as one of the
promising advancements in automotive engineering and research. The automation of everyday
vehicles becomes a societal, economic and technological issue. This task of driving automation
is studied in the �eld of transportation safety, comfort and environmental care. Automated
systems are gradually implemented in recent vehicles through Advanced Driver Assistance
Systems (ADAS).

This �rst chapter presents the evolution of the context of autonomous vehicles in section
1.1, the motivations driving this doctoral work in section 1.2 and the contributions made in
section 1.3. The structure of the document is �nally summarized in section 1.4.
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1.1 Context of the autonomous vehicle

The contributions to Intelligent Transportation Systems (ITS) aim to provide innovative
transport services by signi�cantly tackling safety and security of road transport, including
drivers, public passengers and freight mobility, transport networks, as well as environmental
performance and e�ciency. These contributions handle the development of safer, cleaner,
more comfortable and more e�cient mobility of people and goods, saving lives, time and
money. In [EPC ], ITS are de�ned as systems integrating "telecommunications, electronics
and information technologies with transport engineering in order to plan, design, operate,
maintain and manage transport systems." ITS thus involve a wide range of applications,
from the tra�c management to the autonomous vehicles, which is the scope of this work.

This section overviews the main research projects on the autonomous vehicles in subsec-
tion 1.1.1 and its current developments in our everyday cars in subsection 1.1.2.

1.1.1 Evolution of the automated vehicle towards the self-driving car

The research on the automation of the vehicle is an almost centenarian topic. Di�erent phases
of development and actors have succeeded each other. This part reminds, in a non-exhaustive
way, of the main research and consortium projects led between academia and industrials along
the years.

1.1.1.1 Phase 1: Research projects (1920s-1980)

One of the �rst contributions to driverless cars dates back to the 1920s at the Houdina Radio
Control Company. They successfully proceeded with the demonstration of a car controlled
by radio [Green 1925], see Figure 1.1a. A trailing vehicle sent radio signals to the front
driverless vehicle in order to control its throttle, brake, and steering. In the 50s, General
Motors in collaboration with RCA Labs demonstrated a vehicle system that was guided and
controlled by wires that were laid in the pavement of a private road, promoting advances in
highway design and transportation [PC6 1960]. In 1977, the Tsukuba Mechanical Engineering
Laboratory in Japan developed an automated car, which identi�es and avoids obstacles using
two front cameras, at a velocity up to 30 km/h on private tracks [Tsugawa et al. 1979].

1.1.1.2 Phase 2: Consortium projects (1980-2000)

In the late 80s and 90s, research institutes and automotive manufacturers partnership nu-
merous autonomous driving projects �nanced in. The European EUREKA Prometheus pro-
gram [EUREKA ], from 1987 to 1995, aimed to improve road tra�c on both vehicles and
infrastructure (e.g. driver assistance, Vehicle-to-Vehicle, V2V, and -Infrastructure, V2I, com-
munication, driver monitoring). One of the major demonstrations was the twin cars VaMP
and VITA II [Ulmer 1994] which drove over 1000 km on the French 3-lane A1-highway in a
heavy tra�c. They performed various driving tasks such as lane keeping, adaptive speed or
distance keeping, lane changing, overtaking, and collision avoidance at a maximum speed up
to 130 km/h using video cameras. However, this autonomous vehicle application was lim-
ited to well-structured environment and good weather/light conditions. At the same time,
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Carnegie Mellon University's Navlab succeeded in their project �No Hands Across Amer-
ica� with Navlab 5 [NHA ]. They drove, from Pittsburgh, PA to San Diego, CA, USA, a
steering controlled vehicle, with human-controlled throttle and brake. To quote but a few,
others in�uential demonstrated projects were the ARGO project of University of Parma's
VisLab [Broggi et al. 1999], a lane marking- and vehicle detection-based vehicle, which trav-
eled the MilleMiglia in Automatico tour � a 2000 km journey along Italian highways �, and
the platooning demonstration of automated highway in 1997 at San Diego by the California
Program On Advanced Technology For The Highway (PATH) in collaboration with General
Motors during the National Automated Highway System Consortium (NAHSC) [Rajamani
et al. 2000], see Figure 1.1b.

1.1.1.3 Phase 3: Expansion of autonomous projects (2000-present)

Since the Defense Advanced Research Projects Agency (DARPA) organized autonomous ve-
hicle competitions in 2004, 2005, and 2007, and thanks to new technologies, automated func-
tions are evolving quickly and treat more complex scenarios in real environments. For the
DARPA Urban Challenge (DUC) 2007 [DARPA ], six teams succeeded in navigating through
a city environment in tra�c with both automated and human-driven vehicles. However, the
vehicles were frequently manually paused for safety reasons, and a set of rules de�ned the
environment and the expected situations that the vehicles had to face. The University of
Parma's VisLab ran the VisLab Intercontinental Autonomous Challenge (VIAC) in 2010, a
15 900 km trip in 100 days from Parma, Italy to Shanghai, China [Broggi et al. 2013a], see
Figure 1.1c. The VIAC objectives were to test the perception technologies and the vehicle's
control system with a human-driven leader/automated follower approach. They extended
their research by running the PROUD project [Broggi et al. 2014] in 2013 on open public
urban roads and freeways through Parma, Italy, but with a speci�c path to follow, which
was previously tested to solve the encountered challenges. In 2011, the European project
HAVEit [HAVEit ] demonstrated V2V and V2I communication up to 20 m and a joint sys-
tem driver/co-system with automated assistance in road works and congestions, as well as
temporary autopilot with driver monitoring. Meanwhile, CityMobil [CityMobil ] European
project tested cybercars for automated city transit, and the French project ABV [Resende
et al. 2013] studied the sharing of driving between the driver and the assistance system at
low speed. In 2012, the achievement of the SARTRE Project [SARTRE ] showed highway
driving in platooning with a three-car road train conducted by a human-driven vehicle on
a proving ground. In 2013, another demonstration by Daimler and Karlsruhe Institute of
Technology completed the Bertha Benz Memorial Route [Ziegler et al. 2014] with both city
and highway driving in fully autonomous mode with a defensive driving style. The route was
divided into intervals to ensure that operating times never exceeded 45 minutes. In 2016, the
international Grand Cooperative Driving Challenge (GCDC) [Englund et al. 2016] presented
three tra�c scenarios for highways: merging two rows of vehicles into one, automated cross-
ing and turning at an intersection, and automatically giving way to an emergency vehicle,
using self-driving technologies, V2V and V2I communication.

Although, these projects have successfully demonstrated the implementation of an auto-
mated vehicle, their overall behavior is far inferior to the one of a human driver in the �eld of
perception, prediction, and interpretation. Moreover, the requirements of the implemented



4 Chapter 1. Introduction

sensors need to be reduced in order to provide commercial roll-out.

(a) The radio-operated automobile

from the Houdina Radio Control Co.

(b) Demo'97: I-15 lanes in San

Diego, CA.

(c) The VIAC VisLab vehicle.

Figure 1.1: Illustration of the evolution of self-driving cars.

1.1.2 From ADAS to fully autonomous vehicles

The Advanced Driving Assistance Systems (ADAS) are active safety systems to inform or
assist the driver in order to reduce and facilitate the driving tasks. We make the distinction
between the automated vehicle, which presents automated functions with little or no direct
human control, and the autonomous vehicles, which proposes a fully automated driving.
Within this manuscript, the terms autonomous vehicle, autonomous car, self-driving car are
equivalent. This part reports the framework of vehicle's automation, the use of ADAS in
highway driving, and the evolution of the car-makers.

1.1.2.1 Levels of driving automation for on-road vehicles and adaptation of leg-

islations

After Nevada, USA, authorized driverless vehicle experimentations on public roads in June
2011, other American states and countries (arranged in alphabetical order: Belgium, China,
France, Germany, Italy, Japan, the Netherlands, Singapore, Spain, Switzerland or United
Kingdom) adopted laws to test autonomous vehicles in tra�c. In response to these evolu-
tions, the United Nations Economic Commission for Europe (UNECE) amended the Vienna
Convention on Road Tra�c [United Nations ] to make the use of automation more �exible. It
allowed automated driving systems, "provided that these technologies are in conformity with
the United Nations vehicle regulations or can be overridden or switched o� by the driver"
[UNECE ].

With such a fast development in the automotive �eld, the Society of Automotive Engineers
(SAE) published in 2014 a standard classi�cation for automated and autonomous vehicles
with a 6-level system, detailed in Table 1.1, from 0 (no control but active safety systems) to 5
(no human intervention for driving) [SAE ]. Within this decomposition, the SAE provides a
common taxonomy and de�nition for automation levels according to the operator, i.e. human
driver or system, for the operational driving task (steering, acceleration, deceleration), the
environment monitoring, the fallback performance, and the driving scenario capability. With
respect to this taxonomy, the automated vehicle applies the levels 1 to 3 and the autonomous
vehicle designates the levels 4 and 5.
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Table 1.1: Automation levels from SAE International J3016 [SAE ].

At the moment, main automakers propose level-2 functions for individual vehicles � except
for Audi who implemented a level-3 feature for the tra�c jam driving mode, and a level-4
for autonomous shuttle services, as it is described in the next section.

1.1.2.2 ADAS implemented in today vehicles for highway driving

The development of ADAS has three main objectives: (1) to increase safety inside and around
the vehicle (crash avoidance and injury prevention), (2) to reduce its fuel consumption and
ecological footprint, and (3) to provide driving comfort to the driver. In the scope of this
work, only ADAS for the development of automated vehicles on highways are described, which
provide a partial task of automation in the vehicle as aiding, warning or assisting features.

Nowadays, many technological evolutions in partial autonomous vehicles are already used
in ADAS, and automakers now try to personalize ADAS to the driver's style [Hasenjäger &
Wersing 2017]. Concerning highway planning, a driver can be assisted to maintain a constant
speed with the Cruise Control function (CC) or not to exceed the speed limits with an Intel-
ligent Speed Adaptation (ISA). Adaptive Cruise Control systems (ACC) adjust the vehicle
speed in order to maintain a �xed distance, or a �xed time, to the front ego lane vehicle. In
the scope of the development of automated and connected vehicles, the Cooperative Adaptive
Cruise Control (CACC) would regulate the vehicle speed to the front ego lane vehicle consid-
ering the information on the acceleration of the next front ego lane vehicle, so that the system
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speed is more stable and limits tra�c jamming and fuel consumption; see [Wang et al. 2018c]
for a recent review. While interacting with obstacles, a collision avoidance system is applied
to either warn the driver of an imminent collision, or to autonomously take actions, such as
braking, helping the driver to stay safe. The Forward Collision Warning (FCW) and Reverse
Collision Warning (RCW) are visual and acoustic warnings for, respectively, front and rear
safety distances with obstacles. Lane Change Assist (LCA) systems assess the surrounding
tra�c and warn the driver against impending collision during his/her lane change intent.
Exploiting also the well painted lane marks on highways, systems based on Lane Departure
Warning (LDW) alert if the vehicle is leaving the ego lane, or those on Lane Keeping Assist
(LKA) keep the vehicle within the ego lane marks.

Nevertheless, all those functions are mainly reactive, as perception/action scenarios, and
are used as isolated functions of the system. A systemic point of view including both pre-
dictive and reactive reasoning is still missing. That is part of the challenges for the next
generation of self-driving cars. Moreover, two evolutions are conceivable: incrementally im-
proving ADAS to turn them into self-driving cars, or thinking the self-driving car as a new
system. The �rst option allows a progressive integration of the automation levels to the full
automation without steering wheel. The second option considers the vehicle as a new fully
autonomous system, where ADAS would only concern the dynamic control of the vehicle,
warning systems and comfort of passengers. This remains an open question today among the
car-makers and the new actors of IT as detailed in the next subsection.

1.1.2.3 The automotive companies and the emergence of new IT business

In addition to the research projects, many automotive companies unveil their semi-autonomous
vehicles corresponding to levels 1 or 2 of the SAE classi�cation (arranged in alphabetical
order, non-exhaustive): Audi, BMW, Bosch, Continental, Daimler, Ford, General Motors,
Hyundai, Mercedes-Benz, Nissan, PSA, Renault, Tesla, Toyota, Valeo, Volkswagen, Volvo.
Level-2 automated functions, such as lane keeping, adjusting velocities to the front car and
the road speed limits, or parking, are now available on commercial vehicles (e.g. Ford Fu-
sion, Nissan QASHQAI, Peugeot 508, Tesla Model S). For the moment, only Audi proposes
a level-3 Tra�c Jam Assistant for its A8 L, see Figure 1.2a.

Nonetheless, one of the experiences with the highest cumulative traveled distance is the
Google Car project, launched in 2011, which has driven over 16, 000, 000 km at the end of
2018, see Figure 1.2b. Meanwhile, the transportation network companies Uber and Lyft
collaborated with automotive companies to test their algorithms in order to o�er a robo-taxi
service. NuTonomy and Uber tested their taxi driver respectively in Singapore and Pittsburgh
(PA)/Tempe(AZ), in 2016 and 2017, as well as Lyft, which launched an open platform in 2017
to give access to its ride-sharing network for real-world ride-sharing driverless cars scenarios.

Furthermore, the deployment of autonomous shuttle is increasing with Navya and EasyMile,
which propose a public transportation for short distances in airports, universities or pedes-
trian and urban areas, see Figure 1.2c.

However, recent (deadly) accidents prove that the research and development of fully au-
tonomous vehicles still requires several years of improvement, including robustness against
their environment and driver relaxation, as well as a deeper re�exion on their social integra-
tion.
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(a) Audi A8 L. (b) Waymo self-driving cars. (c) Navya autonom shuttle.

Figure 1.2: Illustration of automated and autonomous vehicles.

1.2 Motivation

The autonomous vehicle is one of the signi�cant technological evolutions arousing popular
enthusiasm in the past decade. As such, autonomous vehicles are now applied to di�erent
kinds of mobility, such as individual vehicles, on-demand robo-taxis, or autonomous shuttles
used for the last kilometer or on limited areas. The development of this technology brings
up potential improvements. First, it tackles the safety issue with systems which have faster
reaction time than human drivers and are potentially able to communicate their intentions
more clearly on the road than human drivers can do to each other. These system capacities
would also help to decrease road congestion. In addition, they come along with a new vision
of transport and relationship to the personal vehicle. This is part of a democratization and an
environmental approach in order to reduce the number of vehicles in tra�c, particularly in big
cities, and to optimize the existing �eet by sharing it between several individuals (on-demand
autonomous vehicles for car-sharing providing robo-taxi features). This would contribute to
save transportation time and money. Furthermore, the social aspect is part of the motivation
for vehicle automation by o�ering mobility to people with disabilities or di�culties to drive.

Among the various components of an autonomous system, the planning part is considered
as the thinking part, responsible for the chosen actions. This part is in charge of making
the link between environmental observations from perception and vehicle's actions, see Fig-
ure 1.3. In spite of the current trendiness of this topic, autonomous projects are not recent
in the robotics literature and many reviewing works exist on motion planning strategies
[Latombe 1991, Laumond et al. 1998, LaValle 2006] or, more recently, on the speci�c use case
of autonomous driving [Katrakazas et al. 2015, González et al. 2016, Paden et al. 2016]. How-
ever, the standardization of the research to �t industrially realistic prototypes of self-driving
cars introduces new concerns such as functional safety, real-time computing, a systemic ap-
proach, or low-cost developments, and speci�c popular applications for parking, intersection
management, or highway driving. The motivation for highway driving lies in its simple driving
structure and the driver's limited behavior in nominal situations, making it the most reach-
able context for the �rst fully autonomous systems in tra�c. Furthermore, highways seem
to be the �rst environment where drivers would be con�dent driving in a fully autonomous
mode [Payre et al. 2014]. Nonetheless, the high velocity on highway environment is a major
risk factor in case of crash.

The motivation of this Ph.D. work is to propose an approach to systemically treat decision
making and trajectory generation in a dynamic highway environment. In addition, the state
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Figure 1.3: Illustration of the perception-planning-control autonomous system.

of the art lacks a taxonomy based on solutions that can be implemented with the available
resources, but that are �exible enough to be able to evolve with future technological advances.
Therefore, we assume that the vehicle's decision making is carried out in an "isolated" vehicle,
without communication with its environment and realistic sensors' capacities for perception,
which leads to a vision at 50− 100 meters. Even if these perception distances are admissible
for highway behavior, their limitations are a major disadvantage for autonomous vehicles at
high velocities. Moreover, we do not consider the driver in the loop at the core of the decision
making and trajectory generation developments. Thereby, our work belongs to SAE level-4,
with focus on highway driving. Nonetheless, the techniques used for decision making and
trajectory generation are not dependent on the driver actions, and can be integrated without
any intrinsic change in the SAE levels 1 to 3, where the driver will then a�ect the inputs,
outputs and integration constraints. Consequently, the research question driving this work
is to address the problem of a linear architecture between decision making and trajectory
generation considering the uncertainties of perception, while avoiding an overly conservative
vehicle's behavior.

1.3 Contributions

The problem addressed in this thesis is the motion planning, including the decision making
and motion generation. The main contributions in the present dissertation are synthesized
below.

1.3.1 A taxonomy of motion planning algorithms

The �rst contribution of this thesis is a state-of-the-art of the theoretical and experimental
techniques of motion planning over the last decade for autonomous vehicles used as future
every-day car. The research studies are multitudinous and varied. However, with respect to
the recently published survey papers, the bibliographies were either too speci�c or too coarse,
in the sense that a systemic approach for motion planning was missing.

The interest of this work is a survey of recent motion planning algorithms used for high-
way planning. A novel classi�cation is also suggested, centered on intrinsic attributes of the
methods oriented towards practical applications, enhanced with a radar charts representa-
tion. Furthermore, a synthesized comparison table is drawn which includes a comparison of
methods, limited to the decision making, motion generation and deformation functions of
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self-driving cars on highway environment. It follows two purposes: (1) motion planning tech-
niques are highly dependent on the constraints of perception, control, and environment, thus
it is important to refer to an algorithm with the appropriate behavior with relation to the
target application; (2) a systemic treatment of motion planning will lead to develop comple-
mentary meta-algorithms. Finally, the issues of implementing motion planning algorithms on
autonomous vehicle in mixed-human tra�c infrastructure are overviewed for future research
directions.

1.3.2 A new architecture for decision making and motion generation

Unlike previous planning schemes, which separate the motion generation and the decision
making, our contribution addresses both the motion generation �under the form of trajectory
generation� and the decision making �as an evaluation function� in a combined manner, in
order to ensure the consistency between the choice of a maneuver and the calculation of the
trajectory. The architecture proposed in this thesis provides an optimization of the motion
generation using the decision making function as the evaluation function. In addition, real
tests have shown that this architecture can be implemented in real time.

1.3.3 A continuous spatiotemporal maneuver generation

Our contribution is to optimize a trajectory generation process into a continuous space-time.
Thus, we avoid the discretization of the solution by optimizing the evolution space for every
motion of the ego vehicle. The decoupled optimization of position in a static environment
and velocity in a dynamic one is also overcome as the evolution space is characterized in 4

dimensions (longitudinal position, lateral position, longitudinal velocity and time). Moreover,
the proposed solution is set over a prediction horizon, i.e., the trajectory is predicted far ahead
(5 to 10 seconds).

Our method de�nes non-collision intervals in the evolution space based on the adjacent
obstacles. The intervals are characterized in space and time and then gathered into maneu-
vers. A simulated annealing algorithm is implemented to optimize, using the decision-maker
as an evaluation function, the parameters of a sigmoid trajectory for each maneuver in order
to �nd the near-optimal solution in a �nite time. The �exibility and adaptability of this
representation to the environment of the autonomous vehicle on highways are validated in
real experiments.

1.3.4 An adaptive framework design for decision making

The objectives of the decision-maker are to select the future motion as the best compromise
considering uncertainties and heterogeneous criteria of decision, such a acceleration, veloc-
ity, inter-distances, relative positions. Moreover, a deterministic decision allows to obtain
replicable and justi�able results, which is necessary for a human critical safety process as
autonomous driving. Our contribution is a high-level decision-maker providing a risk assess-
ment by optimizing heterogeneous criteria, evaluating with arbitrary functions, and dealing
with uncertainties.

The framework is made of three levels. The �rst one interprets the heterogeneous criteria
to gather them in homogeneous categories using the fuzzy logic approach. The fuzzy logic



10 Chapter 1. Introduction

deals with vague or imprecise information, handles non-independent variables, and recalls
human evaluation process. The second level combines the categories with the Dempster-
Shafer Theory. It yields both the evaluation of decisions and how it has been obtained, �xes
the in�uence of categories on the �nal decision, and interprets the fuzzy information into
bound estimates. Finally, a linear combination of the beliefs intervals selects the best motion
to follow.

Thus, the proposed framework for decision making simultaneously considers several fac-
tors of risk with their relative importance for human safety. It also handles personalization
of the vehicle's behavior, depending on the passengers' risk perception and an aggressive or
conservative driving style. Real testing validates the algorithm, which is evaluated by comfort
and safety analyses.

1.3.5 Publications

Peer-Reviewed Journals

Title: A Review of Motion Planning for Highway Autonomous Driving
Authors: Laurène Claussmann, Marc Revilloud, Dominique Gruyer, and Sébastien Glaser
Journal: Transactions on Intelligent Transportation Systems, IEEE
Volume: early access, Pages: 1-23, Year: 2019. Used in Chapter 2

Title: Perception, information processing and modeling: Critical stages for autonomous
driving applications
Authors: Dominique Gruyer, Valentin Magnier, Karima Hamdi, Laurène Claussmann, Olivier
Or�la, and Andry Rakotonirainy
Journal: Annual Reviews in Control
Volume: 44, Pages: 323-341, Year: 2017.

Peer-Reviewed Conference Articles

Title: A study on AI-based approaches for high-level decision making in highway autonomous
driving
Authors: Laurène Claussmann, Marc Revilloud, Sébastien Glaser, and Dominique Gruyer
Conference: IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Place: Ban�, AB, Canada Date: October 5�8, 2017. Used in Chapters 2 and 6

Title: Multi-Criteria Decision Making for Autonomous Vehicles using Fuzzy Dempster-
Shafer Reasoning
Authors: Laurène Claussmann, Marie O'Brien, Sébastien Glaser, Homayoun Najjaran, and
Dominique Gruyer
Conference: IEEE Intelligent Vehicles Symposium (IV)
Place: Changshu, Suzhou, China Date: June 26-30, 2018. Used in Chapter 3

Title: Simulated Annealing-optimized Trajectory Planning within Non-Collision Nominal
Intervals for Highway Autonomous Driving
Authors: Laurène Claussmann, Marc Revilloud, and Sébastien Glaser



1.4. Structure of the document 11

Conference: IEEE International Conference on Robotics and Automation (ICRA)
Place: Montreal, QC, Canada Date: May 20-24, 2019. Used in Chapter 4

1.4 Structure of the document

The present Ph.D. thesis is organized in six chapters. The remaining chapters are described
as follows:

Chapter 2, State of the Art This chapter presents a literature review of the motion
planning algorithms applied to autonomous vehicles. Motion planning is considered under
the decision making and motion generation functions. The scope of this review focuses on
the highway environment. A taxonomy is proposed in order to highlight the main features
of each algorithm for their application to real-time autonomous systems in complex environ-
ments. Thus, six families are introduced, considering their goal, space-time property and
their mathematical domains. For each family, we review the basic idea, the speci�cities, the
advantages and drawbacks, the improvements, and the interest for highway planning. At the
end, a comparison table is built to summarize the aforementioned characteristics, intrinsic
and extrinsic limits for a real-time use in highway motion planning.

Chapter 3, Decision making This chapter introduces our work for decision making. The
decision part in motion planning is crucial and deals with many di�erent kinds of criteria and
data, such as guaranteeing the safety time-space between the ego vehicle and its environment,
respecting the physical limits of the ego vehicle, taking into account the passengers' comfort,
following the navigation orders, etc. This presents two main issues: the heterogeneous criteria
and the uncertain data. The proposed framework for decision making addresses both by
combining the fuzzy logic approach and the Belief theory.

Chapter 4, Trajectory generation A combined architecture for both trajectory genera-
tion and decision making is �rst introduced in this chapter. The main concern is to avoid two
major problems of motion generation: the discretization of a set of solutions and the decou-
pled optimization of the static and dynamic environments. To do so, an optimization process
uses the decision making as the evaluation function. Besides, the optimized variables are
considered in a continuous spatiotemporal interval, which corresponds to the evolution space
without collision. Three variables are optimized to generate a sigmoid trajectory, which �t
properly the two main maneuvers on a highway environment, namely the lane changing and
the lane following. Without any a priori assumption on the decision function, a metaheuris-
tics simulated annealing algorithm is applied for the optimization process to deal with black
box function. Secondly, non-collision nominal intervals are modeled as the search space for
candidate solutions. They are de�ned as the free space between the obstacles on the adjacent
lanes and characterized by collision-free velocity pro�les and collision-free space maneuvers.

Chapter 5, Experimentation and results The experimental results are presented in
this chapter. The validation tests are decomposed into six scenarios to model the di�erent
use cases encountered on highways depicted in Chapter 2. The scenarios are performed on
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the prototype vehicle of Institut VEDECOM on a high speed test track with a 2-lane road,
approximatively straight over 1000 meters. The planning algorithms have been integrated
with a controller and perception modules. Two real obstacles (manual-driving) are introduced
in the last scenarios.

Chapter 6, Conclusion, future work and research perspective This �nal chapter
presents the conclusions on the main contributions of this Ph.D. work, as well as some possible
future work. Also, perspectives on motion planning research are discussed.



Chapter 2

State of the Art

Self-driving vehicles raises relevant controversies, especially with recent deadly acci-

dents. Nevertheless, they are still popular and attractive thanks to the improvement

they represent to people's way of life (safer and quicker transit, more accessible, com-

fortable, convenient, e�cient, and environment friendly). This chapter presents a

review of motion planning techniques over the last decade with focus on highway

planning. In the context of this thesis, motion planning denotes path generation and

decision making. Highway situations limit the problem to high speed and small cur-

vature roads, with speci�c driver rules, under a constrained environment framework.

Lane change, obstacle avoidance, car following, and merging are the situations ad-

dressed in this work. After a brief introduction to the context of autonomous ground

vehicles, the detailed conditions for motion planning are described. The main algo-

rithms in motion planning, their features, and their applications to highway driving

are reviewed.
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The purpose of this work is to build a taxonomy of motion planning algorithms for highway
driving for autonomous vehicles used like the workaday car of the future.

This chapter is organized as follows: Section 2.1 explains the scope of our classi�cation,
related to the perception and control constraints, and driver/highway driving rules, to high-
light the speci�c situation of highway driving. Section 2.2 describes the state of the art, and
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section 2.3 gives a comparison table for highway applications. Finally, section 2.4 introduces
the present work with respect to the existing state of the art.
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2.1 Considerations for highway motion planning

This section details the terminology related to the motion planning in subsection 2.1.1 and
the motion planning scheme in subsection 2.1.2. The speci�cities of highway driving and the
constraints on autonomous driving are listed, respectively, in subsections 2.1.3 and 2.1.4.

2.1.1 Terminology

Before dealing with planning algorithms, one needs to de�ne the wide terminology involved.
The adjective ego relates to the vehicle that is mastered and sensors-equipped. In contrast,
other vehicles are denoted as obstacles. The kinematics of the vehicle are represented by
its states, i.e. its position and orientation, and their time derivatives (position, velocity,
and acceleration, linear and angular). The geometric state space is called the con�gura-
tion space. The evolution space identi�es the con�guration space-time in which the ego
vehicle can navigate. Both the con�guration and evolution spaces are usually divided into
three subspaces, see Figure 2.1: the collision space, in which the ego vehicle collides with
obstacles; the uncertain space, in which there exists a probability for the ego vehicle to be
in collision; and the free space, in which there is no collision. The generic term motion

characterizes the states' evolution over time. Motion can refer in the literature to either free-
space (spatial geometric zones), path (sequence of space-related states in the free space, i.e.
geometric waypoints), trajectory (sequence of spatiotemporal states in the free space, i.e.
time-varying waypoints),maneuver (prede�ned motion, considered as a subspace of paths or
trajectories, i.e. motion primitives), or action/task (symbolic operations of maneuvers). We
distinguish generation, which builds sequences of paths, trajectories, maneuvers, or actions,
from planning, meaning the selection of one sequence among the generated motions. Finally,
the prediction horizon denotes the space or/and time horizon limits for the simulation of
the motion.

Figure 2.1: Evolution space representation: red = collision space, brown = uncertain space, green = free

space. The evolution space decomposition is based on the perception data symbolized by the gray radii.

2.1.2 Motion planning scheme

A general abstraction of the hierarchical scheme for autonomous vehicles can be found in
[Ziegler et al. 2014, González et al. 2016, Rodrigues et al. 2016]. We simplify and adapt the
proposed scheme to the one depicted in Figure 2.2, which focuses on the motion strategy
block.

The input data for the motion strategy block displays data for obstacles' behaviors and
infrastructure description, obtained from the perception, localization, and communication
(Vehicle-to-X - V2X) blocks. It does not pay any attention to how this information has been
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Figure 2.2: A hierarchical scheme of Autonomous Ground Vehicle systems.

collected, but to its quality such as the measures, their uncertainties, and their trustwor-
thiness. Thus, a scene representation is introduced between the perception / localization /
communication and motion strategy blocks, as presented in [Broggi et al. 2014]. This com-
ponent manages sensors data and provides a perception map with obstacles, lanes, tra�c,
road, and ego information.

On the other hand, the control block is formally fed with the reference motion decided
by motion strategy, and acts on actuators to move the ego vehicle. The motion strategy
block also reacts as a closed-loop system on the control and actuation blocks. In fact, the
information from the sensors on actuators' outputs provides an up-to-date ego state vector,
so that the motion strategy remains accurate.

Another closed-loop system from the perception / localization / communication block
to the motion strategy block is used to inform the ego perception and localization of the
current and future motion. It also conveys the current and future ego motion intentions to
the environment via communication.

Moreover, with semi-autonomous vehicles, the driver will interfere in the low levels of
automation on the actuators pedals and steering, and on the high levels, so the motion
strategy block acts more or less as a co-driver. In that sense, both communication from the
driver to the motion strategy block and the reverse are necessary to warn the driver of the
motion decision and to take into account his/her intention to drive. However, the driver will
not a�ect the core of the algorithms in the motion strategy block. In fact, the interactions
with the driver in the loop concern the input and output constraints (e.g. the driver wants to
stay on the right lane), and the integration conditions (e.g. replanning if the driver modi�es
the planned trajectory). Thus, the presented motion planning methods can be extended to
any SAE levels.

The motion strategy decides the most convenient motion according to some chosen criteria
(addressed in subsection 2.1.4). In [Michon 1985], the author names the �three levels of
skills and controls: strategical (planning), tactical (maneuvering), and operational (control)
respectively.� These three layers are largely exploited in the recent architecture [Broggi
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et al. 2014, Ziegler et al. 2014]. The tactical part is usually divided into subparts, with at least
one for behavioral planning and another for motion generation [Ziegler et al. 2014, González
et al. 2016, Rodrigues et al. 2016, Gu et al. 2013]. According to the structures previously
described, we distinguish �ve main functions of the motion strategy hierarchy, as shown in
Figure 2.3: (i) route planning, (ii) prediction, (iii) decision making, (iv) generation, and (v)
deformation. The space and time horizons for each of the motion planning functions are
summarized in Table 2.1.

Route Planning 

(i)

Decision

Making (iii)

Genera�on (iv)
Deforma�on

(v)

Predic�ve planning Reac�ve planning

Predic�on (ii)

Memory behavior

planning

Start-Goal planning

scope for 
motion planning

Figure 2.3: Motion planning functions. Motion planning acts as a global, local, and reactive motion strategy.

The route planner (i) is a trip scheduler; it provides a general long-term planning through
the road network from the initial position to the driver's desired destination. This function
is outside the scope of this work; see [Delling et al. 2009] for a related review.

The second function, the prediction step (ii), stores the current and historic dynamics data
to predict the dynamics of all the elements surrounding the ego vehicle. This process allows
to perform long-term risk estimation and dynamic replanning. The road infrastructure, the
route direction, the driving rules, and the lane marking evolution are usually extrapolated
from map information. The prediction of obstacles' behavior is the most critical task of the
prediction function. Although it is necessary for motion planning, it is not explained in this
work; see [Lefèvre et al. 2014] for a corresponding review.

The core functions addressed in this literature review are decision making (iii), generation
(iv), and deformation (v), which we call the motion planning scope. In recent works [González
et al. 2016], the motion planning approaches are organized as follows:

� A high-level predictive planning built around three objectives: criteria evaluation, risk
minimization, and constraint submission (see subsection 2.1.4). Those are used for de-
cision making (iii), i.e. to select the best solution out of the candidates' generation (iv).
One either generates a set of motions and then makes a decision as a motion selector,
or de�nes the behavior to adopt and then generates a motion to �t this behavior. This
high-level stage bene�ts from a longer predicted motion but is time-consuming.

� A low-level reactive planning deforming the generated motion from the high-level plan-
ning according to a reactive approach, i.e. the deformation function (v). This acts on
a shorter range of actions and thus has a faster computation time.
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Table 2.1: Space and time horizon for the motion planning functions.

Route Prediction Decision Generation Deformation
Planning (i) (ii) Making (iii) (iv) (v)

Space >100 m
>1 m >10 m >10 m >0.5 m
<100 m <100 m <100 m <10 m

Time
>1 min >1 s >1 s >1 s >10 ms
<1 hour <1 min <1 min <1 min <1 s

2.1.3 Speci�cities of highway driving

Motion planning techniques highly depend on the use cases. Our considerations for highway
driving are limited to lane-divided roads featuring unidirectional �ow (opposing directions of
travel being separated by a median strip) in nominal �uid tra�c, i.e. with a dynamic speed
over 60 km/h and without emergency maneuver. The road shape is made of straight lines,
clothoids, and circles with small curvature. In a nominal situation, there are only motorized
vehicles, which adhere to the same driving rules. Obstacle's behavior prediction is also limited
to one-direction, two-lane changes � right or left � and to accelerate, maintain speed, or brake.
Thus, tra�c behaviors are more uniform than in city driving. We distinguish eight nominal
non-exclusive situations during a highway trip, without focusing on exceptional situations:

� Lane keeping: The safety space in front of and behind the ego vehicle is guaranteed.
The longitudinal decision is to maintain the desired speed, whereas the lateral decision
keeps the ego trajectory inside the ego lane marks.

� Car following: Besides lane following, the ego vehicle must follow the front ego lane
vehicle while maintaining its longitudinal safety distances.

� Lane changing: This decision is made under either directional or obstacles' constraints.
The motion planner must ensure that the space in the target lane is su�cient and that
the speed is adequate to keep the ego vehicle in a safe state.

� Lateral-most lane changing: To ensure �uid tra�c �ow and safety, some driving rules
require leftmost or rightmost lane driving. Hence, the ego vehicle always seeks to change
lanes until the lateral-most lane is reached.

� Passing: The ego vehicle respects a lane keeping or car following decision while obstacles
are in the adjacent lanes. Keeping lateral security distances is required.

� Overtaking: This complex maneuver consists of a lane change, then passing an obstacle,
and �nally another lane change to return to the previous ego lane.

� Merging: Two actions occur on a highway: entering or exiting the highway, and merging
two rows of vehicles into one. The ego vehicle must adapt its longitudinal and lateral
speeds and distances to ease its way into tra�c.
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� Highway toll: The approach decision is to merge into a �ctional lane in anticipation
of a toll lane delimitation and to reduce the speed until stopping, whereas the leave
decision is to accelerate to the reference speed and to merge into a real tra�c lane.

The emergency maneuvers can either be treated from a motion planning point of view
or from the control one. In the �rst case, two strategies are highlighted in the literature:
applying reactive methods for a swerve maneuver to limit the collision, e.g. with a potential
�eld approach in [Wang et al. 2019] (see subsection 2.2.2.3) or a graph search in [Jafari
et al. 2017] (see subsection 2.2.2.2), and planning an emergency lane maneuver to drive the
vehicle in a priori safe environments, as suggested in [Vanholme et al. 2010] with a prede�ned
emergency lane trajectory. In the second case, the controller strategy aims to maintain the
vehicle stability and minimize the collision states, as developed in [He et al. 2018].

Autonomous vehicles are also studied in platooning. This con�guration decreases the
distances between the vehicles and thus increases the capacity of roads. The motion planning
strategy in platoons must be more robust than for individual vehicles in the sense of smoother
acceleration and turns to guarantee the platoon's stability. Platooning is not as interesting
from the perspective of motion planning as from that of control. We therefore do not consider
any speci�c studies on platooning in this state of the art work. Please refer to [Axelsson 2017]
for more details.

The main di�erences between highway, except for platooning, and city driving consist
in a further look-ahead time, with a stronger focus towards the ahead direction of the road,
whereas city driving involves a closer range of prediction but in all the directions. The highway
dynamics is also simpler with lower turn-angle, no reverse, and less braking/acceleration, but
higher and more constant velocity. Besides, vulnerable road users (e.g. pedestrians, motor-
cyclists) are less likely encountered on highways. Thus, even if there are less hazards, the
risk due to high speed is stronger. Moreover, the higher distances imply poorer sensors
capacities. Finally, less tra�c insures more stable scenario. The algorithms which consider
all these speci�cities in real-time will be favored for a practical application on highways.

2.1.4 Constraints on highway driving

Despite indicators such as high reliability, optimality, and low computation time needed for al-
gorithmic speci�cations, we also consider more speci�c highway planning constraints. On the
one hand, the environment's safety constraints respect the driving rules and avoid collisions.
These are called hard constraints as they are absolutely essential for autonomous driving
acceptance. On the other hand, the driver makes it necessary to respect ride optimization
constraints for the minimization of time, distance, or energy consumption, and maximization
of comfort. These are called soft constraints and can be relaxed. Other feasibility constraints
rely on kinematic restrictions of the vehicle, which are the nonholonomic dynamics, i.e. the
vehicle evolves in a three dimension space with only two degrees of freedom, a smooth path,
i.e. the trajectory should be di�erentiable and its curvature continuous, and the dynamics
limitations of a vehicle. The choice of the vehicle's model to handle these constraints in-
duces algorithmic complexity: the more degrees of freedom are used, the more complex is
the model solver. For most highway planning developments, there is no or very few (particle
kinematics with longitudinal and lateral position and velocity states) consideration of the
vehicle model, except for the explicit resolution of the potential �eld methods (see subsection
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2.2.2.3) and the numerical optimization (see subsection 2.2.2.5). Indeed, the longitudinal and
lateral constraints on the vehicle dynamics are important to maintain passenger's comfort for
high speeds; thus simple dynamics models are su�cient. However, this question of degrees
of freedom is a fundamental design parameter in motion planning and control architecture,
and should be addressed to guarantee a safe and drivable motion [Schürmann et al. 2017], as
well as consistency [Polack et al. 2018]. The last dynamic constraint is the evolution of the
ego vehicle in time. To summarize, the authors in [Rodrigues et al. 2016] identify the quality
requirements for the generated motion: �feasible, safe, optimal, usable, adaptive, e�cient,
progressive, and interactive.�

2.2 Literature review of motion planning techniques applied

on highway environment

The choice of the motion planning methods depends on the formulation of the motion planning
problem.

Firstly, the problem formulation strongly varies with the inherited data (discrete/continuous,
algebraic/analytic or static/dynamic) for the scene representation. Thus, the sensors' tech-
nologies are of great importance to implement a motion planning algorithm. Even if the
uncertainties are more and more considered in the motion planning scope, too few papers
addressing motion planning tackle the issue of the sensor's architecture and technology. We
invite the readers to refer to [Gruyer et al. 2017] for a corresponding review.

Secondly, motion planning combines �ve unavoidable aspects, as seen in the previous
sections: (i) state estimation, (ii) time evolution, (iii) action planning, (iv) criteria optimiza-
tion, and (v) compliance with constraints. How these are handled changes the outlook of the
problem.

Furthermore, two approaches for reviewing motion planning algorithms coexist: distin-
guishing and not distinguishing the driving modes. For the �rst, the driving modes and
use cases are separated. For example, in [Bevly et al. 2016], the authors focus on the lane
changing and merging maneuvers on highways. In this thesis, we consider a situation only as
a speci�c set of criteria and constraints, not as a di�erentiating element for the algorithms.
In this way, all methods could be applied to the di�erent situations, with limitations to their
proper functioning. Yet, we noticed that the main functions of motion strategy described
in subsection 2.1.2 involve discriminating speci�cities among motion planning methods, e.g.
the deformation function requires a reactive online real-time method.

In this section, we �rst explain our taxonomy in subsection 2.2.1, and then review the most
popular approaches from their founding principles to their advancement for an application
to highway planning since the DARPA Urban Challenge 2007 in subsection 2.2.2. We do not
pretend to make an exhaustive taxonomy as an in�nite number of ways of treating motion
planning exist.

2.2.1 Taxonomy description

According to what we consider in section 2.1, we classify the algorithms in the families
summarized in Figure 2.4. The term family refers to a set of algorithms that rely on the
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same basic principle. They usually return the same type of output, qualify with the same
attributes, and relate to the same mathematical domain. We propose a classi�cation based
on the following characteristics:

� The type of output: a space, a path, a trajectory, a maneuver, or a symbolic represen-
tation. This information should be adapted to the control and driver blocks' interface
shown in Figure 2.2. In this respect, it is also essential to know whether the consid-
ered motion planning algorithm returns only a decomposition or a reference motion. In
the �rst case, called a set-algorithm, a complementary algorithm should be added to
�nd the feasible motion. The second case is identi�ed as a solve-algorithm. These
characterizations are extended from [Perez-Lozano 1983], where the author de�nes the
Findspace and Findpath algorithms, respectively, to �nd a safe position in the evolution
space, and to identify a sequence of safe positions that link the start and goal positions.

� The space-time property of the algorithm: the predictive or reactive horizon, as
detailed in subsection 2.1.2.

� The mathematical domains: geometric, heuristic, logic, cognitive, biomimetic.
This de�nes the philosophy of the approach and the theoretical framework of the solver.
The geometric domain is based on the properties of space, and it directly works with
the space constraints of the environment and ego vehicle (i.e. kinematic constraints).
The subsequent problem is dealing with large space exploration and optimization. The
heuristic domain depends on special knowledge, such as constraints or data correlation,
about the problem. Usually, it is useful to solve more quickly, to �nd approximate
solutions, to avoid algorithm complexity or an ego vehicle blockage situation. Yet, it
is generally not su�cient for handling complex problems and does not guarantee that
the optimal solution will be found. The logic domain refers to deductive approaches
built on assertions. Such assertions are usually made on elementary rules driving the
evolution of the environment. Their main advantage is that they easily link the e�ects
to the causes, but they are subject to combinatorial explosion. Cognitive approaches
rely on the evaluation of a situation based on prior knowledge on this speci�c situation
and common sense, which is close to the logical way of thinking, for example adhering
to driving rules. The main advantage of cognitive processes is their ability to use
existing knowledge to gather new information. For the application to autonomous
vehicles, the interest is in modeling the decision process formed on human behavior
characteristics. It helps to justify the acceptability of autonomous vehicle behavior
mimicking human behavior. However, we do not currently have enough experience to
validate the e�ectiveness of such theories. Therefore, we do not consider algorithms that
hinge on cognition as evidence. Many driver-based theories agree that driver behavior
is too complex and too di�cult, or even impossible, to model, as it is not rational.
The last domain we would like to explore is the biomimetic domain, which describes
physics-inspired approaches. They obey the physical laws, which are convenient to
implement but can be stuck in in�nite loop motion behaviors. The convergence of the
system has to be obtained with feasible solutions.
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Figure 2.4: Taxonomy classi�cation. The radar charts show the distribution of each of the families considering the selected attributes. At the center of the

chart, the methods do not suit the corresponding attribute at all (value = 0). In contrast, an outer position of the attribute means it is well adapted to the

use of the method (value = 3). Each value is assigned according �rst to the de�nitions of the families, and second to their occurrence in the literature.
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2.2.2 Algorithm classi�cation

For each family, we review the basic unifying idea, the speci�cities, the advantages/drawbacks,
the evolution, and the interest for highway planning. One notices that the solutions were �rst
dealing with a speci�c method in a speci�c scienti�c �eld, and then evolved to multi-�eld
mixed algorithms.

2.2.2.1 Space con�guration

The space con�guration analysis is the choice of a decomposition of the evolution space. It
is a set-algorithm used mostly for motion generation or deformation when speci�ed. The
methods are based on geometric aspects; they refer to either a predictive approach with
a coarse decomposition to limit computational time, or a reactive approach with a �ner
distribution to be more accurate. The main di�culty is �nding the right space con�guration
parameters to obtain a good representation of motion and environment [Kavraki et al. 1996].
If the discretization is too coarse, the collision risk will be badly interpreted and it will not be
possible to respect kinematic constraints between two successive decompositions; however,
if the discretization is too �ne, the algorithm will have poor real-time performance. We
distinguish three main subfamilies for space decomposition, illustrated in Figure 2.5: sampling
points, connected cells, and lattice. The basic idea is:

1. to sample or discretize the evolution space;

2. to exclude the points, cells, or lattices in collision with obstacles or not feasible; and

3. to either send those space decompositions as free-space constraints, or to solve the
resulting space con�guration with a path�nding algorithm (see subsection 2.2.2.2) or a
curves planner (see subsection 2.2.2.4) to directly send waypoints, connected cells sets,
or lattice sets to the control block.

Figure 2.5: Illustrations of space con�gurations: (a) sampling points, (b) cells decomposition, (c) lattice. The

points / cells / maneuvers are candidate, dismissed and chosen solutions in blue, red, and green.
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Sampling-Based Decomposition (Figure 2.5a) Two main routines are used in the
literature to return a set of sampling points. The �rst one chooses the points in the evolution
space of the ego vehicle with respect to the kinematic constraints, but with higher calculation
time due to the optimization choice of the samples under these constraints. The second one
picks random points in the evolution space, so that the algorithm is computed faster but
the method is incomplete, not replicable and sensitive to the random points' distribution.
Moreover, the links between two points are not necessarily kinematically feasible. Both
routines are suboptimal and do not guarantee that a solution will be found if one exists, or that
a solution will be returned in a �nite computational time. However, sampling con�gurations
are �exible to dynamic replanning and do not require any explicit modeling of the collision
space. They can thus be used for a reactive trajectory deformation.

The most popular random method is the Probabilistic RoadMap (PRM) [Kavraki
et al. 1996]. It uses random samplings picked in the evolution space during the construction
phase. These samplings are connected to their neighbors to create an obstacle-free roadmap,
which is then solved during a second query phase by a path�nding algorithm, e.g. Dijkstra
(see subsection 2.2.2.2) in [Villagra et al. 2012]. In [Li et al. 2014], the authors �rst sampled
the con�guration space based on a reference path, e.g. the ego lane centerline, selected the
best set of sampling points according to an objective function, and then assigned a speed
pro�le to the path to respect safety and comfort criteria.

A better strategy is to consider both space and time dimensions in the decomposition.
Dealing with spatiotemporal sampling points makes it possible to obtain a predictive
algorithm, as was done in [Hesse et al. 2010], where points are constrained in a 5-dimensional
evolution space with vehicle position, orientation, velocity, and arrival time. Considering the
drawback of tiny space and space close to obstacles, adaptive samplings can be adapted to
autonomous vehicles, as presented in [Hsu & Sun 2004] for robots from 2 to 8 degrees of
freedom.

These methods are usually preferred for mobile robotics or autonomous vehicles in un-
structured environments. Their use for highly structured highway planning is thus dimin-
ished.

Connected Cells Decomposition (Figure 2.5b) The methods �rst decompose the space
into cells using geometry, and then construct an occupancy grid and/or a cells connectivity
graph, see Figure 2.6 for application examples. In the occupancy grid approach, a grid is
generated around the ego vehicle. The information on the obstacles' detection is overlaid on
the grid. In case uncertainties are considered, stochastic weights are added to the cells to
obtain a cost-map representation. The main drawbacks of an occupancy grid are the large
memory requirements and high computation time, the false indicative occupation with moving
obstacles, and a space- and time-varying resolution. In the connectivity graph approach, the
nodes represent the cells, and the edges model the adjacency relationship between cells. The
graph can be interpreted as a path along the edges of the cells or a path to �nd inside the
connected cells.

Two strategies are distinguished: those that are based on the obstacles, and those that
are not. The representation of obstacles plays a key role for cells decomposition algorithms.
Obstacles are usually represented as convex polygons [Kuan et al. 1985], rectangular [Liu
et al. 2017a], triangular [Nilsson et al. 2017], circular [Song et al. 2013, Choi 2014, Mouhagir
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Figure 2.6: Illustrations of connected cells decompositions.

et al. 2016], ellipsoidal shapes [Claussmann et al. 2015, Wang & Ayalew 2016], based on the
obstacle dimensions and speed; or the entire road lane [Yu et al. 2016]. For non-obstacle-
based representation, the cells' organization can be determined o�ine, and then �lled online.
The grid is rapidly obtained, but does not take advantage of the environment properties. On
the other hand, the obstacle-based representation builds an online grid, which is more com-
putational as replanning is necessary to consider the dynamic of the environment. Whatever
the decomposition, probabilistic occupancy can be applied to de�ne a more realistic decom-
position proportional to the probability of occupancy, as proposed in [Moras et al. 2011].

The most intuitive non-obstacle-based method is the exact decomposition (Figure 2.6e),
which separates the space with vertical and/or horizontal segments. An egocentric exact de-
composition adapted to the vehicle's size and the obstacle's relative speed is used to exploit
an occupancy grid for a Markov Decision Process in [Mouhagir et al. 2016] and a lane change
�ow chart in [Tehrani et al. 2015] (see subsection 2.2.2.6). Reference [Yu et al. 2016] �lls the
occupancy grid with a belief state from the semantic lane information. In [Ardelt et al. 2010],
8 overlapping static and dynamic cells are mapped based on the lane con�guration and per-
formance of integrated sensors. Considering the nonholonomic behavior of the vehicle, the
curvilinear or polar grids [Moras et al. 2011] provide a more realistic decomposition around
the ego vehicle. However, as non-obstacle-based occupancy grids cannot evolve according to
the obstacles' dynamics, they quickly become obsolete due to the computational cost of a
re�ned decomposition. Another drawback is the lack of accuracy on obstacles' positions.

To consider environment uncertainties, the Vector Field Histograms (VFH) from
[Borenstein & Koren 1991] statistically models the evolution space with a velocity histogram
occupancy grid as a polar histogram (Figure 2.6d). Reference [Qu et al. 2015] proposes a
constrained VFH to treat kinematic and dynamic constraints to extend to highway applica-
tions. VFH methods are mostly used for deformation function as a reactive planner, as they
are robust to sensors' uncertainties [Lee et al. 2014].

To reduce the search space, decrease the computation time and deal with dynamic obsta-
cles that are either hard to model or not modeled, the Dynamic Window (DW) approach,
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introduced in [Fox et al. 1997], reduces the search space into a reachable velocity space within
a short time interval (Figure 2.6f). It is also used as a reactive planner for trajectory deforma-
tion. In [Kang et al. 2015], DW is directly applied on an image from the camera. Reference
[de Lima & Pereira 2013] combines a DW approach for avoiding unmodeled obstacles with
a Velocity Vector Fields (VVF) (see subsection 2.2.2.3). The authors in [Mitsch et al. 2013]
demonstrate safety recommendations for both static and moving obstacles using DW.

The routines of the second type use the obstacles to set the cells decomposition. The
Voronoi decomposition [Kuan et al. 1984] builds cells between particular points, which
represent each obstacle (Figure 2.6b), mainly using the Euclidean bisection (L2 Euclidean
distance norm) or absolute value (L1 Manhattan distance norm). The method is extended
to polygonal obstacles with the generalized Voronoi diagram [Aurenhammer 1991]. The
decomposition generate a non-regular grid and is classically interpreted as the way that is
equidistant from each obstacle (way along the edges), i.e. a skeleton. Reference [Villagra
et al. 2012] uses Voronoi diagrams to reduce the obstacle-free point's space, whereas the
authors in [Lee et al. 2014] propose a real-time algorithm based on one Voronoi cell built
on the next collision point in the ego vehicle trajectory. To increase the distance between
an obstacle and the ego vehicle, weighted [Sugihara 1993] and uncertain [Ok et al. 2013]
Voronoi diagrams have been developed in mobile robotics, but they are not that common for
autonomous vehicles. The major drawbacks of Voronoi decompositions are the heterogeneous
cells sizes, the kinematic feasibility of linking adjacent cells, and the dynamic evolution,
which involves time-consuming replanning. Moreover, the equidistance does not necessarily
guarantee safety. In response to these issues, the approximate methods split up into
thinner cells when the obstacles are closer to obtain a more accurate occupation grid. A
classic approximate approach is the quad tree decomposition, as in [Trepagnier et al. 2011].
Building a dynamic cells decomposition remains the major drawback of the Voronoi and
approximate approaches.

A major improvement is then to add a time dimension to the spatial decomposition.
The visibility decomposition (Figure 2.6a) picks points of interest in the scene represen-
tation, and links them with segments if these do not intersect obstacles [Lozano-Pérez &
Wesley 1979]. They are extended to a path velocity representation in [Kant & Zucker 1986].
The points of interest can be based on the obstacles' vertices [Johnson & Hauser 2013] or
along the road border [Choi 2014]. This implies that the path along the edges can be in
contact with obstacles, which is then adapted to the highway planning problem by space
shifting the trajectories, as in [Johnson & Hauser 2013]. In addition, the driving corridor

representation uses road boundaries and the spatiotemporal positions of obstacles to produce
a set of free spatiotemporal evolutions as corridors [Ziegler et al. 2014]; see Figure 2.6c. From
a static decomposition based on visibility decomposition as graph connectivity, [Choi 2014]
builds a dynamic corridor from Velocity Obstacles (VO) analysis. This spatiotemporal
algorithm returns the set of all the velocities of the ego vehicle that lead to a collision [Fiorini
& Shiller 1998]. A velocity outside the spatiotemporal representation guarantees that there
will be no collision under the hypothesis that the obstacle velocity prediction is correct. The
passage and region channels are then solved with a connectivity graph [Kuan et al. 1985]
or with a space constraint-based optimization method [Gu et al. 2016b]. Reference [Ben-
der et al. 2015] builds the corridors with the homotopic method to enumerate the possible
maneuver variants from a path velocity decomposition and [Altché & De La Fortelle 2017]
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proposes a four collision-free cells partitioning to design a spatiotemporal transition graph.
A major drawback of driving corridor algorithms is still their calculation time.

Most static cells decompositions are of little interest in the context of highway planning.
Methods that are only based on obstacle decomposition exclude the road geometry, which is
at the core of highway driving. In contrast, algorithms that bene�t from both road constraints
and dynamic obstacles are of major use for highway planning.

Lattice Representation (Figure 2.5c) In motion planning, a lattice is a regular spatial
structure, which is a generalization of a grid [LaValle 2006]. It is possible to de�ne motion
primitives, that connect one state of the lattice exactly to another. All the feasible state evo-
lutions resulting from the lattice are represented as a reachability graph of maneuvers. The
main application of lattice methods is predictive planning. The advantage of a lattice repre-
sentation is the consideration of the kinematic constraints implicitly handled by the motion on
the lattice [Pivtoraiko et al. 2009], as well as a spatiotemporal consideration. Moreover, the
lattice can be calculated o�ine for a quick replanning [Schubert et al. 2008]. Unfortunately,
their application to reactive planning is mostly limited due to the �xed structure.

The classic lattice representation is based on the maximum turn strategy [Broggi
et al. 2014, Schubert et al. 2008], where only the turning radius of the ego vehicle is discretized
to propose di�erent curved paths. As an improvement, the velocity (speed and acceleration)
is considered with a curvature velocity method as presented in [Ko & Simmons 1998],
and extended to autonomous vehicles in [Gu et al. 2016b, Constantin et al. 2014]. The main
drawbacks of these methods are the rigidity of the prede�ned motion set and the high density
of the motion graph required to reach the goal position. Nevertheless, it is possible to de�ne
an environment-adapted lattice, in contrast to the previously discussed lattices based
on prede�ned motion. The authors in [Gu et al. 2013, Ziegler & Stiller 2009, McNaughton
et al. 2011, Xu et al. 2012] operate regular sampling points over the spatiotemporal evolution
space based on highway lane marks and centerlines. The use of curves to connect the sampling
points provides a curved lattice graph set-algorithm. Other approaches adapt the lattice to
the driver's behavior for a priori maneuver, as done in [Yao et al. 2012] for lane changing.

Lattice representations compile both road boundaries and kinematic constraints, and
can be quickly replanned, which is useful for highway planning. Nonetheless, the structure's
iteration memory requirement and long-term advantage represent a burden for fast computing
path planning on a highway. As will be presented in subsection 2.2.2.4, curve iterations as
tentacles are favored over lattice representation for highway motion planning.

2.2.2.2 Path�nding algorithms

The path�nding algorithm family is a subpart of graph theory in operational research used
to solve combinatorial problems under a graph representation. The graph can be weighted
or oriented with sampling points, cells, or maneuvers nodes. The basic principle is to �nd
a path in a graph to optimize a cost function. Traveled distance, fuel consumption, and
comfort are the main cost functions for highway planning problems [Villagra et al. 2012, Gu
et al. 2016b, Bahram et al. 2014]. The graph resolution is based on logic and heuristic
methods, which are mainly solve-algorithms and refer to the decision function even if they
do not apply any decision but a selection. The subfamily of Rapidly-exploring Random
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Trees (RRT � see below for details) comprises both set- and solve-algorithms, with motion
generation and selection. The main use of path�nding algorithms is for route planning, but
they adapt well for local planning and applications to highways as predictive algorithms. As
bene�ts, these algorithms are universal and widely used, and solve either known or unknown
environments. The main drawbacks are their dependency on the graph size and complexity,
which a�ects the choice of the solver, and their need for detailed information on the space
con�guration, which makes them slow in vast areas. We will restrict our review to the most
frequently observed algorithms for highway autonomous driving.
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Figure 2.7: Illustrations of the processes of (a) Dijkstra, (b) A*, and (c) RRT.

For known environments, the graph is previously generated by a space con�guration
algorithm to model the connectivity of the evolution space (see subsection 2.2.2.1). In the
Dijkstra algorithm from [Dijkstra 1959], the author details a method to �Find the path of
minimum total length between two given nodes P and Q�, which becomes a very popular
graph solver for motion planning application to autonomous vehicles [Villagra et al. 2012, Gu
et al. 2016b, Bahram et al. 2014]; see Figure 2.7a. As the algorithm uniformly explores all the
directions, it �nds the optimal path with respect to the cost function, but its computational
time is high.

This drawback was �rst reduced with the A* algorithm introduced in [Hart et al. 1968],
and recently tested on autonomous vehicles' replanning in [Bounini et al. 2017]; see Fig-
ure 2.7b. It consists of applying Dijkstra's algorithm with a heuristic search procedure on
the goal-node to expand the fewest possible nodes while searching for the optimal path. The
heuristic should always be optimistic, i.e. the real cost should be higher than the heuristic
cost, as otherwise the minimal path will be distorted. As an example of a heuristic evaluation
function, [Schubert et al. 2008] chooses the distance to both ego lanes' borders and the trav-
eled distance for Dijkstra's cost function, whereas [Boroujeni et al. 2017] adds to the travel
time function the distance to the goal and hazardous motions penalizations as heuristics. It
is also possible to weight the heuristic function to reduce the calculation time, as described
in the Anytime Weighted A* (AWA*), which guarantees the �nding of a solution with a
non-admissible heuristic [Hesse et al. 2010]. Besides, when considering kinematic constraints,
the approach of hybrid-state A* search in [Dolgov et al. 2008] applies a �rst heuristic to
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consider nonholonomic constraints, and then a second dual heuristic that uses an obstacle
map.

A further disadvantage of Dijkstra and A* stems from dynamic environments. In fact,
at each time step, the graph has to be reconstructed. To avoid a high time calculation and
dealing with partially known environments with dynamically changing weights, a heuristic
improvement consists of a dynamic cost graph search, as does the D* algorithm [Stentz 1994]
in [Rezaei et al. 2003].

For unknown environments, the RRT subfamily [LaValle 1998] constructs its own nodes
in the evolution space, as illustrated in Figure 2.7c. The reasoning is close to the PRM, except
that the nodes are built from one to another and the output is a path (to solve the nodes
connection if a non-collision and kinematically path exists). Thus, it guarantees kinematic
feasibility and can be used for a reactive generation. Authors in [Ma et al. 2015] demonstrate
a fast RRT for replanning trajectory. As for Dijkstra's algorithm, there are a large number
of evolutions for RRT algorithms in mobile robotics [Connell & La 2017], but currently few
applications for highway driving, such as the example in [Hwan Jeon et al. 2013], which looks
at more e�cient nearest-neighbor techniques with probabilistic optimality in RRT*. For
a randomized graph, the main drawback is the randomly collected sampling nodes, which
may result in a poor connectivity graph and no replicability. A simple way to increase the
connectivity is to add a probability function of generating intermediate points in a speci�c
area, as done by the authors in [Villagra et al. 2012].

Similarly to sampling-based decomposition, probabilistic graph search is not well suited
to a highway structured environment. Besides, the highway is usually a known environment,
easily represented with space con�guration algorithms in subsection 2.2.2.1. In that sense,
deterministic path�nding is favored in highway motion planning for autonomous vehicles.

2.2.2.3 Attractive and repulsive forces

The attractive and repulsive forces approach is a biomimetic-inspired method. The evolution
space is symbolized as attractive forces for desired motions (e.g. legal speed), and repulsive
forces for obstacles (e.g. road borders, lane markings, vehicles). The main advantage is
thus to be reactive to the dynamic evolution of the scene representation. The motion of the
ego vehicle is then guided by the resultant forces vector, so no explicit space decomposition
is needed. Reference [Bounini et al. 2017] shows how parabolic and conical functions are
well suited as potential functions. The resolution of the resultant vector is achieved by
either a gradient descent method [Bounini et al. 2017, Galceran et al. 2015] � a simple
resolution without a vehicle model, or by the application of Newton's second law [Gerdes &
Rossetter 2001] � based on a vehicle model, which provides a feasible motion under kinematic
constraints. The attractive and repulsive forces approach both sets and solves the motion
planning problems in a continuous space representation. As the modeling of all the evolution
space is time-consuming, these algorithms are mostly used as a reactive motion deformation.

The Arti�cial Potential Field (APF) concept [Khatib & Le Maitre 1978] was �rst
introduced to real-time mobile robotics in [Khatib 1986]. Reference [Wolf & Burdick 2008]
adapts a set of four arti�cial potentials over lanes, road, obstacles, and desired speed, to
model the highway functions described in subsection 2.1.3; see Figure 2.8a. In [Reichardt
& Shick 1994], the authors use a framework of electric �elds as a risk-map with weighted
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(a) APF in [Wolf & Burdick 2008].

The yellow square denotes the start-

ing position and the green circle the

end position. Lower potentials are in

blue, higher in red.

(b) VFF in [Hesse et al. 2010]. O1

and O2 are moving obstacles.
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[Gehrig & Stein 2007].

Figure 2.8: Illustrations of attractive and repulsive forces approaches.

partial potential to distinguish between emergency reactions and preventive actions. The
bene�t to time consideration with a velocity potential leads the ego vehicle to progress for-
ward smoothly, as emphasized in [de Lima & Pereira 2013] with the use of aVelocity Vector
Field (VVF). Furthermore, APF returns direct control inputs [Gerdes & Rossetter 2001] or
constraints for the optimization solver [Liu et al. 2017a, Rasekhipour et al. 2017]. The �rst
drawback for application to vehicle planning is the oscillatory behavior when close to obsta-
cles, but smoothing algorithms overcomes this [Galceran et al. 2015]. The second di�culty
is the presence of local minima. Not only is the ego vehicle stuck in a local minimum, but
overcoming this issue impacts the smoothness of the path and calculation time. A trivial so-
lution is to add a heuristic to exit the minima with a randomized path, as is done in [Bounini
et al. 2017], where local minima are also repulsive arti�cial potentials. This tends towards
the elimination of the local minima afterwards. However, local minima might be necessary
in highway planning to keep the ego vehicle safe from inopportune lane changes, as stated in
[Wolf & Burdick 2008].

Extensions to uncertain environments allow to transpose the algorithms from a determin-
istic robotics environment to highway planning. TheVirtual Force Field (VFF) introduced
by [Borenstein & Koren 1991] uses the VFH decomposition (see subsection 2.2.2.1) and in-
terprets the probability distribution as potential forces to guide the vehicle along the weakest
grids. This method is adapted to highway driving in [Hesse et al. 2010] to deform a trajectory
previously obtained with sampling points and A* methods; see Figure 2.8b.

Another drawback of the APF highlighted by [Khatib 1986] is the lack of dynamic rea-
soning: namely, only spatial dimensions are used for dynamic obstacle avoidance, so that the
ego vehicle always tried to avoid the obstacle by bypassing it. The elastic band algorithm
[Quinlan & Khatib 1993] models the environment as a spring-mass system, considering N
discrete nodes on which potential forces are applied [Song et al. 2013]; see Figure 2.8c. Ref-
erence [Gehrig & Stein 2007] applies elastic band to car following as a deformation of the
leader vehicle path and [Keller et al. 2014] develops a time-related elastic band framework
with temporal waypoints for lane changing.

Attractive and repulsive forces are widely implemented for reactive planning in all kinds
of robotics. Except the high time calculation, they prove their e�ciency for highway plan-
ning, thanks to a straightforward integration of the scene representation, provided that the
potential functions are well chosen within the environment.
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2.2.2.4 Parametric and semi-parametric curves

Parametric and semi-parametric curves are major geometric methods in path planning algo-
rithms on highway for at least two reasons: (i) the highway roads are built as a succession
of simple and prede�ned curves (line, circle, and clothoid [Baass 1984]); and (ii) a prede-
�ned set of curves is easy to implement as candidate solution sets to test. Moreover, as
some of the curve-based algorithms directly take into account the kinematic constraints of
the vehicle, they are widely used to complement other methods. Geometric considerations
are usually separated from the dynamic constraints. For instance, the authors in [Villagra
et al. 2012, Lima et al. 2015b] �rst solve a static problem considering the geometry of the
road, and then solve the dynamic dual problem by searching for a speed pro�le built to adapt
to the curvature pro�le of the road and to respect the constraints of the dynamic obstacles.
In contrast, [Vanholme et al. 2013] �rst �xes the speed pro�le and then deforms the curve
path. Those decoupled approaches could lead to a long time reaction for the vehicle in case of
a blocking situation or replanning. Otherwise, curve planners are well suited to a predictive
approach too, as they de�ne a motion from a start to a goal point or cell or maneuvers. This
property is also suitable for replanning stages.

(a) Tentacle scheme in [Von Hun-

delshausen et al. 2008].

(b) Bézier curve in [Chen et al. 2013]. Pi, Qi are control

points.

Figure 2.9: Illustrations of the point-free and point-based curves methods.

We distinguish between two exploitations of curve algorithms. First, the point-free curves
subfamily is used to build kinematically feasible trajectories as a set of candidate solutions
(maneuvers). Second, the point-based subfamily uses curves to �t a set of chosen waypoints
(sampling points or cells). The �rst routine is a set-algorithm and needs a decision-maker to
return the most convenient maneuver, whereas the second one requires a space decomposition
before �tting a path or a trajectory, and is thus a solve-algorithm. Both are considered for
the generation function.

The point-free curves subfamily refers to the principle of lattice, called tentacles algo-
rithm, as introduced in [Von Hundelshausen et al. 2008]; see Figure 2.9a. Instead of a space
decomposition, the tentacles are based on primitives parametric curves, such as lines and
circles, clothoids, and sigmoids. Each tentacle is obtained with di�erent lateral, i.e. steering
wheel angle, and/or longitudinal, i.e. speed, parameters. Moreover, as the search space for
solutions is reduced, the computational time is limited compared to the space decomposition
methods. The tentacles can also be calculated o�ine, as a trajectory data base [Cherubini
et al. 2012].

Reference [Dubins 1957] shows that line and circle paths are the solution for curves
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of minimal length with constraints on curvature and start/end positions. In [Vanholme
et al. 2013], the authors work with a lane-based zone model built on the linear minimum and
maximum trajectories. Those curve con�gurations are tested on tracks in [Villagra et al. 2012,
Cherubini et al. 2012]. Despite the simplicity and good behavior with high curvature, the
second order of line and circle curves is not continuous and hence not realistic for the curvature
continuity of the vehicle model. Regarding the road design, lines and circles are linked with
clothoid functions to obtain a continuous curvature function. Indeed, the clothoid has its
curvature proportional to the curvilinear abscissa [Mouhagir et al. 2016]. This condition is
important for the limitation of the lateral acceleration and thus the vehicle's comfort [Lima
et al. 2015b]. For example, [Chebly et al. 2015] selects clothoid tentacles for overtaking
trajectories based on clearance, change of curvature, and trajectory orientation criteria. The
authors in [Sheckells et al. 2017] propose a fast method to generate a piecewise clothoid
curve in agreement with a reference line (e.g. ego lane centerline for highway planning), and
kinematic constraints. Conversely, [Lima et al. 2015a] focuses on clothoid path sparsi�cation
to perform better optimization. However, the clothoid presents an iterative construction
process, which increases its calculation time.

The use of straight lines, curves, and arcs based on clothoids paths are also favored to
generate reference trajectories in a road-aligned coordinate system [Hudecek & Eckstein 2014].
Nevertheless, the highway curvature is usually small enough for acceptable approximation of
a straight road. Under this assumption, only two path's geometries exist for the vehicle:
going straight with a straight line or changing lane. For the second case, the sigmoid or S-
function appears to be an easy solution [Arbitmann et al. 2012]. The authors in [Claussmann
et al. 2015] use sigmoids to generate di�erent candidate trajectories with acceleration pro�les
based on experiments from di�erent driver behaviors.

The point-based curves subfamily is well suited to geometrically constrained environments
and to ensure that the dynamic constraints of the ego vehicle are respected. The principle
is to determine control points in the environment, and to �t them with a curve. They can
also be used for a smoothing step in other motion planning algorithms. In [Gu et al. 2013],
the authors use a cubic spiral for path generation, as do [McNaughton et al. 2011], and a
cubic function of time for velocity generation, whereas in [Tehrani et al. 2015] quartic and
quintic polynomials are respectively used to generate longitudinal and lateral motions. In
[Xu et al. 2012], the authors compare cubic polynomial functions and smoother quartic
curvature polynomials to generate the path with cubic polynomial speed pro�les, based on a
sampling point lattice.

The use of semi-parametric spline curves is an improvement on polynomial interpola-
tions, which are di�cult to �nd and increase in complexity. This entails de�ning curves as a
set of piecewise polynomials. In this way, the obtained polynomial equations are of a lower
degree but there are a large number of polynomials to deal with. For example, [Ziegler &
Stiller 2009] generates quintic spline trajectories adapted to the road shape. The authors in
[Schubert et al. 2008] develop adaptive polar splines with non-zero curvature at the beginning
and end segments to suit highway maneuvers. Among spline curves, we distinguish Bézier
curves; see Figure 2.9b. They use control points instead of interpolation points as in�ection
points. The inconvenient is thus not to pass trough the de�ned control points, except for the
start and end points. The advantages are their simple implementation and thus a low com-
putation cost compared to the previously discussed methods. Reference [Choi 2014] smooths
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the primitive path from three waypoints with a quadratic Bézier curve to guarantee kinematic
feasibility and avoid static obstacles. In [Chen et al. 2013], the authors also use piecewise
quadratic Bézier curves based on safe lane change distances for autonomous vehicles and ride
comfort. It is also possible to provide the control points of the Bézier curve from an SVM (see
subsection 2.2.2.6), as in [Huy et al. 2013], which calculates three 4th-degree Bézier curves.

As previously mentioned, the curve algorithms are largely used to interface with all others
motion planning algorithms. The choice of the curve type mostly depends on the type of
problem and the knowledge of the environment.

2.2.2.5 Numerical optimization

The optimization problem for motion planning is de�ned as a solve-algorithm based on logic
and heuristic approaches. They are part of decision and generation functions. The opti-
mization is usually expressed as the minimization of a cost function in a sequence of states
variables under a set of constraints, and is part of competitive combinatorial operational
research to avoid a combinatorial explosion. In motion planning applications, we distinguish
two domains of interest, as described in [Hart et al. 1968]. The �rst one focuses on �nding
e�cient algorithms to solve complex problems and to improve search time with a heuristic
approach (see subsection 2.2.2.2 for some heuristics details). The second one is the mathe-
matical study of the problem to deduce particular properties to �nd a predictive solution in
a restrictive space. As the �rst domain is commonly used to decrease the computation time
of algorithms, only the second domain is further discussed in the following.

The considered approaches model the ego vehicle and environment constraints in a well-
de�ned mathematic form. The main advantages are that they easily handle the constraints
of the problem, they deal with multi-criteria optimization, and they consider the state di-
mensionality and kinematics of the vehicle model [Altché et al. 2017]. The basic resolution
is the Linear Programming (LP). In LP formulation, the algorithm solves a linear cost
function under linear equalities or inequalities. The Simplex algorithm is one of the most
popular ones; see [Xu et al. 2012]. In [Plessen et al. 2017], a spatially based trajectory
planning with Sequential LP (SLP) is proposed. For nonlinear problems (NLP), nonlinear
optimization is used either in the special case of nonlinear regression problems, such as the
Levenberg-Marquardt algorithm on path optimization in [Gu et al. 2013, Keller et al. 2014],
or in nonlinear integration, as explained in [Li et al. 2014] with a Boundary Value Problem
(BVP) solver. For multi-objective problems, the use of Quadratic Programming opti-
mization (QP) involves an iterative search of a convex approximation solution to the original
problem, as in [Ziegler et al. 2014] with sequential quadratic programming (SQP) optimiza-
tion on distance o�set, velocity quadratic error, acceleration, jerk, and yaw rate functions.
In [Qian et al. 2016, Miller et al. 2018], the authors formalize the problem of lane changing
and overtaking with a Mixed Integer Quadratic Programming (MIQP).

For speci�c predictive applications, resolution underModel Predictive Control (MPC)
is highly popular [Liu et al. 2017a, Nilsson et al. 2017, Wang & Ayalew 2016, Lima et al. 2015a,
Altché et al. 2017, Lefevre et al. 2016, Cardoso et al. 2017]. MPC algorithms solve the problem
at each sampling time to �nd a predictive motion solution over a longer horizon time, but only
apply the �rst sequence of actions. In that respect, MPC models a receding horizon control
and shifts the solution set to remain accurate to upcoming information. The main advantage
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of MPC algorithms is their replanning ability, but they are still too poor for non-convex and
high complexity problems.

Dynamic Programming (DP) draws its e�cacy for complex computational problems
by breaking them into simpler subproblems, even with interdependency. The resolution of
each subproblem is combined to �nd the global problem solution. This implies that the
description of the problems has good characteristics. In [Choi 2014], the author searches for
the shortest path in a cells decomposition using a pre-calculated DP solution. The authors
in [Gu et al. 2016a] use DP to calculate the optimal cost-to-go value of a set of maneuvers
for di�erent speed pro�les.

Numerical optimization is widely used in motion planning, either to decrease the solving
time of a graph's exploration, or to exploit the mathematical properties of the problem.
These algorithms can be solved by generic numerical resolution tools. The main encounter
frameworks in the literature are CVX and CVXGEN softwares, Gurobi and YALMIP solvers,
Matlab Optimization Toolbox, NPSOL package, and the ACADO Toolkit.

2.2.2.6 Arti�cial intelligence

The main contribution of Arti�cial Intelligence (AI) for autonomous driving is their ability
to reproduce and simulate drivers' reasoning and learning. These techniques rely on thinking
and acting consistently with the environment, a memory structure, and drawing inferences. In
this sense, AI algorithms are particularly interesting for the decision making function. They
are also well suited to mobile robotics, as they are �exible, adaptive, and reactive to their
environment. Moreover, AI techniques are well organized to deal with huge, incomplete, or
inaccurate data. The advantages of AI-based algorithms are their capacity to answer generic
questions and to absorb new modi�cations without a�ecting the structure of the algorithm.
They are mostly employed as solve-algorithms for predictive planning, but also as symbolic
set-algorithms, and less frequently for reactive deformation. AI gathers a wide diversity of
methods from logic to cognitive representation. We propose to organize this section in two
main axes � cognitive/rational and rules/learning distinctions � based on [Russell et al. 1995]'s
distinction between thinking and acting humanly or rationally. We thus distinguish the
four subfamilies depicted in Figure 2.10: logic approaches, heuristic algorithms, approximate
reasoning, and human-like methods.

Ra�onal

Cogni�ve

Learning

Rules

Logic
Approximate
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Heuris�cHuman-like

Rule-based
FSMFuzzy Logic

Markov
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Agent
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Figure 2.10: A map of AI-based algorithms.
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AI Logic-Based Approach AI logic-based approaches are symbolic planning used in de-
cision making. They de�ne expert systems to solve speci�c complex tasks depending on
a knowledge base with an inference engine to automate the reasoning system. In case of
modi�cation, addition, or removal in the knowledge base, the inference engine should also
be updated, and a recursive mechanism must be applied to guarantee the convergence of the
new expert system. AI logic methods serve as set- and solve algorithms, while generating
or selecting a set of time/space states or actions. Furthermore, their fast architecture allows
their use for predictive or reactive planning. The main advantage of these systems is their
intuitive setup to emulate human logic and rational reasoning. On the other hand, the knowl-
edge base requires the discretization of numerous environment variables with a high number
of cause-and-e�ect rules and tuning parameters.

The best-known inference engine is rule-based reasoning. The statements are if observa-
tions, then actions. The authors in [Nilsson et al. 2015] report satisfying results of rule-based
intention prediction on highways, and use it to perform lane change maneuvers in [Nilsson
et al. 2016]. The major advantages are to clearly identify the cause and e�ects, the notational
convenience and the straightforward implementation. The main drawbacks are the cyclic rea-
soning and the exhaustive enumeration of rules, which lead to in�nite loop and impact the
computation time. Furthermore, if the current situation does not match the observations in
the rule base, an unsuitable default decision may be made. In such a case, the knowledge
data should be enriched and modi�ed o�ine. Moreover, as a declarative reasoning, the rules'
order matters and resolution con�icts can happen. A solution would be to add an heuristic
to prioritize the rules.

To display rule mechanisms, decision trees are promoted as compressed graphical repre-
sentations and decision support tools. In [Constantin et al. 2014], a decision-tree is depicted
by enumerating all the possible navigation lanes. To facilitate the organization of the tree,
binary decision diagrams or �owcharts are developed to represent Boolean functions, as ap-
plied in [Claussmann et al. 2015, Li et al. 2017]. While decision trees are simple to interpret,
however, calculations become highly complex with uncertain or approximate values. On the
other hand, decision rules must be interpreted to ensure safe behavior and to detect and
anticipate non-legal and dangerous behavior of other vehicles, as developed in [Vanholme
et al. 2013] with the concept of legal safety.

To avoid the exhaustive rules declaration, the Finite State Machine (FSM) gives
an abstract model of the system behavior, representing the system states linked by ac-
tions/conditions. In [Ardelt et al. 2010], the FSM separately describes two longitudinal
and four lateral state transitions with a speci�c contribution to an emergency stop assistant
on highways. Compared to the rule-based approach, FSMs directly perform a predetermined
sequence of actions and states, which are then mapped with path generation and control, as
done in [Wang et al. 2015]; see Figure 2.11. They can also be considered as state classi�er
algorithms [Tehrani et al. 2015], and thus represent an easy communication tool for collective
and driver-shared driving. FSMs are not imperatively deterministic, which allows for more
complex states' relationships. Reference [Ziegler et al. 2014] exploits multiple state charts
in parallel to deal with concurrent states, which are well suited to performing simultaneous
actions in a decision process (e.g. yielding and merging). The main disadvantage of the pre-
viously discussed FSM representations is that they are only based on certainty in knowledge
and can not be generalized to unknown situations.
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Figure 2.11: Illustration of an FSM for highway [Wang et al. 2015]. Ci, Ei, Fi are speci�c conditions to

transit between the vehicle behaviors Si.

In case of uncertainty, Bayesian networks using Markov models are employed. They are
statistical representations of causal links, based on probabilistic transitions. They present
a knowledge-based identi�cation step of their parameters to determine the most likely se-
quence of states to the sequence of outputs. Reference [Rodrigues et al. 2016] matches the
most expected obstacles' behavior intention to return the best ego behavior maneuver (stop |
cruise | accelerate | decelerate and turn-right | turn-left | straight). The authors in [Mouhagir
et al. 2016] develop a Markov Decision Process (MDP) on the choice of tentacle trajecto-
ries, and the one in [Zhou et al. 2017] for a lane-staying or -changing decision. The advantage
of MDP is their ability to evaluate several predictions at the same time. Behavior improve-
ments are shown using a Partially Observable Markov Decision Process (POMDP) with a
probability distribution over the set of possible states in [Ulbrich & Maurer 2015, Galceran
et al. 2017, Li et al. 2018].

The AI logic-based methods are mostly suitable in constrained and predictable environ-
ments, such as nominal highway driving. Their intuitive and fast architectures are widely
promoted for use in critical safety environments, where cause-and-e�ect reasoning is neces-
sary. On the other hand, their lack of autonomy and rigid program structure for an adaptable
and recon�gurable algorithm are their main disadvantages for use in open environments such
as highways. As the logic-based approaches are straightforward to implement, no speci�c
framework stands out in the literature.

AI Heuristic Algorithms Heuristic algorithms are experience-based and conducive to
natural environment process exploration. They aim to �nd an approximate solution, and
are therefore used as faster and more e�cient algorithms when the traditional exhaustive
methods fail. In motion planning, they usually return a set of actions, but are also able to
return paths or trajectories and to act as set- and solve- algorithm in predictive or reactive
planning. Their main advantage is their low computational time and complexity, and their
ability to handle complex problems. On the other hand, they provide, by de�nition, a local
solution, which does not guarantee global optimality and accuracy.

The most convenient interpretation of heuristic methods involves an agent representation.
An intelligent agent is an autonomous entity modeled with a rational and social behavior,
which adapts to the observations of the environment. Its behavior can be based on condition-
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action rules (only depending on the current perception), a world model (how it a�ects the
environment), goals to achieve, or utility to goals, e.g on a game theoretic formalism in [Li
et al. 2018]. The faculties of heuristic agents allow the inclusion of multipolicy decision mak-
ing, such as in [Galceran et al. 2017], including distance to goal, lane choice bias, maximum
yaw rate, and policy cost. They are especially well suited to uncertain environments. The
main drawback is the di�culty of ensuring convergence towards the solution.

Learning methods are also introduced to the decision in heuristic approaches. Support
Vector Machines (SVM) are statistical learning classi�ers for agent intentions which depend
on information search algorithms. In analogy with an FSM, they are based on states' classes
and in-between margins. The separation of the classes has to be trained beforehand, and full
labeling of input data is needed to return a convenient classi�cation. In [Huy et al. 2013],
the authors develop an SVM to provide the control points to a Bézier curve-�tting method.
Authors in [Vallon et al. 2017] de�ne an SVM for personalized lane change decision based on
the relative velocities and positions.

Evolutionary methods are a more widely used class of learning algorithms. They are
de�ned as meta-heuristic functions, inspired by biomimetics with a natural rational evolution
process, such as reproduction, mutation, recombination, and selection. The �rst step is to
determine a set of a priori solutions associated with a �tness function to evaluate their quality.
A set of evolution processes is then applied to �nd a better solution to the optimization
problem. In [Baluja et al. 1997], the authors develop the reasoning system SAPIENT, based
on a population-based incremental learning, to de�ne the most appropriate parameters for a
given task to solve tactical driving problems. More recently, [Onieva et al. 2011] applies two
genetic algorithms to re�ne a fuzzy control module, and [Riaz et al. 2015] details a genetic
algorithm with a 4-chromosome structure based on speed, angle, break and time to avoidance.
The risk of such algorithms is linked to the mutation mechanism, whose random process can
lead to local minima. They are of particular interest for agent swarm methods.

AI heuristic algorithms are a good alternative to address the disadvantages of classical
methods. Their attributes are acceptable for highway driving, where an optimal solution
is not necessary and approximate solutions could be su�cient. There is no AI-heuristic
framework built for the autonomous vehicle applications, however, major frameworks are
available to solve this family, e.g. JADE for agents, DEAP, Jenetics or the Matlab Global
Optimization Toolbox for evolutionary algorithms.

AI Approximate Reasoning AI approximate reasoning mimics human reasoning. We
distinguish the logic approach, as described earlier with expert systems, with the di�erence
that the knowledge base is non-Boolean; and the learning approach to classify new knowl-
edge to adapt to future situations. The �rst presents the advantage of exhibiting intelligent
behavior with intuitive demonstration and explanation, whereas the second is related to a
system able to understand, think, and learn.

Compared to Boolean logic, fuzzy logic relies on many-valued variables. It consists of
fuzzy expert systems based on Boolean compromises, which mathematically model vague-
ness and are close to cognitive reasoning with an inductive logic programming on di�erent
attribute-level solutions. They return a decision, usually expressed as a maneuver or task,
and are thus part of predictive or reactive solve-algorithms. Their major advantages are
the �exibility and permissiveness of the designed rules and by extension to uncertain data.
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On the other hand, their main drawbacks are their lack of traceability and the absence of a
systematic design methodology. The authors in [Balal et al. 2016] propose a fuzzy inference
decision system to check whether the ego vehicle has enough time to change lanes based on a
close, medium, or far evaluation of the gaps between the surrounding vehicles; see Figure 2.12.
References [Naranjo et al. 2008] and [Milanés et al. 2011] use fuzzy rules on lateral and an-
gular error, respectively, to propose automatic overtaking maneuvers and lateral following of
a reference map.

Figure 2.12: Illustration of the fuzzy logic decision in [Balal et al. 2016].

Arti�cial Neural Networks (ANN) are a popular form of approximate learning solu-
tions. ANNs imitate the low-level structure of biological neural networks, i.e. connected neu-
rons in overlaid layers. The learning process is based on error retropropagation to adjust the
neural connections' weights with di�erent learning strategies, e.g. supervised, unsupervised,
reinforcement learning. They are used for both generation and decision making functions,
as a set- and solve-algorithm in predictive and reactive approaches. Their main drawback
for autonomous driving is the absence of a causal explanation to a solution, while their main
advantage is their ability to learn by training on multidimensional data. Another disadvan-
tage is thus the large amount of data required, which makes them computationally expensive.
Reference [Lefevre et al. 2016] proposes a combination of Hidden Markov Models (HMM) and
Gaussian Mixture Regression to mimic the driver's acceleration and braking model, whereas
[Geng et al. 2016] learns the driving speed pro�les with a Levenberg-Marquardt algorithm
on a 3-layer ANN with 20 hidden nodes trained on 600 driving trips. The authors in [Re-
hder et al. 2017] imitate driver trajectories for lane changing with Convolutional Neural
Networks (CNN), and [Bojarski et al. 2016] compares the learning stage with human driver
control inputs. Reinforcement learning is used in [Li et al. 2018] to determine the policies
for each agent in the scene representation, or for multi-goal overtaking maneuvers in [Ngai
& Yung 2011] and automated lane change maneuvers in [Wang et al. 2018a]. Some new
promising research is in progress using the deep learning methods [Chen et al. 2015b], or by
integrating the perception and planning blocks in end-to-end learning [Yang et al. 2018].
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Neural networks are also extended in case of uncertainty with Bayesian probabilities in belief
networks [Huang et al. 1994]. However, one of the challenges of these methods is ensuring
that they learn in the correct way with the diversity of environments and behaviors of driving.

AI approximate reasoning algorithms seem to be highly promising for the near future.
They rely on logic and statistical bases, which are extended to cognitive properties. They
also provide adaptive reasoning to evolve appropriately to their environment. At the moment,
the main impediment to these algorithms is the lack of feedback in real driving scenarios.
As the real-time implementation of approximate reasoning algorithms is complex, the use of
speci�c frameworks is favored, e.g. Matlab Fuzzy Logic Toolbox for fuzzy logic approach or
TensorFlow for machine learning.

AI Human-Like Methods AI human-like methods propose high-level models that mirror
human processes for solve-algorithms. We do not pretend to provide a complete description
of driver models; for this, the readers are invited to refer to [Salvucci 2006]. The AI human-
like methods discussed in this thesis are decision making functions, based on human cognitive
aspects. They are intelligent, potentially learning, and cognitive procedures. Their knowledge
of the environment rules and ability to handle various and complex situations make them
useful for predictive and reactive planning. Their main advantage is an abstract and universal
representation of the decision making process. However, they are di�cult to model and to
use accurately. In [Michon 1985], the author highlights di�erent driver models based on
taxonomic or functional, and behavioral or psychological distinctions. With respect to his
decomposition, we categorize AI human-like methods into three main approaches based on
risk, task, and game theories.

Risk estimators are employed to interpret rational decisions from the scene analysis
with a cognitive bias. The main advantage is to be intuitive. This implies a balance between
a subjective level of acceptable risk and the objective safety, which is a negative aspect for a
global risk assessment. The authors in [Lefèvre et al. 2014] identify two notions to evaluate
the risk of a situation: risk of collision and risky unexpected behavior. In the scope of our
work, we only details algorithms for the risk of collision. The most basic risk estimator
uses a binary collision prediction. Considering a risk criterion, a threshold is applied to
the obtained value to classify it as risky or safe. Indicators such as Time-To-Collision

(TTC) [Wang & Ayalew 2016, Ardelt et al. 2010, Glaser et al. 2010] or Time-To-React

(TTR) [Tamke et al. 2011, Wagner et al. 2018], e.g. steering or braking, give measurable
estimators to the driver too. This method is also exploited in [Bautin et al. 2010] to return
Inevitable Collision States (ICS) for grid occupation representation (see subsection 2.2.2.1).
The Time-To-Intercept (TTI) indicator is extended in [Ghumman et al. 2008] to return a
position-velocity shadow target to prevent obstacle collision. Binary risk estimators provide a
coarse evaluation of the scene, but uncertainty of the obstacles' future motion is a parameter
not to neglect. Probabilistic risk estimators are better suited to providing a more realistic
scene representation.

To adapt the risk perception to the driver, compensation risk estimators introduce
driver states such as stress, drowsiness, or illness. In [Taylor 1964], the authors use a risk-
speed compensation model, i.e. the product of perceived risk and the driver's speed is con-
stant. Reference [Wilde 1982] exploits a risk homeostasis theory to deal with uncertainties
over subjective risk assessment. Furthermore, the authors in [Naumann & Stiller 2017] in-
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troduce a Time of Zone Clearance (TZC), combined with the perceived risk on speed,
distance, safety, and comfort, and based on the proposition that risk appears if trajectories
overlap.

Even if compensation risk estimators seem to be more faithful to the human's decision,
the above risk approaches are usually based on one factor of risk, whereas risk warning should
take into account all factors of the scene representation. Reference [Prokhorov 2009] proposes
a two-level risk estimator a�ected by weather, tra�c, or road conditions, and then re�ned
with real-time information about the ego vehicle surroundings. Promising risk assessments
have been developed combining usual risk estimators and belief theory, as proposed in [Daniel
et al. 2013] to relax thresholds applied to fuzzy sets.

Task 32: Passing

32-1   Decides wether to pass (two- or three-lane roads)

32-11   Looks along roadside for no passing control signs

32-111   Does no pass if « no passing » zone is indicated or has been 

indicated previously

32-112   May pass if sign indicates end of « no passing » zone

32-12   Observes lane markings

32-121   Does not pass if left side of lane is marked by the following:

32-1211   One or two solid lines

32-1212   Solid line to the right of broken line

Figure 2.13: Illustration of the �rst elementary tasks for "passing" in [McKnight & Adams 1970a].

The second approach comprises taxonomic models, which are also popular symbolic
models for human decisions. They identify the sequential driving tasks relations, with behav-
ioral and ability requirements. Those methods call for a logical organization, and represent
operational research task scheduling. They must then be interpreted either as space-time-
action constraints or with a local planner, e.g. the curve planner discussed in subsection
2.2.2.4. One of the disadvantages is their di�cult explicit description, as they are either
focused on a driving task, such as lane changing or merging, or hardly exhaustive. How-
ever, they present the advantages of providing an abstract and universal representation and
easy replanning. For example, McKnight and Adams list 45 major driving tasks in [McK-
night & Adams 1970b, McKnight & Adams 1970a, McKnight & Hundt 1971b, McKnight &
Hundt 1971a], decomposed into 1700 elementary tasks; see Figure 2.13. References [Naranjo
et al. 2008, Chen et al. 2015a] de�ne the sequence of operations to perform an overtaking
maneuver; each action is then validated under a set of numerical criteria to prompt the next
action. The authors in [Bahram et al. 2014] propose a functional architecture of the driving
strategy as a discrete set of behavioral strategies for a speci�c tra�c situation.

Third, some learning approaches are inspired by interaction models introduced in game

theory. The idea for highway planning is to consider the moving vehicles as players that
observe each other's actions and consequently react with an appropriate strategy. The main
advantage of this method is that it quickly obtains a trained driver model, starting with a
merely basic one. The main drawback is that it assumes that all the players respect the
rules, and it can therefore lead to unsafe reactions in real-life applications. Moreover, one
should make sure to learn using various behaviors of the players to enrich the knowledge.
In [Li et al. 2018], the models develop more complex strategies as they are trained against
the other behaviors. The authors use POMDP to model the players' knowledge and Jaakola
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reinforcement learning in the training phase.
AI human-like methods are well suited to decision making in highway scenarios, where

drivers' behaviors are more predictable due to the basic rules of this environment. They
are also easy to understand and to share with the driver. Moreover, the application of
such algorithms is usually not as complicated as modeling a driver, but still interesting
enough to involve in complex scenarios. With their simple architecture and heterogeneous
implementation, one notices that no major framework is highlighted in the literature of
autonomous driving.

2.3 Comparison table for highway applications

The highway applicability of the previously described methods is summarized in Tables 2.2
and 2.3. We propose to quantify the constraints' assessment with a `� /∼ / +' scale. We assess
`� �' as being highly inappropriate, `�' inappropriate, `∼' intermediary, `+' appropriate, and
`++' highly appropriate in Table 2.2. The references are gathered in Table 2.3, and illustrate
the use cases of the families to suggest their situation adaptiveness (collision avoidance,
car following, lane change, merging, overtaking) and their implementation in simulation or
experimentation, speci�ed with the square brackets' superscript and subscript respectively.
To quote but a few, simulators such as CARLA, PreScan, SCANeR studio, TORCS are
developed for autonomous driving.

Unlike the classi�cation in [Paden et al. 2016], we do not focus on the usual points of
comparison, such as completeness, optimality, or time complexity, but on how the algorithms
o�er an e�ective and e�ciently implementable response to practical applications. Therefore,
one can interpret Table 2.2 as a guide to choose the most appropriate family given the
attributes of the algorithm, and its intrinsic and extrinsic limits. Furthermore, one will
notice that references often apply to di�erent families. In that sense, Table 2.2 also helps to
understand the complementary methods for a systemic motion planner design.

Among the characteristics highlighted, the taxonomy criteria can be found in subsection
2.2.1: (i) the type of use of set- and solve-algorithm, (ii) the predictive or reactive horizon,
and (iii) the mathematical domain; and the motion planning functions in subsection
2.1.2 (Figure 2.3).

As intrinsic limits, we distinguish the performance, ease of use, and data analysis. The
performance �rst gathers the real-time implementation. In the case of highway motion
(> 17m/s), with an error of a meter, the motion planning algorithm should return a solution
within the order of magnitude of 10ms to be real-time. As the intrinsic cost of each algorithm
strongly relies on the hardware platform, we inform about qualitative, but not quantitative
computation. The other performance requirements are derived from the analysis proposed
in [Khatib & Le Maitre 1978]: robustness of the algorithm to �nd a solution despite the
variation of the environment (merging, jam approach); stability to keep the solution despite
environmental changes; adaptability to perform a solution in various conditions, e.g. intro-
ducing new scenarios or criteria; and the feasibility of converging to a solution in a �nite
time. The ease of use is de�ned by the ability to replan in real-time without changing the
structure of the algorithm. The last intrinsic limit relates to the data analysis: the input
type for the scene representation (discrete, sampled, continuous) and the output type of
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the algorithm (space, path, trajectory, maneuver, task), along with the ability to deal with
uncertain data.

The extrinsic limits show the algorithm's dependency on high-level sensors of the ego ve-
hicle and/or the infrastructure. This aspect is important to re�ect the real applicability in a
near or further future. If the algorithm works well only with precise information over a large
time horizon, which does not correspond to the current high-level sensors' properties, it will
be highly inappropriate for sensors constraints. We invite the readers to consider [Gruyer
et al. 2017] as a reference for sensors' properties. As stated before, the speci�cities of the driv-
ing environment and vehicle kinematics must be considered. We therefore consider whether
the algorithm performs well in complex environments (dense tra�c, various topologies)
and takes the constraints of the environment and the ego vehicle kinematics into
account.

2.4 Conclusion and positioning of the research

To conclude, our literature review revealed a considerable amount of algorithms for motion
planning in robotics. The objective of this chapter was to identify the main methods of motion
planning for autonomous vehicles in the context of highway driving, in order to propose new
research contributions. We do not claim to have exhaustively gathered all algorithms used for
this application, but we hope to have shown the diversity and potential of highway planning.
In addition, we propose a novel decomposition of the methods for the state of the art. In
particular, we believe that the radar chart illustration of di�erentiating attributes will help
future research to identify and orient the work towards solutions that will best address the
problem.

From this literature review of motion planning algorithms, we were able to identify dif-
ferent areas of improvement to study for the positioning of our research.

The �rst area consists in the improvement of the planning architecture, in particular,
the relationship between generation and decision making. In previous works, the functions
of motion generation and decision making are addressed separately or in a sequential way,
applying decision making to decide on a maneuver and then motion generation to properly �t
this maneuver, or vice versa. However, this separation may lead to a �nal motion that will not
be consistent or optimal with respect to the navigation environment and associated criteria.
For example, during an overtaking maneuver, the return lane change may not be optimal
if there is another obstacle on the arrival lane. In this case, it may be better to generate a
motion to stay on the passing lane for a second passing. We therefore propose a new combined
architecture for decision making and motion generation so that both functions are optimized
in relation to each other. The advantage of this architecture is also its ability to work in
a continuous solution space (no need for discretization). Similar combined approaches also
emerge within the research in perception that uses learning methods. Nevertheless, one of
the major drawbacks of these learning algorithms is the lack of cause and e�ect explanations
and reproducibility. In fact, they are not acceptable for decision making that involves human
safety. Therefore, we will present a deterministic decision-maker, as well as a deterministic
characterization of the evolution space.

A second area of improvement concerns the workspace in the context of motion generation.
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Indeed, many approaches rely on a discretization of the evolution space. This is the case for
methods of space con�guration by sampling, cells decomposition, or path�nding algorithms.
Other methods consider an incomplete evolution space by selecting prede�ned paths, such as
lattice or tentacle approaches. By doing so, these methods do not allow the optimal motion
to be found since the evolution space is truncated. Continuous space approaches such as
homotopy or �eld methods have a major disadvantage in terms of computation time and are
therefore forced to be used as a reactive rather than a predictive approach to be embedded in
real time on the vehicle. To address the workspace problem, we consider the navigable space
as a set of intervals. These intervals are previously reduced to a collision-free space, i.e. the
vehicle is in a non-con�ict situation. The distinction between intervals is made by road lanes
and spaces between obstacles. Finally, the high-level maneuvers are carried out to move from
one interval to another. It should also be noted that the interval delimits a continuous space.

Moreover, the dynamic trajectory is often optimized separately from the static path, as
in curves approaches. This is why we propose to work on the intervals previously discussed
in space and time as a third area of improvement. The prediction of obstacles and the
dynamically feasible motions of the vehicle ego characterize the spatiotemporal intervals.

Finally, with regard to the decision making or selection part, the main drawback of ex-
isting methods concerns the multi-criteria approach, while taking into account uncertainty
and trustworthiness. Many methods correctly manage a multi-criteria decision but it is then
necessary to deal with homogeneous criteria or in limited number for reasonable calculation
time and to avoid combinatorial explosion, as in the case of path�nding algorithms. Logic
algorithms or risk approaches may be too rigid for real life cases and quite complex in man-
aging information from di�erent sources. In addition, it is most often a matter of setting
acceptance thresholds, which results in a loss of information for decision making. This fourth
area of improvement is thus addressed by using fuzzy logic to easily combine heterogeneous
criteria and integrating it into a belief theory framework. The advantage of this framework
is to assign criteria into categories corresponding to di�erent decision-states, such as safety
around the vehicle, the dynamic limits of the vehicle, passenger comfort or compliance with
driving rules. The categories are then considered as di�erent sources of information to obtain
the �nal decision. Moreover, the consideration of uncertainties and trustworthiness becomes
possible by using fuzzy logic and the weighting of criteria or categories. This framework also
makes it easy to adapt the vehicle's behavior to the driving style. Nevertheless, the resulting
function for decision making is no longer explicit. It is then impossible to use methods of
numerical optimization from the state of the art. To overcome this, we consider the advantage
of heuristic approaches that allow us to �nd a near-optimal solution in a �nite time. Besides,
it becomes possible to adjust the calculation time according to the encountered situation,
while guaranteeing to return an acceptable solution.

These identi�ed areas of improvement are explored in the next two chapters. Chapter 3
will detail the contribution to the decision making function. The planning architecture as
well as the space-time evolution space are broached in Chapter 4.
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Con�guration space sampling se P/R G gen ∼ − ∼ ∼ − ++ s sp − ∼ − + ++

Probabilistic sampling se P/R G gen + −− −− + −− ++ s sp + + ∼ −− −−

Non-obstacle-based cells

� Exact decomposition; Polar grid se P/R G gen − ∼ − ∼ ∼ − d sp/pa ∼ ++ − −− −−

� VFH ; DW se R G def + ++ ∼ + + + c sp/tr + − + + ∼

Obstacle-based cells

� Voronoi ; Approximate se P/R G gen −− ++ ∼ + ∼ −− d sp/pa + − − + −

� Visibility graph se P/R G gen − ∼ −− − ∼ −− d sp/pa − ∼ −− ∼ −−

� VO ; Driving corridor se P/R G gen − ++ ∼ + + − c sp/tr ∼ − ∼ + +

Lattice

� Maximum turn; Curvature Velocity se P G gen ∼ + + + + + c tr/ma −− + − + ++

� Road-adapted; Driver-based se P G gen ∼ + + + + + c tr/ma − ∼ − ++ +

Path�ndings

� Dijkstra so P L dec − ∼ + + ++ ∼ s pa − + −− −− −−

� A∗ so P H/L dec ∼ ∼ + + + + s pa ∼ + − ∼ −−

� RRT se/so P/R H/L gen/dec + + ∼ ++ ∼ ++ s pa + − − ∼ ++

Arti�cial forces

APF; VFF; Elastic band se/so R B gen/def − + + + + ++ c sp/pa/tr + + ∼ ++ +

Parametric curves

� Line and circle se P/R G gen + − −− + + + s/d/c pa/tr/ma −− + −− + ∼

� Clothoïd; Sigmoid se P/R G gen + − −− + + + s/d/c pa/tr/ma − + ∼ ++ ++

Semi-parametric curves

Polynomial; Spline; Bézier so P/R G gen ∼ − −− + ++ + s/d/c pa/tr/ma ∼ + + + ++

Legend:

Characteristics � se/so= set-/solve-algorithm; P=predictive / R= reactive; G=geometric / H=heuristic / L= logic / C=cognitive / B=biomimetic; gen=

generation / dec=decision making / def=deformation.

Data Analysis � d=discrete / s= sampled / c= continuous; sp= space / pa=path / tr= trajectory / ma=maneuver / ta= task
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Table 2.2: (continued)
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Mathematical optimization

LP; NLP; QP; MPC; DP so P H/L gen/dec + + + ++ ∼ + s/d/c pa/tr/ma ∼ + + ++ ++

AI Logic

� if-then-rules so P/R L dec ∼ + + − + ∼ d ta − ++ − ++ ∼

� FSM se/so P/R L dec + + + − ++ + d ta −− ++ ∼ ++ ∼

� Dynamic Bayesian se/so P/R H/L dec − ++ + − ++ + d ta ++ + ∼ ++ ∼

AI Heuristic

� Agent se/so P/R H/L/B gen/dec − ∼ − ++ ∼ + s/d/c pa/tr/ma + + + ++ +

� SVM se/so P/R H/L dec ∼ ++ ∼ − + −− s/d/c ma ∼ + + + ∼

� Evolutionary se/so P/R H/L/B gen/dec − ++ − ++ −− −− s/d/c pa/tr/ma − + + ++ +

AI Approximate

� Fuzzy logic so P/R H/L/C dec ∼ + + ∼ + ∼ c ma/ta + ++ ∼ ++ +

� ANN se/so P/R H/L/C/B gen/dec −− ∼ ∼ −− + − c tr/ma/ta ∼ −− + + +

� Belief Network se/so P/R H/L/C/B gen/dec −− ∼ ∼ −− + − c tr/ma/ta ++ − + + +

AI Cognitive

� Risk so P/R L/C dec ++ ++ ++ + ++ ++ d ta ∼ −− + ++ ∼

� Task so P/R L/C dec + + ∼ + + − d ta −− ++ ∼ + ∼

� Game se/so P/R C gen/dec ∼ ∼ + − ++ ∼ c ma/ta + + − + +

Legend:

Characteristics � se/so= set-/solve-algorithm; P=predictive / R= reactive; G=geometric / H=heuristic / L= logic / C=cognitive / B=biomimetic; gen=

generation / dec=decision making / def=deformation.

Data Analysis � d=discrete / s= sampled / c= continuous; sp= space / pa=path / tr= trajectory / ma=maneuver / ta= task
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Table 2.3: Use case references table for highway applications of motion planning methods.

Family Use case

Con�guration space

sampling

[Hesseet al. 2010]oE

Probabilistic sampling [V illagraet al. 2012]∗E [Liet al. 2014]caS
Non-obstacle-based cells

� Exact decomposition; [Ardeltet al. 2010]eS [Tehraniet al. 2015]lcS [Mouhagiret al. 2016]oS
[Y uet al. 2016]∗E

Polar grid [Moraset al. 2011]∗E
� VFH; [Leeet al. 2014]∗E [Quet al. 2015]∗S
DW [de Lima&Pereira 2013]∗E [Mitschet al. 2013]∗/ [Kanget al. 2015]caS
Obstacle-based cells

� Voronoi; [V illagraet al. 2012]∗E [Leeet al. 2014]∗E
Approximate [Trepagnieret al. 2011]∗E
� Visibility graph [Johnson&Hauser 2013]mS [Choi 2014]∗S
� VO; [Choi 2014]∗S
Driving corridor [Ziegleret al. 2014]∗E [Benderet al. 2015]∗S [Guet al. 2016b]∗S

[Altch&De La Fortelle 2017]∗S
Lattice

� Maximum turn; [Schubertet al. 2008]∗S [Broggiet al. 2014]∗E
Curvature Velocity [Constantinet al. 2014]∗S [Guet al. 2016b]∗S
� Road-adapted; [Ziegler&Stiller 2009]∗S [McNaughtonet al. 2011]∗E [Xuet al. 2012]∗E

[Guet al. 2013]∗S
Driver-based [Y aoet al. 2012]∗E
Path�ndings

� Dijkstra [V illagraet al. 2012]∗E [Bahramet al. 2014]∗S [Guet al. 2016b]∗S
� A∗ [Rezaeiet al. 2003]∗E [Dolgovet al. 2008]∗E [Schubertet al. 2008]∗S

[Hesseet al. 2010]oE [Bouniniet al. 2017]∗S [Boroujeniet al. 2017]∗S
� RRT [Hwan Jeonet al. 2013]∗S [Maet al. 2015]∗E
Arti�cial forces

APF; [Reichardt&Shick 1994]∗S [Gerdes&Rossetter 2001]∗S
[Wolf&Burdick 2008]∗S [de Lima&Pereira 2013]∗E
[Galceranet al. 2015]∗E [Bouniniet al. 2017]∗S [Liuet al. 2017a]∗S
[Rasekhipouret al. 2017]∗S

VFF; [Hesseet al. 2010]oE
Elastic band [Gehrig&Stein 2007]cfE [Songet al. 2013]∗S [Kelleret al. 2014]caS
Parametric curves

� Line and circle [Cherubiniet al. 2012]caE [V illagraet al. 2012]∗E [V anholmeet al. 2013]∗E
� Clothoïd; [Cheblyet al. 2015]∗E [Limaet al. 2015a]∗S [Limaet al. 2015b]∗S

[Mouhagiret al. 2016]oS [Sheckellset al. 2017]∗S
Sigmoid [Arbitmannet al. 2012]∗E [Claussmannet al. 2015]lcE
Semi-parametric curves

Polynomial; [McNaughtonet al. 2011]∗E [Xuet al. 2012]∗E [Guet al. 2013]∗S
[Tehraniet al. 2015]lcS

Spline; [Schubertet al. 2008]∗S [Ziegler&Stiller 2009]∗S
Bézier [Chenet al. 2013]lcE [Huyet al. 2013]∗S [Choi 2014]∗S
Legend: Use case � [ ]S =simulation / [ ]E =experimentation; [ ]ca=collision avoidance / [ ]cf =car

following / [ ]lc= lane change / [ ]m=merging / [ ]o=overtaking / [ ]e=emergency / [ ]∗=no speci�c use

case.
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Table 2.3: (continued)

Family Use case

Mathematical optimization

LP; [Xuet al. 2012]∗E [Plessenet al. 2017]oS
NLP; [Guet al. 2013]∗S [Kelleret al. 2014]caS [Liet al. 2014]caS
QP; [Ziegleret al. 2014]∗E [Qianet al. 2016]oS [Milleret al. 2018]∗S
MPC; [Limaet al. 2015a]∗S [Lefevreet al. 2016]∗E [Wang&Ayalew 2016]oS

[Altchet al. 2017]∗S [Cardosoet al. 2017]∗E [Liuet al. 2017a]∗S
[Nilssonet al. 2017]oS

DP [Choi 2014]∗S [Guet al. 2016a]∗S
AI Logic

� if-then-rules [V anholmeet al. 2013]∗E [Constantinet al. 2014]∗S
[Claussmannet al. 2015]lcE [Nilssonet al. 2015]oS [Nilssonet al. 2016]lcE
[Liet al. 2017]∗S

� FSM [Ardeltet al. 2010]eS [Ziegleret al. 2014]∗E [Tehraniet al. 2015]lcS
[Wanget al. 2015]∗S

� Dynamic Bayesian [Ulbrich&Maurer 2015]lcE [Mouhagiret al. 2016]oS
[Rodrigueset al. 2016]∗S [Galceranet al. 2017]∗E [Zhouet al. 2017]∗S
[Liet al. 2018]∗S

AI Heuristic

� Agent [Galceranet al. 2017]∗E [Liet al. 2018]∗S
� SVM [Huyet al. 2013]∗S [V allonet al. 2017]lcS
� Evolutionary [Balujaet al. 1997]∗/ [Onievaet al. 2011]lcS [Riazet al. 2015]caS
AI Approximate

� Fuzzy logic [Naranjoet al. 2008]oE [Milanset al. 2011]∗E [Balalet al. 2016]lcS
� ANN [Ngai&Y ung 2011]oS [Chenet al. 2015b]∗E [Bojarskiet al. 2016]∗E

[Genget al. 2016]∗S [Lefevreet al. 2016]∗E [Rehderet al. 2017]∗E
[Liet al. 2018]∗S [Wanget al. 2018a]∗S [Y anget al. 2018]∗E

� Belief Network [Huanget al. 1994]∗E
AI Cognitive

� Risk [Taylor 1964]∗/ [Wilde 1982]∗/ [Ghummanet al. 2008]caE
[Prokhorov 2009]∗S [Ardeltet al. 2010]eS [Bautinet al. 2010]∗S
[Glaseret al. 2010]∗S [Tamkeet al. 2011]∗S [Danielet al. 2013]∗S
[Wang&Ayalew 2016]oS [Naumann&Stiller 2017]∗S
[Wagneret al. 2018]caS

� Task [McKnight&Adams 1970b]∗/ [McKnight&Adams 1970a]∗/
[McKnight&Hundt 1971b]∗/ [McKnight&Hundt 1971a]∗/
[Naranjoet al. 2008]oE [Bahramet al. 2014]∗S [Chenet al. 2015a]oS

� Game [Liet al. 2018]∗S
Legend: Use case � [ ]S =simulation / [ ]E =experimentation; [ ]ca=collision avoidance / [ ]cf =car

following / [ ]lc= lane change / [ ]m=merging / [ ]o=overtaking / [ ]e=emergency / [ ]∗=no speci�c use

case.





Chapter 3

Fuzzy Dempster-Shafer Decision

Making

This chapter considers the problem of high-level decision process for autonomous

vehicles on highways. The goal is to select a predictive reference trajectory among

a set of candidate ones, issued from a trajectory generator. This selection aims at

optimizing multi-criteria functions, such as safety, legal rules, preferences and com-

fort of passengers, or energy consumption. This work introduces a new framework

for Multi-Criteria Decision Making to provide a risk assessment. The proposed ap-

proach adopts fuzzy logic theory to deal with heterogeneous uncertain criteria and

the Dempster-Shafer Theory to aggregate the fuzzy information while considering

di�erent sources of risk. Simulation results using existing datasets are presented on

car following cases, and extended to lane changing situations.
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The research and development on automated and autonomous vehicles in the last decade
may disrupt future transportation utilities. Even if the main focus remains safety on roads to
decrease human injuries, Chapter 1 shows that these advanced transportation systems also
aim at improving passenger comfort, energy savings, or tra�c �ow. The addition of those
new driving objectives makes it necessary to develop intelligent behaviors with Multi-Criteria
Decision Making (MCDM) to autonomous vehicles. The simpli�ed vision of an intelligent
system based on Figures 2.2 (p. 16) and 2.3 (p. 17) proposes a 2-level motion planning with
a predictive high-level and a reactive low-level. The proposed work focuses on the high-
level planning and more speci�cally on the decision function, through the implementation
of MCDM to decide the future motion of the ego vehicle considering the evolution of the
surroundings and prede�ned goals of the ego vehicle.

This chapter is organized as follows. Previous work and motivation are presented in
section 3.1. Section 3.2 introduces the multi-criteria selection. The decision algorithm is
detailed in section 3.3, and simulation results are discussed in section 3.4. Lastly, section 3.5
presents the conclusion and future work.
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3.1 Literature review and motivation

Previous works on the high-level decision making process are reviewed in Chapter 2 with a
variety of methods recently applied to autonomous highway driving. These methods cover
a large domain of decision mechanisms such as knowledge-based inference engines, heuris-
tic approaches, approximate reasoning, and human-like models. As stated previously, our
decision-maker will deal with multi-criteria. The speci�c issue of MCDM is generally solved
in the literature through mathematical optimization [Ali et al. 2013, Qian et al. 2016] and
expert systems [Wardzi«ski 2006, Furda & Vlacic 2010, Chen et al. 2014, Noh & An 2018].
The main advantage of these methods is to threat large sets for candidate solutions with a
predictive application, meaning a long time horizon as explained in subsection 2.1.2 (p. 15).
However, these previous works return criteria evaluations with independently quali�ed and
quanti�ed numerical values. In real experiments, these values are not straightforward to ob-
tain in the case of autonomous vehicles. For example, it is easy to calculate the ego velocity
to return a velocity value, but it is harder to associate a value to the dangerousness of the
weather conditions.

Moreover, when dealing with vague or imprecise information, linguistic representations of
an event may be interpreted using a fuzzy range. This provides the ability to develop a con-
tinuous decision model which may have been too complex due to an exhaustive quali�cation
using exact values or too many thresholds boundaries. In that sense, fuzzy logic theory recalls
the human evaluation process [Yager & Filev 1994], and proves its relevance for autonomous
driving as discussed in [Prokhorov 2009, Balal et al. 2016]. Another advantage of fuzzy logic
is the consideration of continuous physical variables with a continuous interpretation.

Besides, it is important for the decision-maker to take into consideration how humans
interpret the evaluation of a driving situation and what the safety warning means for their own
safety. As the human interpretation is typically based on their own cognitive life experiences,
a common scale is needed between the human driver and the machine, so that the decision
taken by the machine is understandable from the driver point of view. A popular scale
in human decision involves risk assessment. Related work on risk estimators in intelligent
transportation systems applies with di�erent architectures. The most basic ones use only one
risk indicator based on one factor to a speci�c event [Lefèvre et al. 2014]. These approaches are
adequate to evaluate the current risk of the situation considering only a rough vehicle collision
warning with static or moving surroundings obstacles. In order to provide a more complete
risk assessment, estimators could rely on a combination of several factors. Thus, vehicle,
driver, and environment data are taken into account to return a suitable risk warning. In
this way, the system acquires omniscience and stability based on di�erent sources of risk. For
example in [Prokhorov 2009], the author develops a 2-level risk estimation system. The top-
level estimator is based on the perceived risk a�ected by weather, tra�c or road conditions,
i.e. prior knowledge. The low-level estimator is then applied to re�ne the top-level estimator
with real-time information about the surroundings, such as relative velocities or distances
with obstacles. Another 2-level risk estimator proposition in [Daniel et al. 2013] calculates
a local risk estimator for each category (vehicle, driver, and environment) by separating
the static data (e.g. mileage of the vehicle, experience of the driver, road topology), the
contextual data (e.g. vigilance of the driver, weather conditions) and the variable data (e.g.
accelerations of the vehicle, eye gaze of the driver, Time-To-Collision with obstacles). Each
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data is locally fused for each category, de�ning a local risk. Finally, each category is fused to
de�ne a global driving risk, as illustrated in Figure 3.1.

Figure 3.1: The 2-level risk estimation in [Daniel et al. 2013].

Furthermore, it is crucial to also consider the uncertainties of criteria values and the
consistency of the di�erent sources of risk. Indeed, if a decision evaluation appears to be fa-
vorable to a candidate trajectory, but the uncertainties on the criteria values used to evaluate
this candidate are strong, the decision might be too risky. In the same way, if the sources for
the evaluation depict di�erent conclusions, it may be safer not to make the decision. Thus,
uncertainties and consistency impact the risk evaluation of the decision-maker. In order to
take these into consideration, the proposed approach incorporates evidential reasoning using
the Dempster-Shafer Theory (DST) [Dempster 1967, Shafer 1976]. The DST, or evidential
theory or belief theory, is a mathematical framework based on evidences and plausibility in
order to combine evidence from di�erent sources and �nd a degree of belief for the consid-
ered event. It has already been adapted for risk assessment on current and predicted driving
situation in [Wardzi«ski 2006, Daniel et al. 2013].

Our motivation in this work is to develop a high-level MCDM without any restriction on
the criteria values, considering both their uncertainties in the form of trustworthiness and
strife with a deterministic and straightforward explainable process. To do so, we propose
a risk assessment based on the Fuzzy Dempster-Shafer Theory (FDST) approach. Previous
works using fuzzy set and evidential theory have been studied in autonomous vehicle deci-
sion making, such as the fusion of crisp objective and fuzzy subjective information in [Liu
et al. 2012], the prediction of road accidents in case of exceeding accelerations in [Gündüz
et al. 2017], or driving scores for usage based insurance application in [Derbel & Landry 2018].
But, to our knowledge, this work has not been extended to a high-level decision-maker in
autonomous vehicles. The presented strategy is based on a 3-level architecture: a set of pre-
de�ned motions is evaluated with criteria values, which are �rst fuzzi�ed in local risk levels
for each category; second the local risk levels of all the categories are combined as di�erent
sources of risk; and third, the motion with the best evaluation is selected as the reference mo-
tion over a prediction horizon. The motion can be a set of paths, trajectories or maneuvers,
as long as it can be characterized by a set of criteria. The evaluation is based on a linguistic
description of the criteria using fuzzy logic and risk assessment combining the belief of risk
evidences with FDST. Finally, our algorithm simultaneously considers several factors of risk,
their uncertainties, their consistency and their relative importance for human safety in the
decision-maker.
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3.2 Multi-criteria selection

Multi-criteria involves processing data from di�erent sources, with di�erent units and di�erent
range values. In order to process these data correctly, they will �rst have to be homogenized.
Furthermore, not all these data will be of equal importance for the evaluation of the motion
and the selection of the decision. This section indicates the preprocessing steps necessary to
provide consistent inputs data to our algorithm. Our pretreatment is divided into 4 steps:
the data categorization in subsection 3.2.1, the weight assignment in subsection 3.2.2, the
predictive characterization in subsection 3.2.3, and the transformation of the crispy criteria
values to fuzzy values in subsection 3.2.4.

3.2.1 Criteria categorization

The open environment experienced by autonomous vehicles today is driven by a vast amount
of surrounding factors such as vehicles, pedestrians, cyclists, and wildlife. In order to ensure
the development of safe autonomous intelligent systems, decisions should be made based on a
systemic point of view. That is to say, the decision-maker depends on a global risk assessment
over multiple heterogeneous criteria based on the ego and surroundings measurements. For
example, [Prokhorov 2009, Daniel et al. 2013] take into account the in�uence of weather, road,
tra�c, day/time of the date, driver distraction, or demographic data to evaluate the risk of
the situation according to three categories: the vehicle, the driver, and the environment. In
[Liu et al. 2012], the authors prioritize the sensors data as objective information, but agree
on the in�uence of driver subjective data, and separate the risk analysis by de�ning two
categories with objective and subjective data.

Following these reasonings, a linear combination of the risk evaluation of each heteroge-
neous criterion is not relevant. Thus, we also apply a categorization of the criteria. We choose
our classi�cation based on the critical in�uence of criteria on the future motion. Table 3.1
provides examples of criteria organized in categories. For instance, we distinguish a category
for obstacle safety (number 3 in Table 3.1), which gathers the relative velocity, the time head-
way and the ego velocity, and a category for driving rules (number 4 in Table 3.1), which
gathers the legal velocity and legal driving lane on highway environments. In the manuscript,
we designate C the total number of the considered categories κ, i.e. κ = 1..C, and S the
total number of the considered criteria s, i.e. s = 1..S.

3.2.2 Category and criterion weight

Moreover, as suggested in [Prokhorov 2009], all the criteria do not need to have the same
importance for the categories, and all the categories do not present the same local warning
risk for the risk assessment. In [Furda & Vlacic 2010], the authors de�ne a hierarchy tree
of objectives with attributes assigned to the sub-objectives in the lowest hierarchy level, see
Figure 3.2. The attributes of the lowest level are measurable and assigned a weight, which
re�ects their importance in the overall objective. However, the drawback of such method is to
consider only weights on the sub-objectives, identi�ed as the criteria s in our problem, without
considering the hierarchy of the objectives, identi�ed as the categories κ in our problem.

Our idea is to consider the relative weight from the point of view of the user's acceptabil-
ity, i.e how the consequences of this criterion should impact the risk assessment perceived by
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Figure 3.2: The hierarchy of objectives in [Furda & Vlacic 2010].

the driver. In our proposed architecture, the importance of each s criterion (νs) is implic-
itly included using the fuzzy inference system (see subsection 3.3.2). In addition, we de�ne
discrete weights wκ for each κ category, as it can be designed in mathematical optimization
approaches, i.e as soft, middle or hard constraints. By de�nition, the in�uence of hard con-
straints cannot be released, whereas it can for soft constraints. Middle constraints in�uence
must be speci�ed considering the severity of the situation. Table 3.1 shows some examples of
relative weights with priority to safety. For example, the safety categories are hard whereas
the energy savings category is soft. Another advantage of the multi-criteria selection and
attribution steps is the ability to relax some criteria in case of a con�icting situation. If the
ego vehicle encounters an imminent collision, the energy savings and respecting driving rules
do not matter compared to the safety categories.

3.2.3 Predictive criterion

We also consider a predictive approach with candidate trajectories designed over a predicted
time horizon (see section 3.4). Criteria values us should depict an evaluation of an observable
variable over the predicted trajectories. We present in Table 3.1 examples of operators, such
as the maximum/minimum/mean/sum value, the end value of the predicted trajectory,
or the Boolean isTrue value along the predicted trajectory. For example, for the category
1 vehicle safety, the value for the criterion longitudinal acceleration is calculated as the
maximum longitudinal acceleration along the generated motion.

3.2.4 Criterion fuzzy value

Finally, the criteria values us issued from the predictive operator are fuzzi�ed on a fuzzy
set. This fuzzy set corresponds to the linguistic fuzzy evaluation. In other words, it depicts
the fuzzy membership of the criterion value in a fuzzy environment. Even if the fuzzy sets
are di�erent for all the criteria, they form an homogeneous interpretation of the criteria in
a linguistic and membership manner. For example considering category 4 in Table 3.1, the
fuzzy set for legal velocity is being 'too slow', 'slow', 'medium', and 'too fast', whereas the
one for legal lane is being 'unsafe' and 'safe'. In fact, the Driver Rules on French highways
suggested that the minimum velocity is 60 km/h and the maximum velocity is 130 km/h, and
that the vehicles navigates in the most-right lane. If the ego vehicle is below the minimum
speed limit it will be 100% 'too slow', if it is at 90 km/h it will be 60% medium and 40%
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Table 3.1: Examples of criteria and categories.

Category Criterion

Weight Name Operator Name Fuzzy Set

Hard Vehicle safety -1-

max Longitudinal Acceleration/Deceleration Slow / Medium / High

max Lateral Acceleration/Deceleration Slow / Medium / High

max Longitudinal Jerk Slow / Medium / High

max Lateral Jerk Slow / Medium / High

Hard Passenger safety -2-
sum Longitudinal Distances Very Close / Close / Medium / Far / Very Far

min Lateral Distances Very Close / Close / Medium / Far / Very Far

Hard Obstacle safety -3-
mean Relative Velocity Negative / Slow / Medium / Fast

min Time Headway Unsafe / Safe / Safer / Very safe

end Ego Velocity Slow / Medium / Fast

Middle Driving rules -4-
min&max Legal Velocity Too Slow / Slow / Medium / Too Fast

isTrue Legal Lane Unsafe / Safe

Soft Reference wishes -5-

end Direction Over-right / Right / Middle / Left / Over-left

end Time Too Long / Long / Medium / Quicker

mean Velocity Too Slow / Slow / Medium / Too Fast

mean Acceleration/Deceleration Slow / Medium / High

min Distances Very Close / Close / Medium / Far / Very Far

Soft Passenger comfort -6-

max Longitudinal Acceleration/Deceleration Slow / Medium / High

max Lateral Acceleration/Deceleration Slow / Medium / High

min Distances Very Close / Close / Medium / Far / Very Far

mean Road Position Over-right / Right / Good / Left / Over-left

Soft Navigation indication -7- end Direction Over-right / Right / Good / Left / Over-left

Soft Energy savings -8- mean Longitudinal Acceleration/Deceleration Slow / Medium / High
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slow for instance; if it navigates in the mostright lane, it will be 100% safe, in the middle
lane, 50% safe and 50% unsafe.

The predictive criteria and their fuzzy sets are the inputs of the Fuzzy Dempster-Shafer
algorithm presented in the next section.

3.3 Fuzzy Dempster-Shafer algorithm

The decision-maker is based on the previously mentioned criteria s = 1..S in section 3.2. They
represent the driving scene with data issued from exteroceptive (environment information)
and proprioceptive (ego information) sensors. Thus, the decision process is based on imperfect
and heterogeneous information provided by more or less reliable and con�icting sources. The
aim of our algorithm is to combine di�erent criteria values us with their uncertainties to
yield a risk assessment RA. To do so, we develop the architecture depicted in Figure 3.3 used
for each candidate trajectory p = 1..P . We �rst de�ne in level 1 a Fuzzy Inference System
(FIS) on the criteria s = 1..S to return fuzzy local warning risk levels LW ι

κ for each category
κ = 1..C with a common scale of output fuzzy sets ι. Level 2 applies the Fuzzy Dempster-
Shafer Theory (FDST) to combine the resulting risk levels LW ι

κ, and calculates the belief
and plausibility degree RA[bel, pl]hp of each prede�ned risk hypotheses Hh=1..H . Lastly, level
3 evaluates a risk indicator Ip to determine the best trajectory. This section will �rst recall
the basic concept of the two theories of fuzzy logic and evidential reasoning in subsection
3.3.1, and then develop each of the 3-level FDST architecture (level 1 in subsection 3.3.2,
level 2 in subsection 3.3.3, and level 3 in subsection 3.3.4).

3.3.1 Basic concepts

FDST is based on the combination of 2 theories: fuzzy logic and evidential reasoning. The
idea is to employ the Dempster-Shafer Theory (DST) to aggregate the LW ι

κ for all the
categories κ to return the risk assessment RA. This combination has three main advantages:
(1) it is deterministic and explainable as the decision results from a rule-base; (2) it avoids
the defuzzi�cation step in the fuzzy logic process, and thus retains the principle of fuzzy
set; and (3) the output of evidential reasoning matches with the vague interpretation of fuzzy
logic. Indeed, the input data received by the system belongs to many conclusions at the same
time. For example, a velocity of 110 km/h is both medium and high, whereas a velocity of
90 km/h is both medium and small. Thus there exist a more or less degree of membership to
each conclusion, which can be interpreted as a plausibility for each conclusion. Combining the
di�erent conclusions of each input data results in an interval of plausibility for the conclusions.
This corresponds to the output process of DST. This subsection summarizes the underlying
concepts of the Fuzzy Logic (3.3.1.1) and the Dempster-Shafer Theory (3.3.1.2).

3.3.1.1 Fuzzy Logic

The use of fuzzy set theory for decision making was �rst introduced by L. A. Zadeh in
[Zadeh 1965], and has become a very popular method in system control. This type of decision
making can be used to represent complex problems involving human reasoning which can be
di�cult using classic models [Yager & Filev 1994].
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Figure 3.3: FDST algorithm architecture. (a) Level 1: fuzzi�cation with the membership functions µ and membership degrees mf of the S criteria values

us=1..S and uncertainties in order to return for each category κ = 1..C the ι local warning risk levels LW ι
κ. (b) Level 2: application of FDST on the LW ι

κ to

return for each trajectory p = 1..P the risk assessment RA for each risk hypothesis h = 1..H with the decision brackets RA[bel, pl]hp . (c) Level 3: calculation

of the best candidate trajectory based on RA[bel, pl]h=1..H
p=1..P .
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As an overview, fuzzy logic provides the ability to represent vague and imprecise variables
in a decision making system. Unlike the traditional crisp sets, which have strict boundaries,
i.e. the variable belongs or belongs not to a set so that the membership is binary, fuzzy logic
de�nes a continuous membership degreemf to a fuzzy set described by a membership function
µ for each fuzzy set. The fuzzy sets can have overlapping boundaries, which means that the
variable can have more than one non-zero membership degree. The input space is then
mapped to the output space using a list of if-then statements called rules. Hence, the rules
do not refer to thresholds but to the corresponding mf from input to output spaces. Various
methods have been used in research to design and optimize µ and determine the systems' rule-
base including expert knowledge [Yager & Filev 1994], clustering [Yager & Fileu 1993], and
adaptive neuro-fuzzy inference systems [Jang 1993]. Di�erent types of inference systems also
exist and vary in the way outputs are determined. The most popular ones are the Mamdani

and the Sugeno FIS [Yager & Filev 1994]. The main di�erence between them is the output
membership function µout. The Sugeno output membership functions are either linear or
constant, whereas the Mamdani ones are fuzzy sets. In this proposed framework, we want to
fuzzify, homogenize, and combine the chosen criteria values s = 1..S into categories κ = 1..C,
see Figure 3.3a. We de�ne the output µout to return local warning risk levels (LW ι

κ) as fuzzy
sets, thus a Mamdani-type inference is developed. In the rest of the manuscript, µ and mf
designate respectively the membership functions and the membership degrees on the entire
fuzzy set; µA(s) and mfA(us) are the membership function and the membership degree of
the fuzzy set A for the input criterion s with the criterion value us.

The development of a Mamdani Fuzzy Inference System (FIS) generally includes the
following �ve steps ([Yager & Filev 1994]):

• (i) input and output membership functions (µ) design,

• (ii) fuzzi�cation,

• (iii) rule-base development,

• (iv) rules aggregation,

• (v) output defuzzi�cation.

First (i), each input and output are expressed in fuzzy sets. Each fuzzy set is represented
by a membership function µ over a universe of discernment uod. The universe of discernment
uod is the range of the variable to analyze. Each input and output has a corresponding
uod. A membership function µ is an arbitrary curve that maps each element of the uod to a
membership value between 0 and 1, called the membership degree mf . Thus, a fuzzy set A is
represented by its membership function µA for all the elements z in its uodA in Equation 3.1:

A = {(x, µA(x))|x ∈ uodA} (3.1)

The second step (ii) of fuzzi�cation consists in associating the input variable value to its
input membership degrees. The membership degrees mf are the intersections between the
membership functions µ and the input variable value us in the uod. Due to the overlapping
boundaries of µ, the fuzzi�ed input value can belong to more than one µ, and thus may have
more than one membership degree mf for each of the corresponding input fuzzy sets.
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Third (iii), a rule-base describes the relationship between the input fuzzy sets and the
output fuzzy sets. This rule-base is expressed as if-then statements with the logic operator
AND, OR, NOT . The rules express the relationship between the input fuzzy sets of each
input variable and the output fuzzy sets. The activation of a rule depends on the membership
degree mf(us) of its input variables us previously calculated in the second step (ii). Here
is an example of a FIS with 2 inputs (2 criteria s = 1, 2) and 1 output (RA); input 1 is
fuzzi�ed with 3 fuzzy sets (small, medium, high), input 2 is fuzzi�ed with 2 fuzzy sets (low,
high), and output is fuzzi�ed with 4 fuzzy sets (very bad, bad, good, very good). The rule
number 1 "If Input 1 is small AND Input 2 is low, then output RA is good" is activated
if (mf1(small)(u1) 6= 0 & mf2(low)(u2) 6= 0). In the manuscript, we named IRR the set of
the activated rules and IRRr ≡ ruler(mfs(us)) the activation of rule number r with the
corresponding membership degree mfs(us) for each input criterion s activating the rule.

After the set of activated rules IRR have been deduced from the membership degree
mf of the input fuzzy sets and the rule-base, the rule-implication calculates the mf of
the fuzzy output of each activated rule. It is decomposed in two steps. The �rst step
applies the logic operator of the rules on the membership degrees of the input values. A
classic interpretation of the logic operator AND, OR, NOT are respectively the minimum,
maximum and additive complement functions. With the previous example, the resulting
value of the rule "If Input 1 is small AND Input 2 is low, then output RA is good" is equal
to min(mf1(small)(u1),mf2(low)(u2)). The second step is the truncation of the corresponding
output fuzzy set with this resulting value. In our previous example, the membership function
µout(good) of the output fuzzy set good is truncated by the min(mf1(small)(u1),mf2(low)(u2))

value. In the manuscript, we name ORR the set of the implicated rules and ORRr ≡
trunc(µout, T (IRRr)) the truncated output fuzzy set corresponding to rule number r with T
its logic operator.

The fourth step (iv) aggregates the truncated output fuzzy sets of all the activated rules
ORR, calculated in the implication process. In the manuscript, we named ARR the aggrega-
tion function of the implicated rules. There exist di�erent aggregation operator such as the
maximum, the probabilistic or, or the sum of each activated rule's output fuzzy set. With S
the aggregation operator, and r1, r2 the two activated rules, ARR = S(ORRr1, ORRr2).

The �nal step (v), defuzzi�cation, provides a single output value from ARR; however, the
proposed architecture uses the aggregation function ARR for the FDST algorithm. Thereby,
each category κ is assigned with a LW ι

κ as the likelihood probability of being in each prede-
�ned risk level ι as de�ned in the rule-base.

3.3.1.2 Evidential reasoning

The belief theory is based on the combination of evidences. It uses the de�nition and com-
parison of belief functions in order to come to a plausible reasoning [Shafer 1976]. In this
part, we recall the vocabulary of the Dempster-Schafer Theory (DST).

In DST, the set of evidences must be de�ned on the same universe X, called the frame
of discernment. Under closed-word assumption, the frame of discernment is thus composed
of all the possible solutions. We call P (X) (or 2X) the power set, which represents the
set of subsets of X plus the empty set ∅. Each subset A of P (X) is assigned a mass m,
which corresponds to a degree of belief, represented by a belief function or the basic belief
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assignment bba. The mass of a subset element represents the proportion of the other subsets
asserting that the current state is part of the considered element and no other subset, i.e. the
veracity of a proposition. The nonzero mass sets are called focal elements. The mathematical
formalism is then de�ned as:

m : 2X → [0, 1];m(∅) = 0;
∑
A⊆2X

m(A) = 1 (3.2)

The interest of belief theory is to combine evidences to �nd their common part within
the universe. The Dempster's combination rule of evidence for independent sources 1 and 2
is given in [Dempster 1967] by the joint mass m1,2:

m1,2(∅) = 0

m1,2(A) = (m1 ⊕m2)(A)

=
1

1−K
∑

B∩C=A 6=∅

m1(B)m2(C)

(3.3)

whereK represents a measure of con�ict between the two mass sets: K =
∑

B∩C=∅m1(B)m2(C),
with B and C respectively the subsets of sources 1 and 2. In practice, the independence of
sources is not always veri�ed, and con�icts have di�erent interpretation. This can be handled
by extending the original combination rules. A non-exhaustive list of rules for the combina-
tion of evidences is presented in [Sentz et al. 2002].

The use of DST di�ers from the classic probabilistic theory, in the sense that the exact
probability P of an event A is contained in an interval, bounded by a lower probability called
belief (bel) and an upper probability called plausibility (pl):

bel(A) ≤ P (A) ≤ pl(A) (3.4)

The belief represents the sum of the masses of all the subsets of the considered event, i.e.
the sum of the masses of all the focal elements which necessarily imply the desired event.
The plausibility represents the sum of the masses of the sets that intersect the considered
event, i.e. the sum of the masses of all the focal elements that do not necessarily contradict
the desired event. In other words:

bel(A) =
∑

B|B⊆A

m(B)

pl(A) =
∑

B|B∩A 6=∅

m(B)
(3.5)

In our work, the evidences describe driving scene data, i.e the previously de�ned categories
κ = 1..C in section 3.2. Each element of the universe is interpreted as a local warning risk
level (LW ι

κ), which ranges over the interval [0, 1], 0 corresponding to a zero risk level and 1

being the highest risk level. The mass is calculated with the output membership function
ARR of the fuzzy logic. More details and examples are given in subsection 3.3.3.



3.3. Fuzzy Dempster-Shafer algorithm 61

3.3.2 Level 1: Fuzzy Inference System

The �rst level corresponds to the fuzzi�cation step to read and transpose heterogeneous
criteria s = 1..S into homogeneous categories κ = 1..C, see Figure 3.3a. We follow the steps
1 to 4 from the fuzzy logic process described in subsection 3.3.1.1. A speci�c example is given
here with category 4 � Driving rules in Table 3.1.

For the �rst step, input and output membership function µ design, we assume that all
the input and output µ are provided for each criterion s and each local warning risk level
(LW ι

κ). The heterogeneousness of the criteria s = 1..S results from the di�erent fuzzy sets, µ
and universe of discernment uod for each criterion s. On the contrary, the homogeneousness
of the categories κ = 1..C leads to the same uod, µ and fuzzy sets ι to de�ne the LW ι

κ for all
the categories C.

In our work, we de�ne 5 µout outputs warning levels to estimate the risk over uodout =

[0, 1]: very low (µout(veryLow), uodveryLow = [0, 0.25]), low (µout(low), uodlow = [0, 0.5]),
medium (µout(med), uodmed = [0.25, 0.75]), high (µout(high), uodhigh = [0.5, 1]) and very high
(µout(veryHigh), uodveryHigh = [0.75, 1]), as shown in Figure 3.4. In the example of category 4
� Driving rules in Table 3.1, the �rst criterion Legal velocity (Lv) has a uod1 = [0, 180]km/h

and four µ (µ1(tooslowV el), µ1(slowV el), µ1(medV el), µ1(toofastV el)), shown in Figure 3.5a, and the
second criterion Legal lane (Ll) has a uod2 = [0, 1] and two µ (µ2(unsafeLane), µ2(safeLane)),
shown in Figure 3.5b.

Figure 3.4: Fuzzy outputs µ for the warning levels LW ι
κ such that ∀κ ∈ [1, C], ι ∈

{veryLow, low,med, high, veryHigh} in uod = [0, 1].

The second step of fuzzi�cation consists on de�ning the membership of each considered
criterion. For example, the category 4 � Driving rules has two criteria: Legal velocity (Lv) and
Legal lane (Ll). If the ego vehicle has a velocity of 95km/h and is on the mostleft lane, the
membership degrees to the input fuzzy sets are equal tomf1(slow) = 0.25 andmf1(med) = 0.75

for the criterion 1 Lv and mf2(unsafe) = 1 for the criterion 2 Ll, with respect to the input
membership functions de�ning in Figures 3.5a and 3.5b.

Furthermore, we are interested in uncertainties based on a trust value to quantify the
�delity of the measurement of an input variable, i.e. to attribute a con�dence degree to the
variable. This trust value lies between 0 and 1. The closer to 1 the trust value is, the higher
the con�dence degree of the measurement is. Thus, the degree of membership of each fuzzy
set for an input variable s after the input fuzzi�cation step is weighted by the the importance
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(a) Four µ for criterion 1 legal velocity: too

slow (µ1(tooslowV el)), slow (µ1(slowV el)), medium

(µ1(medV el)) and too fast (µ1(toofastV el)).

(b) Two µ for criterion 2 legal lane: safe

(µ2(safeLane)) and unsafe (µ2(unsafeLane)).

Figure 3.5: Membership functions for category 4 � Driving rules.

of each criterion νs, which is the trust value in our problem, as stated in Equation 3.6:

{
µ′s = νs ∗ µs,

mf ′s = νs ∗mfs,
(3.6)

where µ and mf are the membership function and membership degree before weighting, µ′

and mf ′ the membership function and membership degree after weighting.

In the third step, the rule-base links the input membership functions µs of criteria s = 1..S

to the output ones µout. For example, we assign the rule-base in Table 3.2 for category 4 �
Driving rules.

Table 3.2: AND rule-base development for category 4 � Driving rules.

N. rule Input 1: Lv (km/h) Logic operator Input 2: Ll (/) Output: LW4

1 tooslowVel AND / veryHigh
2 toofastVel AND / veryHigh
3 slowVel AND safeLane med
4 slowVel AND unsafeLane high

5 medVel AND safeLane low
6 medVel AND unsafeLane veryLow

Considering the previous example with Lv = 95 km/h and Ll = 1, the rules number 4
and 6 are activated with the inputs mf1(Lv = 95) and mf2(Ll = 1) in Equation 3.7:

IRR = IRR4 & IRR6 = rule4(0.25, 1) & rule6(0.75, 1) (3.7)

The result of evaluating the rules r through the implication method AND (equivalent
to T ≡ min function) on IRRr are the truncated output µout for ORRr expressed in Equa-



3.3. Fuzzy Dempster-Shafer algorithm 63

tion 3.8:

ORR = ORR4 & ORR6, (3.8)

with

{
ORR4 = trunc(µhigh,min(0.25, 1)),

ORR6 = trunc(µveryLow,min(0.75, 1)),
(3.9)

with trunc(g, a) the truncated function g by the threshold value a.

The result of the fourth step, evaluating the truncated output membership functions
ORRr for each activated rule r through the aggregation method S ≡ max for ARR, is the
maximum value of the ORR over the output uod expressed by Equation 3.10:

ARR = max(ORR4, ORR6) (3.10)

The corresponding �gures of IRR, ORR and ARR calculation are shown in Figure 3.6:

Figure 3.6: Fuzzy steps 3 and 4 for category 4 � Driving rules.

Finally, the aggregation output for the local warning risk levels of category 4 is represented
in Figure 3.7 by overlapping the ARR function and the output fuzzy sets in Figure 3.4. The
blue area corresponds to LW veryLow

4 , the pink area to LW low
4 , the yellow area to LWmed

4 , the
green area to LW high

4 and the purple area to LW veryHigh
4 for the input values Lv = 95 km/h

and Ll = 1.
The covered areas for each of the LW ι

κ are then used as the inputs for the level 2 of our
architecture, explained in details in the next subsection 3.3.3.

3.3.3 Level 2: Risk Assessment

The second level of our architecture returns a risk assessment RA for each trajectory p = 1..P ,
see Figure 3.3c (p. 57).The aim of risk assessment using the theory of evidence is to character-
ize the similarity of events obtained by the combination of the bba from evidences within the
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Figure 3.7: FIS ARR area outputs for each LW for category 4 � Driving rules.

risk hypotheses Hh=1..H . The procedure is: (i) de�ning H hypotheses, (ii) constructing the
focal elements of evidences and their bba, (iii) combining bba, and (iv) calculating the result-
ing risk assessment RA for each hypothesis h of each trajectory p. In our case, the events are
the di�erent local warning risk levels (LW ι

κ) issued from the focal elements of the evidences,
the evidences are the categories κ = 1..C de�ned in section 3.2, and the hypotheses Hh=1..H

are a priori de�ned as the values for the risk assessment (RA) acceptable to non-acceptable,
characterized by the evidential decision brackets RA[belhp , plhp ], see Figure 3.3b.

3.3.3.1 Hypotheses

In this work, belief theory is used to de�ne a risk assessment RA for each candidate trajec-
tory p. One of the drawbacks of risk assessment is the need for de�ning an acceptable or
unacceptable risk threshold, which depends heavily on the driver's experience, as analyzed in
[Wardzi«ski 2006]. The use of belief theory with fuzzy sets makes it possible to handle fuzzy
thresholds too. Thus, the advantage of the proposed architecture is to adjust the thresholds'
shapes to a continuous risk tolerance.

Considering the three threat levels in [Noh & An 2018], we represent 3 hypotheses Hh=1..3

for an acceptable level of risk (A), a partially acceptable (PA) and a non-acceptable (NA),
i.e. H = {A,PA,NA}. We consider the respective trapezoidal functions fh depicted in
Figure 3.8, based on the local warning risk levels LW ι

κ de�ned in the previous level 1 in
subsection 3.3.2. Indeed, we de�ne as acceptable a very low risk level, 5/6 of a low risk level
and a sixth of medium one, the partially acceptable hypothesis covers the last sixth of low,
medium and the �rst half of high, and the non acceptable hypothesis is given by the second
part of high and very high risk levels. This choice has been made considering a conservative
driver pro�le and the safety rules of the Driver Rules. Therefore, the transition between A
and PA is smooth due to the driver pro�le, whereas the transition PA to NA is radical due
to the safety approach.

3.3.3.2 Evidence and Belief functions

The �rst key point of evidential reasoning concerns the basic belief assignment (bba) on
the focal elements of evidences. In our application, the focal elements of an evidence are
the outputs ι ∈ {veryLow, low,med, high, veryHigh} local warning risk levels (LW ι

κ) of a
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Figure 3.8: Representation of the 3 hypotheses functions (A, PA, NA).

category κ. The LW ι
κ result from the output µ and mf calculated in subsection 3.3.2. For

each category κ, several local warning risk levels may then be concerned.
It was decided here to consider, a priori, all LW ι

κ as having equal probability for each
category κ. However, each category κ is also assessed from the fuzzy combination of criteria
s. The aggregate output of fuzzy rules is therefore interpreted as equivalent to the relative
probability that each local warning risk level LW ι

κ of the category κ is represented. Thus,
the new mass of each warning level ι of each category κ is the product of the uniform
distribution and the surface covered by the ARR function (i.e. the integral value) on the
corresponding LW ι

κ [Jiang et al. 2012]. These new masses are �nally normalized in order to
respect Equation 3.2 (subsection 3.3.1.2, p. 60). The bba calculation for a warning level ι for
a category κ over uodout is summarized in Equation 3.11:

bbaικ =
1

nLW

∫
ARR(LW ι

κ) d(uodout), (3.11)

with nLW the cardinal of the output fuzzy sets, i.e. the number of local warning risk levels.
In the example of category 4 � Driving rules, the bba shown in Figure 3.4 are calculated

in Equation 3.12:

bbaveryLow4 =
1

5
∗
∫
ARR(LW veryLow

4 ) d(uodout) = 0.3061,

bbalow4 =
1

5
∗
∫
ARR(LW low

4 ) d(uodout) = 0.1632,

bbamed4 =
1

5
∗
∫
ARR(LWmed

4 ) d(uodout) = 0.1225,

bbahigh4 =
1

5
∗
∫
ARR(LW high

4 ) d(uodout) = 0.2857,

bbaveryHigh4 =
1

5
∗
∫
ARR(LW veryHigh

4 ) d(uodout) = 0.1225.

(3.12)

3.3.3.3 Combining Beliefs

The second key point is the combination of evidences. In our case, we combine the LW ι
κ to

determine the beliefs of the risk assessment RA[bel, pl]hp for each hypothesis Hh=A,PA,NA for
each trajectory p = 1..P .

The combination scheme is the same as the one depicted in [Gündüz et al. 2017], i.e.
the joint masses are recursively computed between the focal elements two by two. We cal-
culate all the possible combinations of each focal element in each evidence with the other
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focal elements of all other evidences. In our problem, this combination approach consists
in calculating the resulting membership functions µ and basic belief assignment bba of each
non-zero local warning risk levels LW ι

κ from each category κ with the non-zero LW ι
κ′ of all

the other categories.
Besides, in our application, the con�ict situation leads to inconsistent decisions not to

be ignored. Indeed, if a �rst category κ has only one focal element describing a very high
risk level (i.e. only LW veryHigh

κ 6= 0), and a second category κ′ has its only focal element
describing a very low risk (i.e. only LW veryLow

κ′ 6= 0), it means that the global estimated risk
is both very high and very low. In this situation, the 2 evidences' conclusions are in con�ict;
this con�ict leads to an incoherent global risk level decision making. In order to address
this issue of con�ict, we apply the conjunctive Yager's combination rule [Sentz et al. 2002]
in Equation 3.13. The di�erence here is to not normalize the joint mass with the Dempster's
con�ict factorK in Equation 3.3, but to translate con�ict in ignorance. As a consequence, the
value of bel is smaller and the value of pl larger than the one obtained with the Dempster's
rule.

Moreover, we introduce in Yager rule's combination the weight of categories wκ in the
combination of µ, as it has been suggested in [Liu et al. 2012]. The idea is to shift the
resultant membership function in the direction of the highest-weight category. Consequently,
the LW of the highest-weight category support a higher contribution on the calculation of
the resulting beliefs.

Finally, the combination of a category 1 with the focal element LW ι
1 and a category 2

with the focal element LW ι′
2 results in µ1,2(ι,ι′) over uod1,2(ι,ι′) = [0, 1] and bba1,2(ι,ι′) given in

Equation 3.13: {
µ1,2(ι,ι′) = G×min

(
w1µ1(ι), w2µ2(ι′)

)
bba1,2(ι,ι′) = bba1(ι) × bba2(ι′)

(3.13)

where G is a normalization factor de�ned in Equation 3.14, such that the category weights
wκ only in�uence the µ representation and not the bba:

G =
max(min(µ1(ι), µ2(ι′)))

max(min(w1µ1(ι), w2µ2(ι′)))
. (3.14)

Figure 3.9 illustrates the calculation of the resulting membership function µ for 2 cate-
gories κ = 1, 2, with w1 = w2 = 1.

Furthermore, in our example, the combination operator min for µκ,κ′ with the intersection
of the focal elements is symmetric thanks to the identical output fuzzy sets LW ι

κ de�nition
for all the categories κ = 1..C, as illustrated in Figure 3.10. Moreover, the uodout for each
ι ∈ {veryLow, low,med, high, veryHigh} do not overlap for all the combination, as depicted
in Figure 3.10. As a consequence of the min combination operator, the red combinations in the
matrix of Figure 3.10 are equal to 0. Indeed, the min resulting membership function between
µout,low over uodlow = [0, 0.5] and µout,high over uodhigh = [0.5, 1] is equal to 0. Therefore, for
any combination of C categories, the combined µκ,κ′ are calculated for the following fuzzy sets:
{veryLow, veryLow/low, low, low/med,med,med/high, high, high/veryHigh, veryHigh}.
Those fuzzy sets contribute to the belief-plausibility interval of each hypotheses Hh, as de-
tailed in the next subsection 3.3.3.4.



3.3. Fuzzy Dempster-Shafer algorithm 67

Figure 3.9: Example of the µ combination process.

3.3.3.4 Risk evaluation

The DST returns the belief-plausibility interval [bel, pl] containing the exact probability P
of the state A. Two pieces of information must be interpreted: (i) the smaller the interval
is, the stronger the knowledge on the probability of being in this state is, (ii) the closer the
interval is to 1, the greater the probability of being in the state is. The value of bel and pl

can then be interpreted as respectively the conservative and the risky parts of the decision.
The fuzzy sets which contributes to the calculation of the the belief-plausibility intervals

of the hypotheses Hh∈{A,PA,NA} in Figure 3.8 are issued from the combination of the cate-
gories detailed in the previous subsection 3.3.3.3, which return nLW = 9 joint focal elements
{veryLow, veryLow/low, low, low/med,med,med/high, high, high/veryHigh, veryHigh}.

In order to respect Equation 3.2 (subsection 3.3.1.2, p. 60), the joint focal elements
l = 1..nLW are �rst normalized in Equation 3.15: µ′l =

µl
max(µl)

bba′l = max (µl)× bbal
(3.15)

For the sake of clarity, we displayed separately the contribution {veryLow, low,med, high,
veryHigh} in Figure 3.11 and {veryLow/low, low/med,med/high, high/veryHigh} in Fig-
ure 3.12. The resulting µout of the example shown in Figure 3.9 is represented in a solid blue
line in the top representation of both �gures. The contributions of {veryLow, low,med, high,
veryHigh} and {veryLow/low, low/med,med/high, high/veryHigh} are plotted respectively
in colored dashed lines in the center representations in Figures 3.11 and 3.12. Each con-
tributed mfout,l is normalized, as shown in the colored solid lines in the center represen-
tations in Figures 3.11 and 3.12. The bottom representations report the contribution of
the normalized mf ′out to the output fuzzy sets {veryLow, low,med, high, veryHigh} and
{veryLow/low, low/med,med/high, high/veryHigh}.
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Figure 3.10: Illustration of the µ combination process. The red combinations are equal to 0, as their uod do

not intersect.

To calculate the contribution of fuzzy sets to the hypotheses, we use the generalization of
the Dempster-Shafer Theory to fuzzy sets in [Yen 1990]. It consists in the decomposition of a
fuzzy focal element A as a collection of nonfuzzy α-level subsets. Even if the hypotheses and
the fuzzy sets are represented by simple trapezoidal and triangular shapes in our problem,
we use the α-level subsets for numerical approximation to calculate the surface of arbitrary
functions. An illustration of the contribution of {veryLow, low,med, high, veryHigh} to the
three hypotheses Hh∈{A,PA,NA} and 5 α-level subsets is shown in Figure 3.13.

Finally, the belief and plausibility values for evaluating the risk assessment RA[bel, pl]hp
for each hypothesis Hh∈A,PA,NA of each trajectory p = 1..P are obtained in Equation 3.16:

bel (Hh) =

nLW∑
l=1

bba′l ×

(∑
αi

(αi − αi−1)× inf
z|µ′l(z)>αi

fh(z)

)

pl (Hh) =

nLW∑
l=1

bba′l ×

(∑
αi

(αi − αi−1)× sup
z|µ′l(z)>αi

fh(z)

) (3.16)

We threat the example of the contribution of veryLow and low on the hypothesis accept-
able HA respectively in Figures 3.14 and 3.15:
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Figure 3.11: Illustration of the normalization process for the contribution of very low in dark green, low in

light blue, medium in purple, high in pink and very high in black. Top: Output fuzzy sets de�nition in

dotted lines and the resulting output µout of the combination of the C categories in solid blue line. Center:

Normalization µ′out in solid line of the µout in dashed lines on each output fuzzy set. Bottom: Normalized

contribution of µ′out in solid lines for the output fuzzy sets in dotted lines.

Figure 3.12: Illustration of the normalization process for the contribution of very low/low in light blue,

low/medium in magenta, medium/high in light pink, high/very high in light gray. Top: Output fuzzy sets

de�nition in dotted lines and the resulting output µout of the combination of the C categories in solid blue

line. Center: Normalization µ′out in solid line of the µout in dashed lines on each output fuzzy set. Bottom:

Normalized contribution of µ′out in solid lines for the output fuzzy sets in dotted lines.

• For the contribution of veryLow, in the α-set α1, the inf value of the representation
function fA of HA is equal to 1, as well as its sup value. One notices that the inf

and sup values of fA are equal to 1 for all the α-sets α2, α3, α4, α5. Thus, veryLow
contributes for all the α-level subsets to the belief bel and plausibility pl of hypothesis
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Figure 3.13: Illustration of the α-level subsets decomposition process.

HA according to Equation 3.16, as summarized in Equation 3.17:

inf
z|µveryLow(z)>α1

fA(z) = 1, sup
z|µveryLow(z)>α1

fA(z) = 1,

inf
z|µveryLow(z)>α2

fA(z) = 1, sup
z|µveryLow(z)>α2

fA(z) = 1,

inf
z|µveryLow(z)>α3

fA(z) = 1, sup
z|µveryLow(z)>α3

fA(z) = 1,

inf
z|µveryLow(z)>α4

fA(z) = 1, sup
z|µveryLow(z)>α4

fA(z) = 1,

inf
z|µveryLow(z)>α5

fA(z) = 1, sup
z|µveryLow(z)>α5

fA(z) = 1.

(3.17)

• For the contribution of low, in the α-set α1, the inf value of fA is equal to 0, whereas
its sup value is equal to 1. Consequently, low contributes under the α-set α1 only to
the plausibility value of hypothesis HA. One notices that the inf and sup values of fA
are respectively 0 and 1 for the α-sets α2, α3, α4. For the α5, both the inf and sup

values of fA are equal to 0. Thus, low contributes for the α-level subsets α1, α2, α3, α4

to the plausibility pl(HA) of hypothesis HA, but do not contribute to its belief value
according to Equation 3.16, as summarized in Equation 3.17:

inf
z|µlow(z)>α1

fA(z) = 0, sup
z|µlow(z)>α1

fA(z) = 1,

inf
z|µlow(z)>α2

fA(z) = 0, sup
z|µlow(z)>α2

fA(z) = 1,

inf
z|µlow(z)>α3

fA(z) = 0, sup
z|µlow(z)>α3

fA(z) = 1,

inf
z|µlow(z)>α4

fA(z) = 0, sup
z|µlow(z)>α4

fA(z) = 1,

inf
z|µlow(z)>α5

fA(z) = 0, sup
z|µlow(z)>α5

fA(z) = 0.

(3.18)

To conclude, an output fuzzy set will generally contribute to the bel value if its uod of
interest (i.e. uod values for which µ 6= 0) is included in the uod of interest of the represen-
tation function of the hypothesis. Its contribution to the pl value is guaranteed if its uod of
interest intersects the uod of interest of the hypothesis. For example, the output fuzzy sets
contributions by mfout of Figure 3.9 (p. 67) to the 3 hypotheses HA,PA,NA are depicted in
Figure 3.16.
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Figure 3.14: Illustration of 5 α-level subsets decomposition process to calculate the contribution of veryLow

in dark green line to HA in green line.
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Figure 3.15: Illustration of 5 α-level subsets decomposition process to calculate the contribution of low in

light blue line to HA in green line.
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(a) Contribution to hypothesis A.

(b) Contribution to hypothesis PA.

(c) Contribution to hypothesis NA.

Figure 3.16: Illustration of the belief and plausibility values for each hypothesis. (a) The small green area is

the contribution to bel(HA) and the larger green area is the contribution to pl(HA). (b) The small orange

area is the contribution to bel(HPA) and the larger orange area is the contribution to pl(HPA). (c) There is
no contribution to bel(HNA) and pl(HNA) with the mfout of this example.
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The way to combine the length and average of the interval is part of the limits of a non-
human decision process. It deals with the arbitrary choice: to favor safety or security, i.e. to
assign a conservative or aggressive vehicle's behavior.

3.3.4 Level 3: Reference trajectory choice

After the implementation of level 2, we obtain for each trajectory p the risk assessment with
the decision brackets RA[bel,pl]hp as a similarity level with each hypotheses HA,PA,NA. The
goal of level 3 is to return the best trajectory among a set of candidate ones p = 1..P , see
Figure 3.3c (p. 57). As it has been highlighted in [Prokhorov 2009], it is impossible to return
a precise risk quanti�cation, but risk ranking is su�cient. The 'best' trajectory in the sense
of risk assessment will then be the one with the biggest/smallest value of a risk indicator.

As previously stated, two pieces of information must be interpreted in the decision brackets
RA[bel,pl]hp : (i) the smaller the interval is, the stronger the knowledge on the probability of
being in this state is, (ii) the closer the interval is to 1, the greater the probability of being
in the state is. Thereby, we propose a risk indicator Ip for each trajectory p considering
both the mean value H̄h and the length l(Hh) of the associated belief (bel)-plausibility (pl)
decision brackets RA[bel, pl]ph. H̄h and l(Hh) are de�ned in Equation 3.16 with bel ≤ pl:

H̄j =
(pl(Hj) + bel(Hj))

2
,

l(Hj) = pl(Hj)− bel(Hj).
(3.19)

In the work proposed by [Furda & Vlacic 2010], the authors calculate the resulting value
to de�ne the best driving maneuver with the Simple Additive Weighting Method. They
previously de�ne a utility degree and importance weight to each maneuver. By analogy, we
consider the utility degree as the mean value of the decision brackets and the weight of that
decision as the inverse of the interval length. That is to say, the higher the mean value is
within the smaller brackets, the better and more accurate the risk assessment is. Moreover,
we a�ect Hh a weight Ωh so that the acceptability and non-acceptability values stand out in
the decision process. The risk indicator for the pth trajectory is expressed in Equation 3.20:

Ip =
∑
h

Ωh
H̄h

max(l(Hh), ε)
(3.20)

To avoid zero-division and to keep consistency on the indicator, we take the maximum
between the interval length and an ε value. The choice of Ωh must respect the intuitive
reasoning saying that (i) the NA value is discriminating, (ii) the A value is more signi�cant
than the PA value, and (iii) if all the hypotheses are the same, the risk indicator value is
ordinary, i.e. close to 0.

3.4 Simulation results

In order to validate our decision-maker, we propose a simple case study in simulation. More
complex highway use cases are presented in experimentation in Chapter 5. We use sigmoid
candidate trajectories as inputs in this simulation. The case study is described in subsection
3.4.1, the parameters for FDST are set in subsection 3.4.2, and the simulation results are
depicted in subsection 3.4.3.
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3.4.1 Case study

In this application, we consider a 2-lane highway, with one obstacle going straight on the
right lane at speed 80 km/h and 2 s ahead of the ego vehicle at speed 100 km/h. We choose 7
acceleration pro�les based on no acceleration, 3 acceleration levels, and 3 deceleration levels
to create tentacle trajectories in the form of straight line for lane following and sigmoid for
lane change. The equation of the sigmoid is expressed in Equation 3.21, with y the lateral
coordinate and x the longitudinal one:

y(t) = y0 ±
b

1 + e−λ(x(t)−c) , (3.21)

with b the shift between y0 and the asymptotic end value, which corresponds in our
problem to the target centerline. The sigmoid parameter λ and the distance delay c are
tuning parameters. In our problem, they are used for driver safety and comfort, which
depend on the lateral and longitudinal ego vehicle's velocities (see subsection 4.3.1.3, p. 90
for more details).

We obtain 14 candidate trajectories: 7 for lane changing Left and 7 for car following
maneuvers Straight, see Figure 3.17.

Figure 3.17: Case study description. The ego vehicle is represented in blue. The obstacle is the blue

rectangular with the red front line. The 7 acceleration pro�les give 14 dotted-dashed trajectories for left and

straight directions: no acceleration p1 in yellow, p2 :
ax,max

4
in magenta, p3 :

ax,max

3
in cyan, p4 :

ax,max

2
in

red, p5 :
dx,max

4
in green, p6 :

dx,max

3
in blue, p7 :

dx,max

2
in black, with respectively ax,max = 2 m/s2 and

dx,max = −1.5 m/s2 the maximum acceleration and deceleration of the ego vehicle. The ends of trajectories

are marked with a plus sign. The obstacle trajectory is the dotted-asterisk purple line.

Table 3.3 gives the parameters of the left trajectories p = 1..7.

Table 3.3: Trajectory parameters for the 7 left lane changes.

Trajectory p1 p2 p3 p4 p5 p6 p7

Acceleration (m/s2) 0 0.5 0.66 1 -0.375 -0.5 -0.75
λ (m−1) 0.15 0.13 0.11 0.10 0.17 0.20 0.23
c (m) 40 45 50 55 35 30 25
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3.4.2 Parameters

We detail in this part the 2 categories used for this use case: obstacle safety (κ = 3) and
driving rules (κ = 4), see Table 3.1. The membership functions and rule-base of category
3 � Obstacle safety are adapted from [O' Brien et al. 2017]. The authors used the dataset
NGSIM and the Insurance Corporation of British Columbia's (ICBC) driving rules [ICB 2015]
to create the input fuzzy sets for the criteria 'Relative velocity' (Rv in km/h), 'Time head-
way' (Th in s) and 'Ego velocity' (Ev in km/h), and the 'warning level' output fuzzy sets
LW

ι∈{veryLow,low,med,high,veryHigh}
3 . The µ are plotted in Figure 3.18a and the rule-base is

written in Table 3.4. As we consider in this paper an autonomous vehicle, we shift 1 s less
the membership functions of the 'Time headway' criteria, which was initially designed in
[O' Brien et al. 2017] for the analysis of human drivers. This is justi�ed by the 1 s assessed
to the driver reaction time.

Figure 3.18b shows the FIS for category 4, based on [ICB 2015]. The input fuzzy sets
are 'Legal velocity' (Lv in km/h) and 'Legal lane' (Ll no unit), and the output fuzzy sets
are the same 'warning level' as for category 3. We use a Mamdani FIS with a minimum
AndMethod to the set of rules, and respectively the minimum, maximum, for implication
ORR, aggregation ARR, methods.

In order to show the in�uence of the trust and weight consideration, we present 3 scenarios.
Scenario 1 is a nominal situation with sensors' trust values set to 100%. Scenario 2 presents
a nominal situation with a 30% trust value for 'Time headway' and 100% for the two other
criteria of category 3. Lastly, scenario 3 keeps the trust values of scenario 1 in critical
situation, where category 3 is hard and category 4 middle. In nominal situation, we consider
the hard, middle, and soft weights as equivalent, i.e. whard,middle = 1 for our 2 categories 3
and 4. In critical situation, we consider hard weight ten times bigger than middle weight. For
conjunctive combination, we use the inverse of the weight value in the min operator, whereas
for disjunctive combination, we use the weight value in the max operator. As we apply the
conjunctive Yager's rule, we get whard = 1/10 and wmiddle = 1.

The 3 hypotheses for risk assessment with respectively Acceptable hypothesis (A), Par-
tially Acceptable (PA), and Non-Acceptable (NA) are plotted respectively in green, orange,
and red in Figure 3.8 (p. 65). We choose the hypotheses weights ΩA = 2, ΩPA = 1 and
ΩNA = −3 for the risk indicator calculation, and ε = 0.1 for consistency, as belief and
plausibility values expressed on [0, 1]. The highest Ip leads to the best trajectory p.
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(a) Fuzzy Inference System for category 3 � Obstacle safety.

(b) Fuzzy Inference System for category 4 � Driving rules.

Figure 3.18: FIS for categories 3 and 4.
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Table 3.4: Rule-base for category 3 � Obstacle safety.
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3.4.3 Results

The criteria values obtained with the corresponding predictive operator (Table 3.1) for our
candidate trajectories are collected in Table 3.5. Considering the input membership functions
of categories 3 and 4, it seems that for category 3, the 'Time headway (Th)' criterion would
be the most di�erentiated one, whereas for category 4, 'Legal velocity (Lv)' and 'Legal lane
(Ll)' would both in�uence the degree of membership on the output warning risk levels LW .

Table 3.5: Criteria values for categories 3 and 4.

Left trajectories Straight trajectories

p1 p2 p3 p4 p5 p6 p7 p1 p2 p3 p4 p5 p6 p7

Rv 20 29 32 38 20 20 20 20 29 32 38 20 20 20
Th 1.73 1.62 1.54 1.45 1.81 1.84 1.89 1.01 0.52 0.38 0.11 1.44 1.59 1.79
Ev 100 104.5 106 109 96.625 95.5 93.25 100 104.5 106 109 96.625 95.5 93.25
Lv 100 109 112 118 93.25 91 86.5 100 109 112 118 93.25 91 86.5
L1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0

Table 3.6 shows the risk indicator Ip of each straight and left trajectories p = 1..7 for the
3 scenarios.

Table 3.6: Risk indicator Ip.

Left trajectories Straight trajectories

p1 p2 p3 p4 p5 p6 p7 p1 p2 p3 p4 p5 p6 p7

Scenario 1 3.86 3.90 3.86 3.77 3.37 3.38 3.44 3.37 0.52 0.28 0.28 3.57 3.76 3.85
Scenario 2 3.97 3.71 3.61 3.61 3.64 3.73 3.87 3.69 0.71 0.37 0.37 3.42 3.58 3.99
Scenario 3 3.89 4.09 4.19 4.21 3.12 3.05 2.97 3.43 0.52 0.28 0.28 3.49 3.58 3.33

For scenario 1, the left candidate trajectories scores are close and positive, as their
criteria values through the rule-base mostly lead to low, medium and high risk levels. For
the straight trajectories, collision with the front obstacle is very close for the acceleration
pro�les as shown in Figure 3.17, where the obstacle trajectory's (purple dotted-asterisk line)
distances with p2, p3, and p4 trajectories (resp. magenta, cyan and red plus-sign lines) are
less than 15 m. This potential collision is expressed with Th criterion smaller than 1 s. On
the other side, straight trajectory p1 has a lower score than left trajectory p1 because of a
smaller Th and category 4 yielding low risk level for straight lane and veryLow for left one.
On the contrary, straight p5, p6, and p7 have a better score than left trajectories as they
remain on the right lane which is safer than changing lane at low velocities. The decision
brackets are depicted in Figure 3.20a. For each hypothesis, the [bel, pl] interval for the 7
left trajectories and 7 straight trajectories are detailed. The analysis of the beliefs intervals
for all the trajectories con�rms that the most pronounced risk assessment is for acceptable
(A) and partially acceptable (PA) hypotheses. If we look at the rule-base, category 3 induces
mostly medium, high and veryHigh warning risk levels and category 4 veryLow and low levels.
Thus the similarity with PA hypothesis is higher than the one with A or NA hypotheses. The
decision brackets for straight trajectories p2, p3 and p4 are very close or set to 0, as previously
explained. Only the deceleration trajectories cover the non-acceptable hypothesis (NA), as
category 4 yields med and high risk levels, i.e high and veryHigh LW . Considering criteria
values of category 4, the best trajectory is among the left medium velocities. The values
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for category 3 are less discriminative. The best trajectory for scenario 1 in the sense of the
previously de�ned risk indicator is then Left p2.

During scenario 2 - lower trust, the lower trust value in�uences the aggregate output
membership function, as shown in Figure 3.19 for the example of the candidate trajectory left
with no acceleration p1. We notice that in�uences of trust in 'Time headway' for category
3 is important for all the warning levels. The corresponding belief intervals are displayed in
Figure 3.20b. We notice that the length of the intervals remains almost the same for all the
candidate trajectories under all hypotheses, but the mean values are smaller for A and PA
hypotheses. Indeed, the Th criterion mostly leads category 3 to veryLow, low and medium
risk levels in this case study. If the criterion is being less considered as its trust is lower, the
bba for those values decrease. Besides, the mean values of A and PA hypotheses are closer
than in scenario 1. The best trajectory for scenario 2 is to go Straight p7.

Figure 3.19: In�uence of trust values on the aggregate function of category 3 for the left trajectory

p1.

In scenario 3 - critical situation, the corresponding belief intervals are displayed in
Figure 3.20c. We �rst observe that there is no change on NA hypothesis, which proves that
category 3 has more critical weight on the safety of the ego-vehicle. If we analyze the rule-
base of category 3 in details, we notice that the faster the ego velocity is, the riskier the
situation is. In the same way, the bigger the relative velocity is, the higher the risk is. On
the other side, the bigger the time headway is, the safer the situation is. Thus we notice that
the intervals for the acceleration pro�les p2, p3, p4 have smaller length with the same mean
value for A and higher mean value for PA. The opposite situation occurs for the deceleration
pro�les p5, p6, p7. At the end, the best trajectory for scenario 3 is to go Left with high
acceleration p4.

Finally, we notice that (i) for most cases, the decision brackets are large, which means
that the fuzzy�cation is important and the hypotheses may thus be too large, (ii) with close
candidate trajectories, the tested categories return similar results for the 3 scenarios, (iii) the
results are sensitive to rules-base consistency, (iv) the values for the risk indicator are relevant
in the 3 scenarios, and (v) considering criteria trust values and weighted categories shows
sensible changes on the risk assessment. In fact, to observe the respective in�uence of trust
value and weight category, the untrusted criteria must in�uence the LW i

c assignment, and the
overlap of the LW i

c between two categories must coincide with the hypotheses representation
functions transition.



3.5. Conclusion and future work 81

(a) Decision brackets for scenario 1.

(b) Decision brackets for scenario 2.

(c) Decision brackets for scenario 3.

Figure 3.20: For each of the hypotheses (A) in green, (PA) in orange and (NA) in red, the decision brackets

[bel, pl] of each candidate trajectory are plotted.
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3.5 Conclusion and future work

We presented a new framework for predictive multi-criteria decision making for autonomous
vehicles, which simultaneously considers several factors of risk, their uncertainties, and their
relative importance for human safety. We employed the belief theory for risk assessment and
fuzzy logic for uncertain data with a trustworthiness value. As the fuzzy rules are based
on both tra�c rules and real data learning, the decision relies on a conservative but active
behavior of the ego vehicle. Moreover, the Fuzzy Dempster-Shafer reasoning avoids both
the defuzzi�cation process for fuzzy logic by using belief theory and the problem of fallacy
of the excluded middle for belief theory by using fuzzy set and appropriate rule-base. We
also introduced the in�uence of sensors trust values and relative importance on criteria and
categories to relax if safer or to consider driver preferences to get a �exible decision. Another
advantage is the possibility to evaluate any description of motion, i.e. paths, trajectories, or
symbolic maneuvers, as long as they can be characterized through a set of criteria. Lastly, the
proposed framework is scalable and ables to evaluate arbitrary functions, although it requires
�ne tuning for fuzzy inference systems and best trajectory de�nition to respect the problem's
speci�cation. However, the combination of fuzzy logic and evidential reasoning still depends
on a mathematically tuning formalism for the fuzzy membership functions, fuzzy rules and
the hypothesis de�nition. It also su�ers from an explicit mathematical function to simply
expressed the decision rules.

Future work will consist in deploying this approach to other use cases with more risk
factors based on more criteria and/or categories. In order to adapt the behavior of the fuzzy
inference systems to a human-in-the-loop behavior, learning techniques can also be considered
for di�erent driver pro�le datasets to form the fuzzy sets. Lastly, if the criterion leading to an
unsafe decision is identi�ed, transposing it into a safe universe will allow to apply preventive
decisions.

After de�ning the decision making function, one needs to provide the candidate motions
to evaluate as the best one for the reference motion sent to the controller. This is the research
topic of Chapter 4.



Chapter 4

Optimized Trajectory Planning within

Non-Collision Nominal Intervals

This chapter considers the problem of near-optimal trajectory generation for au-

tonomous vehicles on highways. The goal is to select a predictive reference trajectory

in the free evolution space, while avoiding both generating a pre-calculated set of can-

didate trajectories and decoupling path and velocity optimizations. Moreover, this

trajectory aims at optimizing a decision process based on multi-criteria functions,

which are not straightforward to design and can have a black-box formulation. The

main idea is to use the decision evaluation function in the trajectory generator with

a Simulated Annealing approach. The parameters of a sigmoid trajectory are op-

timized within Non-Collision Nominal Intervals, which are de�ned as collision-free

intervals under nominal conditions using a velocity-space representation.
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The introduction of autonomous vehicles into a human environment involves uncertainties
and complex behaviors. In this respect, motion planning algorithms are given a greater role
in the autonomous scheme, stated as an intelligent linker between sensors and actuators.
As it has been detailed in subsection 2.1.2 (p. 15), the motion planning block is commonly
decomposed into the �ve following functions: route planning, obstacles prediction, motion
generation, decision making, and motion deformation. Our work focuses on the functions
motion generation and decision making (previously exposed in Chapter 3). In the literature,
authors usually treat these two subparts separately and sequentially, either by �rst generating
candidate motions and then evaluating the most appropriate one according to the objective
function of a decision algorithm, or by �rst making the decision on the most appropriate
maneuver and then generating a motion to �t properly. Our contribution addresses both the
decision making �as an evaluation function� and the motion generation �under the form of
trajectory generation� in a combined manner, in order to ensure the consistency between the
choice of a maneuver and the calculation of the trajectory.

This chapter is organized as follows: Previous work and motivation are presented in sec-
tion 4.1. The new architecture is presented in section 4.2. Section 4.3 describes the reachable
space-time with the problem description and the NCNI interpretation. The proposed al-
gorithm is detailed in section 4.4. The SA-optimization method is explained in section 4.5.
Lastly, a numerical example is discussed in section 4.6, and section 4.7 presents the conclusion
and future work.
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4.1 Literature review and motivation

Two approaches are distinguished for trajectory generation in autonomous vehicles: dis-

cretization and decoupling. The �rst one generates a set of candidate trajectories called
tentacles, introduced in [Von Hundelshausen et al. 2008], as further described in subsection
2.2.2.4 (p. 31). The generation is made a priori, based on prede�ned geometric curves, such
as line and circle [Cherubini et al. 2012], clothoid [Chebly et al. 2017] or sigmoid [Cesari
et al. 2017]. The completion of each candidate trajectory is then tested and scored against
the objective function of the decision subpart in order to de�ne the most appropriate one.
The second approach is based on static and dynamic decoupling. A spatial path solution
is �rst de�ned on a static decomposition of the space, for example �tting particular points
with polynomials [Xu et al. 2012] or Bézier curves [Lattarulo et al. 2017]. This representation
uses the topography of the road, such as lane marking, road shape, map information, and
static obstacle avoidance. The path is then adjusted to the dynamic obstacles by choosing
a speed/acceleration pro�le [Liu et al. 2017b] to respect the speed limits and avoid dynamic
obstacles. Conversely, de�ning �rst the optimal velocity pro�le dynamically and then the
static path is also possible [Wang et al. 2018b].

From these two representations emerge two main issues. Indeed, the discretization of the
candidate solutions requires either testing a large number of candidate pro�les to approach the
optimal one, or to make a choice a priori on the characteristics of the solution. This problem is
studied with the continuous optimization strategies mentioned in subsection 2.2.2.5 (p. 33),
such as gradient descent [Xu et al. 2012], Linear Programming (LP) [Plessen et al. 2017],
Mixed-Integer Programming (MIP) [Wang et al. 2018b], or Model Predictive Control (MPC)
[Cesari et al. 2017]. The drawback of such strategies is their need for an explicit objective
function. Similarly, the decoupling approach does not allow exploring all motions over the
space-time prediction horizon, as it optimizes each dimension separately. This has previously
been addressed through the Velocity Obstacles (VO) representation [Fiorini & Shiller 1998],
the Inevitable Collision States (ICS) [Fraichard & Asama 2004], reachable sets [Söntges & Al-
tho� 2018] (see Figure 4.1a), or the graph interval formulation [Altché & De La Fortelle 2017]
(see Figure 4.1b). By combining these ideas, we propose the Non-Collision Nominal Intervals
(NCNI), which return, based on a velocity representation, the predictive collision-free inter-
vals for nominal maneuvers. NCNI are inspired from the complementary space of ICS, and
are characterized as spatiotemporal intervals in order to de�ne the reachable space-time for
navigation and the corresponding graph of maneuvers.

The last motivation which drives our research is the optimization of the trajectory, eval-
uated with the previously developed decision-maker in Chapter 3. The main issue is the
optimization of the objective function that uses the Fuzzy Dempster-Shafer Theory (FDST).
However, this function can not be expressed explicitly as a simple mathematical function.
Indeed, we consider our decision-maker as a black-box function. Moreover, we want to treat
a continuous solution space in order to tackle the two main issues from trajectory genera-
tion mentioned in the previous paragraphs. Thus, there exists a huge number of potential
solutions. Black-box objective functions with a huge number of potential solutions and no a
priori knowledge are usually optimized using metaheuristics [Gendreau & Potvin 2010]. The
advantages of metaheuristics approaches are that they do not require a formalized problem,
and do not su�er from combinatorial explosion. Moreover, the heuristic property tackles the
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(a) Reachable sets representation from [Söntges &

Altho� 2018]. Up: Constant velocity prediction of

the three surrounding obstacles. Down: The grey

area corresponds to the free-space where the ego ve-

hicle can navigate.

(b) Partitioning space from [Altché &

De La Fortelle 2017]. The colored space in-

dicates the relative position of the ego vehicle

respectively to obstacles 1, 2 and 3 (b=behind,

f=front, l=left, r=right).

Figure 4.1: Illustration of the reachable sets and graph interval with a partitioning space.

local minima issue. Nevertheless, the main drawbacks of these methods are the need for
a �ne problem-adaptive tuning, their non-deterministic resolution, and a trade-o� between
optimality, completeness and execution time. In order to choose the most adapted algorithm
among the large variety of metaheuristics approaches, we list our problem properties, based
on the decision-maker developed in Chapter 3, and the motivations for the trajectory planner:

• our objective function is a black-box function: the algorithms based on an explicit
resolution of the objective function such as the gradient approaches are dismissed;

• the parameters to optimize are non-independent: the population-based algorithms, e.g.
Genetic algorithm or Particle Swarm Optimization (PSO), are not exploited;

• there is no a priori on the function, which can have local minima: a solution to escape
local minima is required (even if a local minimum might be accepted);

• the algorithm is required to run in real-time: the solutions with memory, e.g. Tabu
search, are dismissed.

As reviewed in [Wolpert & Macready 1997], the Simulated Annealing (SA) algorithm tackles
these properties issues, while guaranteeing theoretical convergence.

The strategy that we propose is the combination of NCNI and SA algorithm to address
the discretization and decoupling issues. This approach results in a new architecture for
trajectory generation and decision making, detailed in the next section.

4.2 All-in-one motion planning architecture

As presented in the previous section, two strategies occur for combining motion generation
and decision making, which are the two functions in the scope of our work.

In the �rst strategy represented in Figure 4.2a, the trajectory (or more generally motion)
generation is �rst addressed, and then the decision making. To do so, the evolution space
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is usually discretized in order to propose prede�ned trajectories. Thus, the decision making
function acts as a trajectory selector among the previously prede�ned trajectories to return
the one which has the best score following some criteria. For example in Figure 4.2a, four
prede�ned trajectories (considering both position and velocity) are drawn. The decision-
maker is based on three criteria to select the �nal choice. As trajectory 3 has the best score,
it becomes the reference trajectory to follow by the controller.

In the second strategy represented in Figure 4.2b, the decision making is �rst applied,
and then the trajectory generation. The decision-maker considers a maneuver selection with
an orientation and a velocity pro�le. In the case of highway driving, the maneuver can be
reduced to stay on its lane or a left/right lane change, and the velocity pro�le to maintain
speed, accelerate or brake. A trajectory is then generated in the evolution space, which
corresponds to the selected maneuver. To do so, the trajectory is usually decoupled in a static
pro�le (position) and a dynamic one (velocity). This two-dimension optimization problem
is solved by optimizing �rst the static pro�le and then the dynamic one, or vice-versa. For
example in Figure 4.2b, the decision-maker selects a left lane change with acceleration. The
�ve corresponding way-points are generated to de�ne the maneuver in static, and a velocity
pro�le with acceleration is optimized for the dynamic part of the maneuver. Both static and
dynamic parts form the reference trajectory.

(a) Architecture with discretization issue. (b) Architecture with decoupling issue.

Figure 4.2: Illustration of the two classic architectures for motion generation and decision making.

In this work, we introduce an all-in-one architecture, in which the motion generation
is jointly optimized with a pre-existing objective function Jobj from the decision-maker, see
Figure 4.3. First, Non-Collision Nominal Intervals (NCNI) are calculated from the interpreta-
tion of the environment data (road, obstacles, ego vehicle). They are de�ned as a continuous
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reachable space-time, taking into account the kinematic constraints of the ego vehicle and
the collision-free states (position and velocity) for nominal highway driving conditions. Then,
maneuvers are considered if there exists a common space-time between two NCNI. For each
maneuver, a parameterized trajectory is generated within the NCNI. This trajectory is eval-
uated according to the decision-maker previously detailed in Chapter 3. The optimization
process is applied to the parameters of the trajectory to �nd the near-optimal trajectory for
each maneuver. Lastly, each near-optimal trajectory of each maneuver are compared and
the one with the best score according to the objective function Jobj of the decision-maker is
returned as the reference trajectory sent to the control block.

Figure 4.3: All-in-one motion planning architecture.

4.3 The reachable space-time as NCNI

The reachable space-time is de�ned as the evolution space ful�lling the following conditions:
(i) it must be consistent with the physical limitations of the vehicle, (ii) it is represented with
position and velocity information, (iii) it is predicted along a space and time horizon, and
(iv) it is collision-free over the prediction horizon or, if a collision has been predicted along
the prediction horizon, it can be avoided through a nominal maneuver, e.g. braking or a lane
changing. The environment is described in subsection 4.3.1 and the NCNI in 4.3.2.

4.3.1 Environment description

The previous de�nition of the reachable space-time requires �rst a description of the evolution
space, which mainly corresponds to the road model in the case of the highway environment
(subsection 4.3.1.1). Then, the speci�cation of the vehicle states (subsection 4.3.1.2) is needed
to de�ne the trajectory model (subsection 4.3.1.3). Finally, in order to navigate in a collision-
free space, a prediction of the obstacles' behaviors is necessary (subsection 4.3.1.4). This
section details all the models used in this work.

4.3.1.1 Road model

The reachable part of the road is delimited by the tra�c lanes and the legal speed limits
(vmin, vmax). In order to limit the calculation time, only the ego lane and the adjacent left and
right lanes are modeled for the future motion. Indeed, we consider, under nominal behaviors,
only one lane change at a time due to the limitation of the perception area. However, there
is no theoretical limitation for modeling more lanes in the algorithm process. This limitation
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of the �rst adjacent lanes only values for the lane change behavior modeling, more lanes can
be considered to locate the ego vehicle on the road for route planning.

In our work, we use a road-aligned coordinate frame under the approximation of straight
lines for highways (the radius of curvature is higher than 1000 m [Reif & Dietsche 2010]).
Nevertheless, di�erent methods exist to transform the road coordinate from a global frame to
a road-aligned coordinate frame, for example authors in [Altché & De La Fortelle 2017] apply
a local Frenet frame, and authors in [Hudecek & Eckstein 2014] �rst decompose the road into
the three segments straights, curves and arcs, and then transform the segment-aligned world
coordinates into segment-aligned road coordinates.

4.3.1.2 Vehicle model

The use of a simple model simpli�es the consideration of the constraints with a parameter-
ized curve and allows low time calculation. However, it might result in inconsistent reference
trajectories with the real vehicle dynamics. The use of more complex models provide more re-
alistic vehicle dynamics. In the scope of motion planning, authors in [Polack et al. 2017] give
a condition on the lateral acceleration to validate the use of the kinematic bicycle model for
planning purposes. As the control part is out of the scope of this thesis work, we use the sim-
plest particle kinematics to model the ego vehicle dynamics. We note χ = (ẍ, ẋ, x, ÿ, ẏ, y, α)

the state vector, with x, y respectively the longitudinal and lateral positions, ẋ, ẏ the longi-
tudinal and lateral velocities, ẍ, ÿ the longitudinal and lateral accelerations, and α the angle
formed between the vehicle center plane and the trajectory. The model is valid under the
dynamical constraints of a vehicle, i.e. the maximum values for the longitudinal and lateral
accelerations ax,max, ay,max and decelerations dx,max, dy,max, and a maximum value for the
direction angle αmax.

We consider that the ego vehicle navigates with a constant longitudinal acceleration or
deceleration pro�le from its initial velocity v0, at position x0, y0, to a target velocity vt along
the prediction horizon HP , illustrated in Figure 4.4. The target velocity is bounded by the
road's legal speed limits [vmin, vmax].

Figure 4.4: Example of 10 intermediate longitudinal velocity pro�les with �xed acceleration and

deceleration respectively at ax = 2m/s2 and dx = −1m/s2, bounded velocities vmax = 36.11m/s

(130km/h) and vmin = 22.22m/s (80km/h), and the initial ego velocity v0 = 30m/s (108km/h).
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The vehicle model used in this work is summarized in Equations 4.1a and 4.1b:

ẍ(t) = ax,

ẋ(t) = vx(t) = axt+ v0,

x(t) =
ax
2
t2 + v0t+ x0,

ÿ(t) = ay,

ẏ(t) = vy(t),

α = arctan(
vy
vx

),

(4.1a)

under the constraints 
ax ∈ [dx,max, ax,max],

vx ∈ [vmin, vmax],

ay ∈ [dy,max, ay,max],

α ∈ [−αmax, αmax].

(4.1b)

The notation vego is the global ego velocity, expressed as vego =
√
v2
x + v2

y . As the lateral
velocity vy is usually very small compared to the longitudinal velocity vx on highways, we
approximate vego ≈ vx. Moreover, the condition on the maximum angle αmax is also less
restrictive than the one on the maximum lateral acceleration ay,max on highways, as given in
[Reif & Dietsche 2010]. We thus consider only the constraint on ay,max in the next sections.

4.3.1.3 Trajectory model

The main nominal highway maneuvers are listed in subsection 2.1.3 (p. 18). From this
list, we restrict our work to the study of lane keeping, car following, lane changing, passing
and overtaking situations. Consequently, the lateral maneuvers are either lane keeping or
right/left lane changing:

• The lane keeping maneuver consists in following the center of the current lane: y(t) =

ycenterline.

• The lane changing maneuver consists in a lane shift from the current lane to the target
lane centerline. Based on the literature review in Chapter 2, the sigmoid function has
been chosen. Even if the clothoids, lines and circles are the usual shape for highway
structure, the mathematical calculation of a clothoid is iterative and leads to a higher
calculation time than the one of a sigmoid. Besides, the properties of the sigmoid func-
tion make it easy to use, as it is bounded, symmetric, di�erentiable, and monotonic. We
thus approximate the lane change behavior with sigmoids in Equation 4.2, represented
in Figure 4.5.

y(t) = y0 ±
b

1 + e−λ(x(t)−c) , (4.2)

with b the shift between y0 and the asymptotic end value, which corresponds in our
problem to the target centerline. The sigmoid parameter λ and the distance delay c
are the variables to optimize in our study. They are used for driver safety and comfort,
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which depend on the lateral and longitudinal ego vehicle velocities. The maximum slope
of the curve is mathematically de�ned to bλ/4 at x(t) = c, as illustrated in Figure 4.5.

Figure 4.5: Characterization of the sigmoid. For illustration, x ∈ [0, 100], b = 1, λ = 0.15, and c = 50. Both

increasing and decreasing sigmoid functions are plotted.

4.3.1.4 Obstacle prediction

We assume constant-speed/direction and full-lane occupancy for any detected obstacle. One
of the strategies of the implementation is to replan the reference trajectory if any major change
in the surroundings' behavior occurs, e.g. obstacle's lane change, or signi�cant acceleration
or deceleration (over 5 km/h). Moreover, lane occupancy on highways is mandatory in the
Vienna Convention [United Nations ] (Article 11, paragraph 7): "When moving in lines
[...], drivers are forbidden, if the lanes are indicated on the carriageway by longitudinal
markings, to straddle these markings." In a future work, there is no theoretical limitation
for our method to address multiple predicted obstacle's maneuvers with uncertainties. The
extension to variable speeds will only impact the longitudinal collision test (see section 4.4.2),
whereas the lane change maneuver will result in both the initial and �nal lanes being marked
as occupied.

A front obstacle will thus cover its front space as a collision space. The reminding rear
space, i.e. the space behind obstacles will be considered as collision-free for de�ning the
upper bounds of intervals Ik=1..K . Respectively, a rear obstacle will cover its behind space as
a collision space. The front space is then collision-free and use to de�ne the lower bounds of
intervals Ik=1..K . Thereby, an obstacle on the adjacent lane is considered both as potentially
a front and a rear obstacle, in case the ego vehicle passes behind or in front of it, as illustrated
in Figure 4.6.

4.3.2 Non-Collision Nominal Intervals (NCNI)

The evolution space delimits the spatiotemporal region where the ego vehicle can navigate
without collision. This de�nition considers that whatever happens, the ego vehicle can always
apply a kinematically feasible motion within the evolution space without collision. In the
scope of this paper, we limit the de�nition of the evolution space to a nominal highway driving
situation by de�ning the Non-Collision Nominal Intervals (NCNI). According to Figure 4.7,
nominal driving conditions consist in a non-con�ict situation, i.e, we do not consider the
emergency maneuver in a con�ict situation.
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Figure 4.6: Illustration of full lane occupancy obstacles. The striped area shows the front collision space for

obstacle O1 in yellow and obstacle O2 in green, and the rear collision space for O2 in orange. The reminding

rear space of O1 de�nes the space for interval I1, the reminding rear space of O2 the space for interval I2 and

the reminding front space of O2 the space for interval I3.

Figure 4.7: The holistic view of safety. Source Swedish Transport Administration 2010.

NCNI consist in spatiotemporal intervals, in which the ego vehicle navigates without
collision under nominal conditions. We de�ne 3 possible characterizations. First, the ego
vehicle passes in front of the obstacle, which is thus considered as a rear obstacle, even if its
initial position was in front of the ego vehicle, as obstacle O3 in Figure 4.8. A rear obstacle
yields a lower bound of distance and velocity, under which a collision is encountered. Second,
the ego vehicle passes behind the obstacle, which is thus considered as a front obstacle, even
if its initial position was behind the ego vehicle, as obstacle O5 in Figure 4.8. A front obstacle
yields an upper bound of distance and velocity, over which there is a collision. Last, if there
is no obstacle, an ego phantom vehicle marks respectively the lower and upper bounds, with
the minimum and maximum velocity of the ego vehicle. This ego phantom vehicle represents
a hypothetic obstacle at the sensors' limit perception range. These bounds delimit the NCNI
between the adjacent obstacles, as depicted in Figure 4.8.

The NCNI characterize where, when, and how the ego vehicle can maneuver along the pre-
diction horizon HP . A classi�cation of the perceived obstacles Oj=1..J within the perception
area returns the intervals to consider in the ego adjacent lanes. For example in Figure 4.8,
the perception area is represented in purple dotted line, 7 obstacles are detected, which form
K = 6 intervals Ik=1..K . Each interval Ik is de�ned by a lower O

infIk
j and an upper O

supIk
j′

bound due to a rear obstacle Oj and a front obstacle Oj′ . In Figure 4.8, I2 is delimited by
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Figure 4.8: Example of a 3-lane road with 7 obstacles around the ego vehicle in the perception area, which

de�ne 6 NCNI.

obstacles O2 and O3. Thus, I2 is associated with (O
infI2
2 , O

supI2
3 ). The open intervals (e.g.

intervals I4 and I6 in Figure 4.8) are bounded with the minimum and maximum dynamics of
the ego phantom vehicle. The ego rear obstacles are not considered as interval bounds, as the
ego vehicle is not allowed to reverse on highway in nominal driving conditions. In Figure 4.8,
lane/car following will consist in �nding the non-collision range of velocities inside interval
I1. A left lane change is only possible if there exists at least one velocity pro�le to reach
intervals I2 or I3 from interval I1, respectively I4, I5 or I6 from interval I1 for a right lane
change.

A spatiotemporal interval is thus de�ned by a lower and upper bound in distance and
velocity. A de�nition is given in Equation 4.3:

Ik =̂

{
Ik,d(pi)

Ik,v(pi)

}
i=1,N

, (4.3)

where pi is an ego pro�le, N is the total number of ego pro�les, Ik,d de�nes the interval Ik in
distance in Equation 4.4a, respectively Ik,v in velocity in Equation 4.4b:

Ik,d(pi) = [dinf (pi), dsup(pi)]k, (4.4a)

Ik,v(pi) = [vinf (pi), vsup(pi)]k, (4.4b)

where dinf , dsup, are the inferior, superior, distance values, and vinf , vsup are the inferior,
superior velocity values to characterize the free space of interval Ik for the ego pro�le pi (see
subsection 4.4.2 for more details on how to obtain the inf and sup values).

To conclude, the NCNI provide information on longitudinal and lateral position and
velocity constraints to avoid a collision.

4.4 Algorithm architecture

This section details the assumptions in subsection 4.4.1 and the algorithm diagrams used to
de�ne the NCNI before the SA-search for the reference trajectory in subsection 4.4.2.

4.4.1 Assumptions

The following assumptions are necessary to delimit the nominal use of the proposed motion
planner.
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Assumption 1 In the ego lane, only the closest front obstacle is considered, as overtaking

this obstacle will lead to a replanning step.

At least 2 maneuvers are necessary to pass in front of the initial closest front obstacle in the
ego lane. However, one of the strategy of our motion planner is to replan if the situation
changes signi�cantly, e.g. a lane change or acceleration.

Assumption 2 If the velocities of the closest front obstacles in each considered left, ego, and

right lane within the perception area are below the minimum speed limit, the situation is not

nominal and is out of the scope of this motion planner.

We assign a minimum velocity to navigate on the road in nominal conditions (see subsection
4.3.1.1). If all the closest front obstacles of each lane are below this speed limits, the ego
vehicle can not stay without a collision on any of the ego lane, adjacent right or adjacent left,
as its minimum velocity is higher than the one of the obstacles, and will lead to a collision.
This assumption can be relaxed in some cases, e.g., if the ego vehicle has time and distance
for an adjacent lane change �rst and then to reconsider the situation with the new adjacent
lanes.

Assumption 3 Only the ego, adjacent left and right lanes are considered to de�ne the NCNI.

Indeed, if an obstacle in the second left lane plans to navigate to the ego lane, it will necessarily

pass through the adjacent left lane �rst.

The NCNI are considered only in the ego and adjacent left and right lanes, but further
detected obstacles are analyzed for obstacles prediction, specially the ones which plan to
navigate on the NCNI's lanes are considered (see subsection 4.3.1.4). There is no theoretical
limitation to consider more lanes, except for real-time calculation.

Assumption 4 If there is a front collision in one of the directions, the corresponding pro�le

is discarded in this direction.

Assumption 5 If there is a rear collision in one of the directions all along the prediction

horizon, the corresponding pro�le is discarded in this direction.

Assumption 6 Rear obstacles in the ego lane are not considered in a general framework.

This assumption can be relaxed in case of speci�c driver rules, e.g., to pull back the ego

vehicle in the mostright lane.

We will notice in the experimentation Chapter 5 that Assumptions 4 and 5 are too con-
servative, and might be relaxed considering an anticipated horizon.

4.4.2 Architecture

The proposed algorithm has three main parts. First, the ego velocity/distance pro�les and
obstacle pro�les are generated, as described in subsections 4.3.1.2 and 4.3.1.4. Second, the
intervals are de�ned and characterized by comparing the ego and obstacles pro�les. Last,
the remaining collision-free pro�les in the sense of the Assumptions 4 and 5 are gathered
through the intervals to de�ne possible maneuvers and associated time-space limitations.
The architecture of the algorithm is displayed in Figure 4.9.
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Figure 4.9: Algorithm diagrams.
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4.4.2.1 Initial diagram

The initial diagram consists in de�ning the predicted ego and obstacles motions with the
models described respectively in subsections 4.3.1.2 and 4.3.1.4 (step 0), and generating the
Non-Collision Nominal Intervals (NCNI) in step 0bis.

Although �rst and last moments of collision could be evaluated analytically, as it has been
done in [Jula et al. 2000] using simple vehicle's models, our approach discretizes a sample
of N target velocities vt within the road speed limits [vmin, vmax]. N longitudinal velocity
vi=1:N and position pi=1:N pro�les are then calculated for the ego vehicle over the prediction
horizon HP . One notices that this discretization step is only used to de�ne the collision
limits and the interval bounds, but does not stand for the candidate solution to the reference
trajectory, which is calculated in the continuous interval previously de�ned, see subsection
4.5.1.3.

The longitudinal velocity and position pro�les, with indication of the direction, of the
J obstacles Oj=1:J within the perception area are generated in vOj=1..J ,dir, pOj=1..J ,dir. As
detailed in subsection 4.3.2 (p. 91), the space between the obstacles form the NCNI. The
intervals Ik are described with their inferior bound based on an obstacle j, O

inf
j , their superior

bound based on an obstacle j′, Osupj′ , and their direction lane, dir ∈ {Straight, Left, Right}:
Ik=1..K(Oinfj , Osupj′ , dir).

4.4.2.2 Decision diagram

The decision diagram treats in parallel each existing direction left/straight/right (step 1).
If the direction does not exist, e.g. there is an end straight lane or no lane to the right or to
the left, the direction is discarded. For each interval Ik in the considered direction (step 2), a
longitudinal collision test of Minimum longitudinal Safety Spacings (MSS) [Jula et al. 2000]
between all the ego longitudinal position pro�les and the bounding obstacles of Ik returns
the interval characterization [dinf , dsup]k and [vinf , vsup]k, as depicted in Figure 4.10. MSS
returns the authorized traveled distance to maintain safety spacings according to the relative
distance and velocity with obstacles. The inf value is the lowest value (resp. velocity

and position) from which the ego vehicle is not in collision with O
infIk
j . The sup value

is the highest value (resp. velocity and position) up to which the ego vehicle is not in
collision with O

supIk
j′ . For cases with ego phantom, vinf = vmin, vsup = vmax, dinf = x0 and

dsup=x(t=HP , vmax). According to the Assumptions 4 and 5, the pro�les with collision are
discarded for the corresponding direction.

The next step is to gather the intervals into maneuvers (step 3). A maneuver is either
a lane following or a left/right lane change. Each interval of left and right directions is
gathered with the straight interval. The maneuver is feasible if there is at least one ego
pro�le which exists in both intervals, i.e., which is not in collision with the lower and upper
bound obstacles. For each stored ego pro�le, the gathering test consists in verifying the
condition in Equation 4.5 [Jula et al. 2000]:{

dinf (left/right) ≤ dsup(straight)
dinf (straight) ≤ dsup(left/right)

(4.5)

If the gathering test is false, the maneuver for the tested ego pro�le is not feasible and it
is discarded. As an illustration in Figure 4.10(d), the left change maneuver I1→2 is possible
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for the ego pro�le vi, vi′ . The lower (resp. upper) velocity bound is the minimum (resp.
maximum) of the vinf (resp. vsup) of each existing ego pro�le: vt ∈ [vi, vi′ ]. The position of
the lane shift for each existing ego pro�le, i.e. the distance delay parameter c of the sigmoid,
lies within the minimum and maximum, dinf and dsup, from the initial interval Ik and the
target one Ik′ , as expressed in Equation 4.6:

c ∈ [max(dpninfIk
, dpninfIk′

); min(dpnsupIk
, dpnsupIk′

)] (4.6)

as illustrated in Figure 4.10d with I1 and I2 for ego pro�les vi, pi in blue and vi′ , pi′ in purple,
i.e. n = i, i′.

Then, SA optimization, using the evaluation function of Chapter 3 (Jobj,m = Im), is
applied (step 4) in order to return a near-optimal trajectory solution for each remaining
maneuver m. The �nal step 5 selects the near optimal trajectory solution which has the
best evaluation function values Im. This trajectory is the reference trajectory sent to the
controller. Next section details the SA algorithm.

4.5 Simulated Annealing optimization

As stated previously, the meta-heuristics algorithms represent a good solution to problems
with black-box objective functions, huge number of potential solutions, and acceptance of
a near-optimal solution. Meta-heuristics for optimization aim at minimizing or maximizing
an objective function by selecting the best candidate solution in the search space. Among
the variety of meta-heuristics, the Simulated Annealing (SA) algorithm presents the following
advantages which are useful for our problem: (i) it does not need to compute any derivative of
the objective function, i.e., it can be applied to non-di�erentiable functions and non-explicit
ones; (ii) it can avoid local minima by giving the possibility to accept worst solutions; (iii)
the computation time is tunable with a trade-o� on the optimality; and (iv) it considers the
variables to optimize as a single candidate solution, i.e. the variables can be dependent from
each other. The main drawback is the �ne experimental tuning required in order to guarantee
a good behavior of the algorithm. This section describes the algorithm in subsection 4.5.1
and its evaluation in subsection 4.5.2. In the following, the objective function is called the
evaluation function when it references to the output of Chapter 3.

4.5.1 Algorithm description

The SA is based on an analogy with the annealing technique used in metallurgy to minimize
the energy of a material by slowly cooling it with irregular heating steps. This strategy allows
the material to reorganize its crystals and to �nd its most stable con�guration with the min-
imum possible energy. This methodology has been developed independently by [Kirkpatrick
et al. 1983] and [�ern�y 1985]. The main idea of the algorithm is thus to accept a worse so-
lution according to an acceptance probability, slowly decreasing. In other words, the notion
of slow cooling in the physics approach is interpreted in the SA algorithm as a slow decrease
in the probability of accepting worse solutions. Thus, the heating step is the acceptance of
this worse solution. This phenomenon is introduced by a global time-varying temperature
parameter. The higher the temperature is, the more worse solutions are accepted (bigger
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Figure 4.10: Characterization of the intervals I1 and I2 for a left change maneuver. The collisions are depicted

in red, the eliminations in dark red. (a) Ego I1 upper bound: The ego pro�les pmax, pi, pi′ are in collision with

O
supI1
1 , they are discarded for the direction ego (Assumption 4). (b) Left I2 upper bound: The pmax pro�le

collides with O
supI2
3 . (c) Left I2 lower bound: Both pmin, pi′ are in collision with O

infI2
2 . pmin always collides

along HP , so the pro�le is discarded (Assumption 5). (d) Left change maneuver I1→2: As pmax collides both

with I1 and I2, it is discarded. Only pi,i′ remain with [dinf ; dsup]I1→2(pi) and [dinf ; dsup]I1→2(pi′ ).
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probability). The lower the temperature is, the less worse solutions are accepted (smaller
probability). With a too low, respectively too high, temperature value, the SA becomes like
stochastic hill climbing, respectively random search. Besides, the positive aspect in accepting
worse solution is a more extensive search for the global optimal solution, as well as the ability
to jump out of local optima.

The SA works as follows: (0) selects an initial candidate solution and �xes an initial
temperature; (1) selects a random solution close to the current one; (2) evaluates this solution
and decides to accept or reject it if either it is a better local optimum to the objective
function, or it has a non-zero probability of acceptance as a worse solution; (4) decreases the
temperature parameter to decrease the probability of acceptance for a worse solution.

The drawback of SA is the need to be empirically adjusted for each problem. The tuning
of the annealing schedule concerns both the resolution scheme and the de�nition of the
parameters. More information on the di�erent areas of tuning can be found in [Aarts &
Van Laarhoven 1985]. We detail the adaptation of the SA to our problem considering the
architecture choice in subsection 4.5.1.1, the cooling parameters in subsection 4.5.1.2, and
the variables search space in subsection 4.5.1.3.

4.5.1.1 Architecture choice

Authors in [Eglese 1990] review di�erent improvements to the SA architecture. The main
di�erence concerns the optimization loop based on a step-temperature with the pseudo-code
in Algorithm 1 or a continuous-temperature with the pseudo-code in Algorithm 2. The step-
temperature consists of two optimization loops: the temperature decreases in steps in an
outer loop, and at each temperature step, an inner loop is applied to �nd a local equilibrium
solution. The continuous-temperature consists in one optimization loop which corresponds
to the outer loop of the �rst method, i.e., the temperature decreases continuously at each
iteration. The �rst architecture is closer to the physical law but the second one is faster. In
this work, we use the second one for real-time application. The corresponding algorithm is
written in Algorithm 3. Moreover, we list the best encountered solution, which corresponds
to the global near-optimal solution found until then.

4.5.1.2 Parameters de�nition

The annealing schedule includes the tuning of:

� Acceptance probability function: We use the initial Metropolis rules with the Boltzmann
probabilities to randomly accept a worse solution: P(T ) = e(−∆(Jobj)/T ).

� Initial temperature T0: The temperature T is a positive global-time varying parameter
used for the acceptance probability function P(T ), which decreases along iterations.
The higher T is, the more uphill candidates can be accepted as a solution given the
acceptance probability function P(T ), and vice versa. T0 can be calculated by �xing the
initial acceptance probability: with Z a characteristic value of the objective function
Jobj (e.g. median or maximum gap), for a given initial acceptance probability P0, the
initial temperature is obtained from P0 = e(−Z0/T0).
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Algorithm 1: SA pseudo-code for the step-temperature architecture.

Select an initial state i ∈ S;
Select an initial temperature T0 > 0;
Set counter τ = 0;
repeat

Set repetition counter n = 0;
repeat

Generate state j, a neighbor of i;
Calculate ∆ = Jobj(j)− Jobj(i);
if ∆ < 0 then

i := j;
else if rand(0, 1) < exp(−∆

T ) then

i := j;
n = n+ 1;

until n = N(τ)

τ = τ + 1;
T = T (τ);

until stopping criterion true

Algorithm 2: SA pseudo-code for the continuous-temperature architecture.

Select an initial state i ∈ S;
Select an initial temperature T0 > 0;
Set counter τ = 0;
repeat

Generate state j, a neighbor of i;
Calculate ∆ = Jobj(j)− Jobj(i);
if ∆ < 0 then

i := j;
else if rand(0, 1) < exp(−∆

T ) then

i := j;
τ = τ + 1;
T = T (τ);

until stopping criterion true

� Cooling schedule: The cooling schedule is the iterative function to decrease the temper-
ature value. Di�erent strategies exist such as linear, geometric, logarithmic or adaptive
cooling schedules. The convergence is guaranteed if the temperature decreases in a loga-
rithmic way [Hajek 1988]. However, in practice, the geometric progression, Tn = q·Tn−1,
is faster and returns satisfying results. The geometric parameter q is calculated accord-
ing to the �nal acceptance probability Pf or temperature value Tf : Pf = e(−Zf/Tf ),
Tf = qN · T0, with Zf a characteristic value at the end of the N iteration process.

� Initial solution ξ0: The initial solution is the current trajectory of the ego vehicle,
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Algorithm 3: SA pseudo-code used in our work.

Select an initial state i ∈ S;
Set the optimal encountered state e := i;
Select an initial temperature T0 > 0;
Set counter τ = 0;
repeat

Generate state j, a neighbor of i;
Calculate ∆ = Jobj(j)− Jobj(i);
if ∆ < 0 then

i := j;
else if rand(0, 1) < exp(−∆

T ) then

i := j;
if Jobj(j) < Jobj(e) then

e := i;
τ = τ + 1;
T = T (τ);

until stopping criterion true

respecting Equation 4.11 (p. 102): vt = min(max(v0, vmin), vmax), c = (dinf + dsup)/2,
λ = 4/c.

� Neighborhood search: The function generates uniformly random numbers for the cre-
ation of new candidate solutions. The main point is to de�ne the length of the interval
for the neighborhood search. Indeed, if the search is made in the entire space, the rea-
soning is the one of random search. If the search space is too small, the algorithm will
frequently get trapped in a local minimum too quickly. Moreover, if the length of the
interval is �xed, the methods is close to a local random search. In order to maintain
the idea of the annealing process, the length of the search interval is converted in a
decreasing function. We choose arbitrarily a proportionally decreasing interval length
with the temperature: (ub− lb)iter = Titer/T0 · (ub− lb)0.

� Stop criterion: The stop criterion is either �xed as a maximum number of iterations,
or when the temperature is below a prede�ned Tf , or at a steady state of the evolution
function, i.e. ∆(Jobj) ≤ ε.

4.5.1.3 Variables search space

The variables to optimize for each possible maneuverm are the target velocity vt, the sigmoid
parameter λ and the distance delay c (see Equation 4.2 (p. 90)). We note ξ the variables
vector, i.e. ξ = (vt, c, λ). The intervals characterization gives the bounds of the variables
search space, but the search is continuous inside the intervals.

The variable vt is bounded in Equation 4.11 by the velocity intervals of the non-discarded
ego pro�les calculated in subsection 4.4.2.2 (p. 96). For a lane change maneuver, c is bounded
by the position intervals in Equation 4.11 calculated in Equation 4.6 (p. 97). The position
interval depends on vt, thus it is interpolated from the position intervals of the remaining
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speed pro�les. The bounds of λ are issued from the constraint of a lane change maneuver
completion, see Figure 4.11, and one of the maximum lateral accelerations of the sigmoid
function to respect the vehicle's dynamics limits, see Equation 4.2 (p. 90). The �rst constraint
is de�ned by requiring the sigmoid curve completion, for example at 98% [Cesari et al. 2017]:
0.98b ≤ y(x = 2c) ⇐⇒ λ ≥ 4

c . The latter constraint is given by the maximum value of the
second-order time derivative (with y = y(t)− y0), which respects the limitation value for the
ego lateral acceleration ay,max. The detailed calculation is written in Annexe A.1 (p. 165).
The results are given in Equations 4.7 and 4.8:

d2y

dt2
= ax

dy

dx
+ v2

x

d2y

dx2
(4.7)

=
axλ

b
y(b− y) +

v2
xλ

2

b2
y(b− y)(b− 2y) (4.8)

≤ ay,max (4.9)

Equation 4.7 is obtained according to Schwarz's theorem and chain rule formula for computing
the derivative of the composition of two or more functions with continuous second-order
derivatives functions. Equation 4.8 uses the derivative properties of the sigmoid function.

The two terms in Equation 4.8 are bounded separately, so that the maximum value for
λ respecting Equation 4.9 is approximated by Equation 4.10. More details are written in
Annexe A.2 (p. 167).
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∆
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9
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Thus, the variables search space of ξ for Ik→k′ is illustrated in Figure 4.12 and de�ned in
Equation 4.11: 

vt ∈ [vinf , vsup]Ik→k′

c ∈ [dinf,vt , dsup,vt ]Ik→k′

λ ∈ [
4

c
, λmax,vt ]

(4.11)

Figure 4.11: Illustration of the sigmoid completion constraint. For λ = 0.15, x = [0, 100], the sigmoid in blue

with c = 50 is complete at 99.4%, whereas the one in orange with c = 90 is incomplete at 81.76%.



4.5. Simulated Annealing optimization 103

Figure 4.12: Illustration of the variables search space. The maneuver interval in (a) returns the velocity space

in (b) to select the target velocity vt1 . The selected target velocity vt1 is used to de�ne the c-space interval

in (c). The selected ct1 is used to de�ne the λ-space interval in (d), in which λt1 is selected.

4.5.2 Evaluation

We evaluate the performance of the algorithm by analyzing the convergence to a near-global
optimum and the sensitivity to T0 and q, as well as to the initial variables ξ0 = (vt, c, λ)0. The
algorithm is run 10 times for each performance test. The evaluation tests are performed for
a representative case study of a left lane change maneuver with one obstacle in the ego front
lane, with a relative velocity vrel,O1 = −5 m/s and a relative distance drel,O1 = 90 m. The
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ego initial velocity is v0 = 30 m/s, and 15 vt sampled within [vmin=22.22, vmax=36.11] m/s

are chosen.

4.5.2.1 Objective function

We want to maximize the risk assessment function previously developed in Chapter 3. It is
based on the Fuzzy Dempster-Shafer Theory and is not explicit. We do not have any a priori
on this function. For the evaluation of the SA, we selected the three risk's criteria of category
3 (Obstacle safety in Table 3.1, p.55): the ego velocity vego, the relative velocity vrel,Oj and
the time headway Th,Oj for each obstacle within the perception area (Oj=1..J) expressed with
the predictive operators in Equations (4.12a), (4.12b) and (4.12c):

vrel,Oj = mean(vego − vOj ), (4.12a)

Th,Oj = min(
xOj − xego

vego
), (4.12b)

vego = end(vx) = vx(t = Hp) (4.12c)

Figure 4.13 displays the evaluation of this black-box objective function. The choice of vt
in�uences all 3 criteria, while λ and c have an e�ect on Th. One notices that the maximum of
the evaluation function in yellow leads to a higher time headway, a negative relative velocity
(i.e. the ego vehicle is navigating faster), and an ego velocity inside the speed limits of the
road. Besides, the discontinuities from dark blue to green evaluation function at Th ≈ 2 s

is due to the rule-base in Table 3.2. Indeed, the warning levels to pass from Th in unsafe
distance to Th in safe distance for the same relative velocity and ego velocity membership
are not smooth. For example, if relative velocity belongs to negVelocity and ego velocity to
fastVelocity, the warning risk level, which results from the rule-base, is denoted as very high
for unsafe time headway (rule number 39) and low for safe time headway (rule number 42).

Figure 4.13: Evaluation function over the range of 3 variables: relative velocity vrel, time headway Th and

ego longitudinal velocity vx.
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4.5.2.2 Convergence

The convergence analysis yields the convergence speed and optimal evaluation value Im
displayed in Table 4.1. One notices that the convergence speed is fast, as the evaluation
function displayed in Figure 4.13 shows similar values for large ranges of variables. This is
due to a conservative evaluation for decision making. Moreover, the optimal values over the
10 runs present a very low standard deviation σ, which indicates that despite the heuristic
calculation, the algorithm always �nds a solution close to the global optimum value.

Table 4.1: SA convergence evaluation.

mean min max σ

Convergence
Speed (iteration) 112 90 135 /
Optimal Im (/) 5.99 5.98 5.99 7.4e−3

4.5.2.3 Temperature sensitivity

In order to verify the annealing schedule tuning, we test 7 values for T0 ∈ {10−3; 10−2; 10−1; 100;

101; 102; 103} and 10 values for q sampled within [0.8, 0.99]. The averaged maximum evalua-
tion function is plotted in Figure 4.14. The maximum of the evaluation function is reached
for T0 ∈ [0.001, 10] with q ∈ [0.90, 0.99].

Figure 4.14: In�uence of T0 and q on the maximum evaluation value.

4.5.2.4 Initial variables sensitivity

To guarantee a uniform random search, 10 di�erent initial variables sets ξ0,1..10 are tested.
The results are summarized in Table 4.2. The σ of the optimal Hm indicates that the
initial variables choice has a limited in�uence on the optimization process. However, as the
evaluation function shows similar results for large ranges of variables, the optimal parameters
have high standard deviation.



106
Chapter 4. Optimized Trajectory Planning within Non-Collision Nominal

Intervals

Table 4.2: SA performance evaluation.

mean min max σ

Variables Initial Values

Optimal vt (m/s) 23.40 22.22 28.07 2.47
Optimal c (m) 136 98 193 32
Optimal λ (m−1) 0.068 0.029 0.102 0.022
Optimal Im (/) 5.65 4.67 5.99 0.41

4.6 Numerical example

We demonstrate our SA-optimized trajectory generator on the scenario of Figure 4.8 (p. 93).
We detail the scenario values in subsection 4.6.1, the SA parameters in subsection 4.6.2, and
the maneuvers evaluation in subsection 4.6.3.

Moreover, to validate our approach in real-time, 28 computations of the described scenario
are performed on an embedded computer (2.10 GHz Intel Core i7-3612QM CPU, 8 GB RAM)
running a Visual C/C++ Solution File for Matlab/Simulink Coder. The mean ± standard
deviation/minimum/maximum values for the calculation time are 72 ± 10/61/99 ms, which
is satisfyingly fast for a real-time predictive motion planner.

4.6.1 Scenario description

We assign for each obstacle Oj=1..6 the following initial relative velocity (in m/s), posi-
tion (in m) and direction: O1(−5, 90, ego), O2(0,−30, left), O3(0, 60, left), O4(5, 130, left),
O5(−8,−20, right), O6(−5, 70, right), summarized in Figure 4.15. The lateral relative posi-
tion is de�ned as the entire lane (see section 4.3.1.4): ego, left or right.

Figure 4.15: Illustration of the numerical scenario.

The ego vehicle's initial position is x0 = 0 m, y0 = ycenterline-ego, with v0 = 30 m/s, ax =

2 m/s2 and dx = −1.5 m/s2. According to [Reif & Dietsche 2010], the limitation value for
the lateral acceleration on highways in nominal conditions (i.e. comfort) is |ay,max| = 2 m/s2.
We sample 15 target velocities vt for the ego vehicle within [vmin=22.22, vmax=36.11] m/s.
The prediction horizon HP is set to 10 s.
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4.6.2 SA parameters

We use the black-box decision function in Chapter 3 with the 3 criteria (relative velocity vrel,
time headway Th and ego velocity vx) recalled in section 4.5.2.1 and displayed in Figure 4.13.
The range of the criteria are vrel ∈ [−8, 14] m/s, Th ∈ [0, 3.36] s, and vx ∈ [22.22, 30.16] m/s.
A discretized zoom of the evaluation function is depicted in Figure 4.16. One should notice
that all the combination of the ranges of criteria values are not feasible, which implies that the
maximum value of the evaluation function depicted in Figure 4.16 is not necessary reached
during the simulation.

Figure 4.16: Representation of the black-box evaluation function Jobj .

In order to propose a real-time algorithm, we set a maximum of 200 iterations and a
steady state criterion of 10−1 on the evaluation function Jobj . We consider initial and �nal
acceptance probability P0 = 0.2 and Pf = 0.001, and initial and �nal characteristic value of
the evaluation function Z0 = 1 and Zf = 0.1. Thus the initial temperature is T0 = 0.62 and
the geometric parameter is q = 0.98.

4.6.3 Maneuvers evaluation

The maneuvers to study are:

• Lane following: to stay in interval 1, I1→1;

• Left lane change: to pass from interval 1 to interval 2, I1→2, or from interval 1 to
interval 3, I1→3;

• Right lane change: to pass from interval 1 to interval 4, I1→4, or from interval 1 to
interval 5, I1→5, or from interval 1 to interval 6, I1→6.

In this case study, I1→3 does not allow a left change maneuver, as O3 is driving at the
initial ego velocity, and thus, the distance to reach a higher vt is too low with O1 for a lane
change within the prediction horizon. There is no maneuver for I1→4 neither, as O4, which
is behind the ego vehicle at the initialization, is driving at the minimum bound velocity of
the ego vehicle. No maneuver are allowed for I1→6 as O1 and O6 have the same velocity and
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are close to each other, Equation 4.5 is not respected for any of the velocity pro�le. Only
maneuvers I1→1, I1→2 and I1→5 remains.

The index pro�les and velocity bounds for each maneuver, as well as the optimal parame-
ters and evaluation, are summarized in Table 4.3. The corresponding Im lies in [−0.42, 6.00].
The optimization process is thus to �nd a trajectory with the maximum value of Im = 6.

Table 4.3: Maneuvers bounds and evaluation.

Maneuver I1→1 I1→2 I1→3 I1→4 I1→5 I1→6

N 1..7 9 none none 2..5 none
vinf (m/s) 22.22 30.16 none none 23.21 none
vsup (m/s) 28.17 30.16 none none 26.19 none
vt (m/s) 28.17 30.16 none none 26.19 none
c (m) n.a. 116 none none 157.5 none
λ (m−1) n.a. 0.034 none none 0.025 none
Im (/) 6.00 0.07 none none 3.67 none

• I1→1: The target velocity pro�les 1 to 7 are valid for staying in the ego lane behind
obstacle O1 without collision. The maneuver is thus to break, which is logic as O1 has
a smaller velocity than the initial ego one set to 30 m/s. The minimum allowed target
velocity is 22.22 m/s and the maximum one is 28.17 m/s. With the evaluation function
Jobj in Figure 4.16, one notices that a relative velocity of ±5 m/s has no in�uence.
Moreover, Th is determined with the minimum value along the prediction horizon. In
fact, p = 1..7 are constant and decreasing velocity pro�les, thus their Th are the same
and equal to Th at the beginning of the simulation. Thereby, only the ego velocity
modi�es the evaluation function, which is higher with higher ego velocity. Finally, the
best target velocity is 28.17 m/s.

• I1→2: Maneuver I1→2 is only possible with p = 9 velocity pro�le at 30.16 m/s. It has
a very low evaluation value due to the small Th to insert between O2 and O3.

• I1→5: The target velocities 2 to 5 are allowed for I1→5, i.e., the target velocity is in
[23.21, 26.19] m/s. As for I1→1, the higher ego velocity is chosen: vt = 26.19 m/s. It
has a smaller evaluation value than I1→1 as the distances to O5 and O6, as well as vt,
are smaller than the ones with O1, and vrel is higher. But it has a better evaluation
value than I1→2, as O5 has a smaller velocity and thus a bigger time headway than the
left lane change with O2.

Finally, the best maneuver with the maximum Im value is to stay in the ego lane I1→1

and adapt the ego velocity for car following at vt = 28.17 m/s.

4.7 Conclusion and future work

This chapter presents an all-in-one architecture for trajectory generation and decision mak-
ing, based on a black-box objective function. The method addresses both the problem of
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candidate trajectories discretization and path/velocity decoupling optimization using �rst a
velocity representation for the evolution space. It is then reduced to the complement of the
ICS in nominal situations by introducing the Non-Collision Nominal Intervals (NCNI). A
SA-optimized sigmoid trajectory within NCNI is �nally performed to de�ne a near-optimal
reference trajectory. Moreover, this optimization strategy can run in real-time for black-box
objective functions. Besides, if there is one or more intervals allowing the de�nition of a
maneuver, it is guaranteed by the collision test that the maneuver is safe according to the
minimal safety spacings, i.e. with no collision under the nominal driving conditions. Thus,
even if the algorithm does not converge to the optimal or has no time to converge, the re-
turned path is safe. However, the major drawback of this algorithm is the need of obstacles
pro�les over a prediction horizon.

Future work will consist in considering more complex speed pro�les with the addition of
the acceleration pro�le as a fourth optimization variable, and extending to more complex
behaviors of obstacles with lane changing, acceleration and deceleration, as well as merging,
with a more aggressive decision function. Lastly, some assumptions could be relaxed for a
better adaption to real driving conditions.

The proposed architecture, as well as the Fuzzy Dempster-Shafer (FDS) decision making
and the Simulated Annealing (SA) optimized trajectory generation, are implemented and
validated in real experiments in the next chapter.
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This chapter presents the results of the experimental tests performed to validate the
motion planning approach proposed in this thesis. The experimental platform is the proto-
type vehicle of Institut VEDECOM navigating on the Versailles-Satory test tracks, France.
The validation considers for di�erent scenarios, from a simple lane following to a double
lane changing with one or two obstacles. All the scenarios had been previously tested in
simulation. Our solution generates a trajectory for the studied situations of lane follow-
ing, car following, lane changing and overtaking with dynamic obstacles, without any prior
knowledge. The developed algorithm has been integrated with localization, communication,
obstacles perception, and control modules.
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This chapter is structured as follows: First, section 5.1 describes the experimental envi-
ronment used to test our motion planning algorithm. The tested scenarios with results are
presented in section 5.2. The conclusions of the performed experiments are summarized in
section 5.3.
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5.1 Experimental environment

This section describes the experimental environment and architecture, respectively in sub-
sections 5.1.1 and 5.1.2, used to test and implement our motion planning algorithm.

5.1.1 Environment description

The experiments have been performed on the test tracks described in subsection 5.1.1.1, with
the prototype vehicle of Institut VEDECOM, which is presented in subsection 5.1.1.2. This
vehicle is equipped with di�erent sensors to locate itself on the road and to detect obstacles
as presented in subsection 5.1.1.3. Finally, in order to gather the appropriate information,
we worked with three reference frames de�ned in subsection 5.1.1.4.

5.1.1.1 Test tracks

The experiments have been conducted on the test tracks of Versailles-Satory (78000), France.
In order to navigate in an environment similar to highways, we selected the high speed test
track showed in Figure 5.1.

Figure 5.1: Versailles-Satory high speed tracks, 78000 Versailles, France. [credits: GoogleMaps]

The road input for our algorithm is modeled o�ine as a 2-lane straight road, 1.2 km long,
with a constant lane width equal to 3.7 m and constant road and speed limits.

5.1.1.2 Ego vehicle prototype

The experimental autonomous vehicle of Institut VEDECOM is an electric Renault Zoe; see
Figure 5.2. It has full drive-by-wire capabilities, with an autonomous mode allowed from
5 km/h to 50 km/h. Thus, the velocity of the vehicles during our experiments is in the
range [20, 45] km/h to respect the technological constraints of the prototype vehicle. Even
if the experimental velocity range is below the highway velocity range (e.g [60, 130] km/h

in France), our experiments demonstrate and validate the e�ciency and reliability of our
algorithm in di�erent scenarios. Moreover, the simulation sections for decision making 3.4
(p. 74) and trajectory generation 4.6 (p. 106) show the good behavior of our method in high
velocity environments.

In order to perceive its own motion and the surroundings, the ego vehicle is equipped with
di�erent sensors, such as camera, LIDAR, radar, GPS, Inertial Measurement Unit (IMU),
etc. We only detail the sensors used in our experiments:

• IXBLUE ATLANS-C Mobile Mapping INS/GNSS RTK (Septentrino)/odometer (Cor-
revit) to locate the ego vehicle in the world frame with a centimeter level accuracy;

• 5 LIDAR Ibeo LUX to detect obstacles;
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(a) Outside view. (b) Inside view

Figure 5.2: Renault Zoe, experimental test vehicle of Institut VEDECOM.

• Ultra High Frequency (UHF) communication module to receive localization data from
other vehicles.

The algorithms run on an embedded computer (2.10 GHz Intel Core i7-3612QM CPU 8
GB RAM).

5.1.1.3 Obstacles vehicles

The test scenarios involve either one or two mobile obstacles. These vehicles are manually
driven. The �rst one, an electric Renault Zoe, has the same localization solution as the ego
vehicle, IXBLUE ATLANS-C, and a UHF communication transmitter to send its state vector
χO1 = (x, y, v) (longitudinal position, lateral position, velocity) in the world frame W to the
ego vehicle. The second one, a Renault Clio, is not instrumented and was localized by a
perception algorithm based on the LIDAR of the ego vehicle. The perception algorithm is
detailed in subsection 5.1.2.2. It returns the obstacle state vector χO2 = (x, y, v) (longitudinal
position, lateral position, velocity) in the ego frame E .

The nominal behavior of the obstacles is to keep their velocity approximately constant
with a straight direction. In order to show real situation, we ask the obstacles to change
their velocity or direction along the scenarios. However, no information has been set up a
priori in the algorithm for these tests. Besides, the perception algorithm does not return
any uncertainty information and the localization module ATLANS-C has a certainty close to
100%; the uncertainty approach of our algorithm could thus not be tested.

5.1.1.4 Reference frames

We use the following four frames, see Figure 5.3 for an illustration:

• World frame W : Geographic coordinate system de�ned by the latitude, longitude and
orientation to the East. The (latitude, longitude) coordinates are then transformed into
a 2-D frame (x, y)W .
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• Road frame R: As speci�ed in subsection 5.1.1.1, the road used for the tests can be
approximated as straight with a constant lane width. The road frame is therefore
created by arbitrarily setting a point (x0,R , y0,R) = (0, 0) on the right mark at the be-
ginning of the demonstration portion, which corresponds to the W -coordinate latitude
Lat0 = 48.78513748◦, longitude Long0 = 2.100552545◦, orientation θ0 = 158.40035◦.
The x-orientation of the road frame is aligned with the mostright lane mark. The
y-coordinate is positive in the direction of the mostleft lane mark.

• Ego frame E : This frame is �xed in the middle of the rear axle tree, with the x-direction
following the orientation of the ego vehicle and the y-direction to the left side of the
ego vehicle. The angle with R is de�ned by α in Figure 5.3.

• Obstacle frame O: It has the same properties as E by replacing the ego vehicle with
an obstacle vehicle.

Figure 5.3: Frames representation.

The coordinate transformations for each of the frames are the following:

• W → R: {
xR = xW cos(−θ0) + yW sin(−θ0)

yR = −xW sin(−θ0) + yW cos(−θ0)
(5.1)

• R → E : {
xE = xR cos(α) + yR sin(α)

yE = −xR sin(α) + yR cos(α)
(5.2)

• O → E : {
xrel,OjE

= xOj ,R − xego,R
yrel,OjE

= yOj ,R − yego,R
(5.3)

5.1.2 Architecture description

This subsection details the architecture and the main components of the implementation of
our algorithm. The operating diagram modeled for integrating our motion planner is �rst
exposed in subsection 5.1.2.1, then each block is detailed: the perception block in subsection
5.1.2.2, the motion planner in subsection 5.1.2.3 and the control block in subsection 5.1.2.4.
Finally, the data sources are listed in subsection 5.1.2.5.
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5.1.2.1 Operating diagram

In this section, we describe the di�erent blocks areas considered in the operating diagram
displayed in Figure 5.4. We implemented a localization area with the IMU ego information, a
communication area with a UHF receiver, a perception area with the LIDAR data, our motion
planner, and a control area separated with a longitudinal velocity controller and a lateral
angle controller. The motion planner is integrated through a MatLab/Simulink Coder in the
framework of RTMaps (Real Time, Multisensor, Advanced Prototyping Software). There is
no speci�c strategy for synchronization and latency (up to 500 ms for the localization block
and 300 ms for the perception block).

Ego data The ego data longitudinal and lateral positions and heading angle are acquired
by the IXBLUE ATLANS-C system (SocketAtlans and AtlansDecoder blocks) in the world
frame W . They are vectorized into 1 ego vector (Ego_Vect) and transformed through
AtlansToXYV_1 block into the road frame R as a vector with the longitudinal and lateral
positions and longitudinal velocity χego = (xego, yego, vego)R , which is then sent to the motion
planner block.

Communication obstacle data The longitudinal and lateral positions and heading angle
acquired from the IXBLUE ATLANS-C system for the �rst obstacle O1 are sent to the
ego vehicle using the UHF communication module (SerialPort_UHF, Stream2Text_1, and
Vedecom_UHF_Decoder_1). As for the ego data, this information is transformed through
AtlansToXYV_2 block from W into R as χO1 = (xO1 , yO1 , vO1)R , and sent to the block
Obst_Vectorizer.

LIDAR detection obstacle data The data for the second obstacle O2 are obtained from
the LIDAR sensors with a 4 layers Ibeo fusion box (FusionBox and IbeoEcuDecoder_1

blocks). The 3D LIDAR data are XYZ point clouds obtained in the ego frame E . Only
data from the second bottom layer are selected (custom_cutter_1) in order to send 2D data
XY to the in-house algorithm VEDECOM_DeTroLi_Transdev_1. DetroLi algorithm detects
obstacles as points clouds and returns ego relative bounding box around obstacles in E co-
ordinate systems. The obstacle of interest O2 is then manually selected in DetroliFilter_1

and transformed into W coordinates using the ego coordinates in W . Finally, its coordinates
in W are transformed through AtlansToXYV_3 block into R as χO2 = (xO1 , yO1 , vO1)R , and
sent to the Obst_Vectorizer block.

Obstacles The obstacles vectors χO1 and χO2 are vectorized (Obst_Vectorizer), with a
simulated third obstacle (Obst) not used in our experimentations, into 1 output obstacle
vector, which is sent to the motion planner.

Planning The developed motion planner (Planner) with the decision-maker and trajec-
tory generator uses χego, χO1 , χO2 , and the tuning parameter (PP_Params) to calculate the
reference trajectory over the prediction horizon Hp in E : χref = (x(t), y(t), v(t))E ,(t=1..Hp).
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Figure 5.4: RTMaps diagram. The ego, obstacle communication, and obstacle perception data are issued respectively from the green, blue, and purple areas.

All the obstacles data are gathered in the gray area to return one obstacle vector. The motion planner is then activated in the orange area and returns the

reference trajectory to the controllers in the yellow area.
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Control The reference trajectory is sent to the lateral angle controller (Control_Angle) and
the reference velocity vector is sent to the longitudinal velocity controller (Control_speed).
The reference velocity is sent to the controller block if (Condition_Velocity) its velocity
value at 1.5 s ahead (see subsection 5.1.2.4 for more details) is higher than the threshold
condition (Cond_1 equal to 3.6 km/h). Then the Control_speed block calculates the accel-
eration and breaking torques to send to the actuators (PilotageProvel_1) according to the
control reference velocity value, the current ego velocity and the current breaking pressure,
issued from the Controller Area Network (CAN bus: CANPeak44_CanV and CANDecoder_1),
otherwise the value 1 m/s is sent. The reference trajectory and the current ego velocity
are sent to the lateral angle controller block to return the steering angle command. If
(Condition_Lateral) the current ego velocity is higher than 7.2 km/h, this steering an-
gle command is sent to the actuators (PilotageProvel_1), otherwise the value 0 rad is sent.
The condition values are used at the initialization step to activate the motion planner only
at nominal driving conditions.

5.1.2.2 Perception block

The scene representation feeds the motion planner with a representation of the road, obsta-
cles, and ego vehicle. The required information to navigate in the environment concern the
lane markings, the road limits, the road speed limits, and the positions/velocities of the ob-
stacles/ego vehicle. The road parameters are �xed o�ine, as described in subsection 5.1.1.1.
The ego vehicle and obstacle O1 localizations are respectively described in subsections 5.1.1.2
and 5.1.1.3. In this subsection, we only detail the perception algorithm DeTroLi for obstacle
O2.

The position and orientation of O2 are acquired by the Ibeo fusion box with 4 layers.
The 3D LIDAR data are XYZ point clouds obtained in the ego frame E . DeTroLi uses only
1 layer with 2D XY point cloud. It consists in a succession of three steps: (i) point cloud
segmentation, (ii) association, and (iii) dynamics estimation.

The �rst step corresponds to the extraction of obstacles from the raw LIDAR data. It
is performed by constructing the Delaunay triangulation of the cloud, trimming edges in the
triangulation using a distance metric adapted to the projective properties of the sensor, and
extracting the connected components in the resulting graph. In the second step, previously
observed obstacles are matched to new observations using a Hungarian algorithm with a
geometric distance-based loss function. For the last step, a combination of Iterative Closest
Point (ICP) and high-level features �tting is used to estimate the kinematics of the tracked
obstacles. The resulting obstacles representation is illustrated in Figure 5.5.

The main limitation of this algorithm is due to the limitation of the data it uses. In
particular, when using a LIDAR, the further the observed environment is, the lesser the points
density is. Therefore, precise kinematics estimation is particularly complicated at distances
above 50 m using readily available LIDAR. This distance limitation can be overtaken with
radar sensors for future experimentations.

5.1.2.3 Planning block

The planning block relies on the information of the map, namely lane markings, road limits,
and speed limits (de�ned in the parameters input), the ego vehicle vector χego = (xego, yego, vego)R
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Figure 5.5: DeTroLi viewer. The ego vehicle is the gray rectangle with red edges, the tracked obstacle is

number 722.

and obstacles vector χOj = (xOj , yOj , vOj )E . It uses these information to return the reference
trajectory over the predicted horizon Hp, χref = (x(t), y(t), v(t))E ,(t=1..Hp) to the control
block. The trajectory is planned over a time horizon Hp = 10 s with a time step ∆t = 0.05 s,
generating 200 coordinates in E starting at the current state of the ego vehicle. As explained
in subsection 5.1.1.3, we consider maintaining direction and velocity for obstacles prediction.

The pseudo-code of our algorithm is presented in Algorithms 4, 5 and 6. In addition
to the assumptions for the nominal use in subsection 4.4.1 (p. 93), we de�ned the following
experimental assumptions for the integration of our algorithm:

Assumption 7 The motion planner is triggered every 60 ms, which corresponds to the max-

imum calculation time in simulation, or if an obstacle enters the safety space as de�ned in

Figure 5.6.

Assumption 8 The motion planner calculates a new trajectory as soon as one of the sur-

rounding obstacles enters the safety space around the ego vehicle, as illustrated in Figure 5.6.

Assumption 9 The motion planner is in a default mode if it can not �nd a valid solution

or if there is an obstacle detected inside its collision space, as illustrated in Figure 5.6.

The default mode is a non-nominal mode. In our experimentations, the default reference
trajectory corresponds to stopping in the right road limit with a constant longitudinal de-
celeration dx = −0.7 m/s2, i.e. χref,default = (0, 0, 0). This default trajectory is thus easily
identi�able by the driver.

Assumption 10 While the ego vehicle changes lane, the motion planner does not make any

decision.

This assumption has to be removed in the future, so that the motion planner is reactive to
its surroundings.
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Assumption 11 If there is no obstacle, the two authorized maneuvers are either to maintain

direction and velocity or to move to the right lane according to the French Driver Rules.

Figure 5.6: Safety and collision spaces around the ego vehicle.

For the experimentation, we use the Mamdani Fuzzy Inference System (FIS) from category
3 � Obstacle safety, in Table 3.1 (p. 55). Its properties are written in Table 5.1, its membership
functions µ are plotted in Figure 5.7, its output values are plotted against 2 outputs in
Figure 5.22, and its rule-base is depicted in Table 3.4 (p. 78).

Based on the simulation tests in section 4.6, the simulated annealing (SA) algorithm
implemented for the experimental results and presented in Algorithm 3 (p. 101) has the
following parameters: Niter = 200, T0 = 0.6213, Tf = 0.01, and P0 = 20% with Z0 = 1.

5.1.2.4 Control block

A control block has been implemented to follow the reference trajectory sent by the motion
planner. In order to integrate in the current control architecture of the test vehicle, the
longitudinal and lateral control are considered separately. The longitudinal control is based
on the longitudinal velocity, and the lateral control is based on the angular error. The two
controllers are e�ective when the ego velocity vego is over 3.6 km/h for the velocity controller
and 7.2 km/h for the angle controller.

Longitudinal controller The longitudinal velocity control is a Proportional Integral (PI)
based on the reference velocity tracked 1.5 s ahead. It returns the output torque to the actu-
ators. The control architecture separates acceleration and breaking, see Figure 5.8. Besides,
the acceleration control is split into command tracking, i.e. transient response with reference
velocity changes, and regulation, i.e. staying at a given reference velocity with disturbance
rejection. The value of the parameters have been manually tuned based on experimentations
and are gathered in Table 5.2.

Lateral controller The lateral control is a proportional gain (P) on the lateral gap egap
and the cap angle αcap to return the steering angle command αc. The control low is expressed
in Equation 5.4.

αc = Ke · egap +Kα · αcap (5.4)

where Ke is the lateral gap proportional gain and Kα is the cap angle proportional gain.
Figure 5.9 shows how egap and αcap are calculated. A distance target dtarget within

the range [dtarget,min, dtarget,max] is de�ned with a parameter kv proportionally to the ego
velocity vego: dtarget = kv · vego. The closest reference points from χref are identi�ed as
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Figure 5.7: FIS inputs and output membership functions µ.

pref and pref−1. The target point ptarget is interpolated within [pref−1 pref ]. The lateral
distance between ptarget and y-axis in E is equal to egap and the angle formed by the segment
[pref−1 pref ] with the x-axis in E is equal to αcap expressed in Equation 5.5:

αcap = atan

(
ypref ,E − ypref−1,E

xpref ,E − xpref−1,E

)
. (5.5)

The parameters are de�ned experimentally: dtarget,min = 5 m, dtarget,max = 60 m, kv =

1.5 s, Ke = 0.2 m−1, and Kcap = 1.
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Figure 5.8: PI architecture for the longitudinal controller.

Figure 5.9: Variables illustration for the lateral controller.
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Algorithm 4: Main pseudo-code
Data: Scene representation
Result: Reference trajectory
Initialization and update;
/* 1. Calculate the trajectory in R */

if not currently lane changing // Lane changing condition

then

if no obstacle // Obstacle condition

then
Return maintain wish velocity and direction or apply driving rules (e.g. go
right);

else

if safe distance // Obstacle condition

then
Return maintain wish velocity and direction or apply driving rules (e.g.
go right);

else

De�ne ego pro�les pi=1..N ;
De�ne obstacles pro�les pOj=1..J

;
De�ne intervals Ik=1..K ≡ (Oinf , Osup, dir);
Test collision ego pro�les in velocity and distance;
Characterize intervals (vinf , vsup, dinf , dsup);
Calculate optimal trajectory for staying in ego lane; // Straight

direction pseudo-code

if direction exists // Test adjacent lane existences

then

Calculate optimal trajectory for lane changing; // Left/Right

direction pseudo-code

else

Discard direction;

Calculate the best evaluation indicator among the remaining directions;
Return best trajectory;

else

Update the current lane change trajectory;

/* 2. Check trajectory safety */

/* 2.1 Stay within road limits condition */

/* 2.2 Exist trajectory condition */

if no 2.1 || no 2.2 then

Return default trajectory;
else

Return the best trajectory;

/* 3. Transform the road frame trajectory in the ego frame trajectory

*/

Transform the reference trajectory R → E ;
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Algorithm 5: Straight direction pseudo-code
Data: Intervals bounds
Result: Optimized straight trajectory for staying maneuver
Initialization;
if no collision-free ego pro�le then

Return no solution to go straight;
else

Calculate the initial solution;
Run the optimization process SA; // SA pseudo-code

Return the optimized straight trajectory or no solution;

Algorithm 6: Left/Right direction pseudo-code
Data: Intervals bounds
Result: Optimized left/right trajectory for left/right lane changing maneuver
Initialization;
/* 1. Select the left/right intervals */

for each interval Ik do

/* 1.2 Get the collision-free ego profile */

if no collision-free ego pro�le then

Return no solution to go left/right;
else

if no ego pro�le for the maneuver // Test maneuver gathering with I1

then

Discard maneuver;
else

Calculate the SA bounds for the variables (v, c, λ) for each remaining ego
pro�le;
Calculate the initial solution;
Run the optimization process SA; // SA pseudo-code

Return the optimized left/right trajectory or no solution;

Select the best maneuver among the best maneuvers for each intervals;
Return the best optimized left/right change trajectory or no solution;
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Table 5.1: FIS used in experiments.

Type: Mamdani
AndMethod: min

OrMethod: max

ImplicationMethod: min

AggregationMethod: max

Inputs: 3

Outputs: 1

Rules: 48

Table 5.2: Longitudinal PI controller parameters.

Parameter Value unit

PI�AccRegulation�Kp -128.0 N.s

PI�AccRegulation�Ki -5.0 N−1

PI�AccTracking�Kp -50.0 N.s

PI�AccTracking�Ki -5.0 N−1

pSatdown�Acc 0.0 N.m

pSatup�Acc 500.0 N.m

PI�Brake�Kp -250.0 N.s

PI�Brake�Ki -150.0 N−1

pSatdown�Brake -10000.0 N.m

pSatup�Brake 0 or 5000.0 N.m



126 Chapter 5. Experimentation and Results

5.1.2.5 Data sources

The input and output data previously described for the motion planner are summarized in
Table 5.3.

Table 5.3: Data sources (i: input, o: output).

Variable De�nition Sources Post-processing

i: χego =



xego,R longitudinal position of
ego vehicle in R

ATLANS (longitude,
latitude, orientation)W

Convert from W to R

yego,R lateral position of ego
vehicle in R

ATLANS (longitude,
latitude, orientation)W

Convert from W to R

vego,R longitudinal velocity of
ego vehicle in R

/ Di�erentiation of xego,R
and yego,R

i: χO1 =



xO1,R longitudinal position of
obstacle 1 in R

ATLANS (longitude,
latitude, orientation)W

Convert from W to R

yO1,R lateral position of
obstacle 1 in R

ATLANS (longitude,
latitude, orientation)W

Convert from W to R

vO1,R longitudinal velocity of
obstacle 1 in R

/ Di�erentiation of xO1,R

and yO1,R

i: χO2 =



xO2,R longitudinal position of
obstacle 2 in R

LIDAR Ibeo Fusion
Box in E

Detroli + Filter the
obstacle of interest +
Convert from E to W

to R

yO2,R lateral position of
obstacle 2 in R

LIDAR Ibeo Fusion
Box in E

Detroli + Filter the
obstacle of interest +
Convert from E to W

to R

vO2,R longitudinal velocity of
obstacle 2 in R

/ Di�erentiation of xO2,R

and yO2,R

i: road lane coordinate, lane
width, number of lane,
speed limits

apriori �xed /

o: χref =



xrefego,E longitudinal position of
ego vehicle in E along
Hp

/ Convert from R to E

yrefego,E lateral position of ego
vehicle in the ego frame
E along Hp

/ Convert from R to E

vrefego,E longitudinal velocity of
ego vehicle in the ego
frame E along Hp

/ Convert from R to E
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5.2 Experimental scenarios and results

To validate our approach, we consider the following highway driving situations among the
ones listed in subsection 2.1.3 (p. 18): lane keeping, car following, lane changing, lateral-
most lane changing, passing, and overtaking. We distinguish 6 scenarios to propose realistic
experimental conditions:

• Scenario 1: Road following, Lane keeping and Lane changing in subsection 5.2.1;

• Scenario 2: Vehicle following in subsection 5.2.2;

• Scenario 3: Overtaking one front obstacle in subsection 5.2.3;

• Scenario 4: Overtaking two front obstacles in subsection 5.2.4;

• Scenario 5: Overtaking the front obstacle with merging (1) in front of, and (2) behind,
the left obstacle in subsection 5.2.5.1, respectively 5.2.5.2.

For each scenario, we �rst present its goals and constraints, and then analyze the experi-
mental data in order to evaluate and validate our algorithm. We run each scenario multiple
times to verify its repeatability. As each scenario was actually repeatable, only one run per
scenario is analyzed in the following. The algorithm performances are also given in subsection
5.2.6.

The experimental results are presented in two �gures: the ego trajectories and limits, and
the relative velocities and positions with the motion planner behavior. The �rst �gure is split
into four plots:

(a) shows the reference χref , ego χego, and obstacles χO1 , χO2 trajectories in space and
time in the road frame R;

(b) gives the evolution of the velocities with time: the driver desired velocity vwish, the
road speed minimum vmin and maximum vmax limits, the reference velocity vref from
χref , the ego velocity vego, and the obstacles velocities vO1 , vO2 ;

(c) displays the ego accelerations evolution in time with the longitudinal ax and lateral
ay ego accelerations. The attainable longitudinal accelerations given in [Reif & Di-
etsche 2010] lie within the range of 0.4 − 1.4 m/s2. We thus considered a reference
longitudinal acceleration, respectively deceleration, value of ax,ref = 0.9 m/s2, respec-
tively dx,ref = −0.7 m/s2. In [Reif & Dietsche 2010], the range for lateral acceleration
lies within [−2, 2] m/s2. These limits are represented with dy,lim and ay,lim;

(d) provides the time evolution of the steering angle and the yaw rate.

The second �gure is split into four plots:

(a) shows the relative velocities between the ego vehicle and O1, vrel,O1 , and O2, vrel,O2 .

(b) gives the longitudinal relative distances between the ego vehicle and O1, xrel,O1 , and
O2, xrel,O2 . The ego vehicle presents safe distances with obstacle Oj , if their relative
longitudinal distance xrel,Oj in front, respectively rear, is bigger than the front safe
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distance df,safe, respectively the rear safe distance dr,safe. Similarly, the ego vehicle
is in collision with obstacle Oj , if their relative longitudinal distance xrel,Oj in front,
respectively rear, is smaller than the front collision distance df,collision, respectively the
rear collision distance dr,collision. Overcoming the safe distances leads the triggering of
the motion planner. Overcoming the collision distances leads the default mode.

(c) displays the lateral relative distances between ego vehicle and O1, yrel,O1 , and O2,
yrel,O2 .

(d) plots the motion planner �ags to verify a situation of collision, the decisions of lane
changing and navigating back to the right lane, if there is no solution, and if the ego
vehicle is in default mode navigating o� the road limits.

5.2.1 Scenario 1: Road following, Lane keeping and Lane changing

The �rst scenario consists in verifying the performances of the control block in order to make
sure that the reference trajectory is feasible and the control loop is good enough before testing
more complex scenarios. We �rst test a situation of road following and lane keeping, and
then a lane change without obstacle.

The �rst situation is illustrated in Figure 5.10. It corresponds to a road following and lane
keeping behaviors without obstacle. The ego vehicle must stay within the ego lane markings
and follow the reference velocity vref . vref is calculated by the motion planner to follow the
wish velocity vwish within the speed limits vmin and vmax. In this situation vwish can be
a preference velocity at which the driver desires to navigate. vwish is modi�ed as a motion
planner parameter and will increases and decreases along the scenario at t1 and t2.

Figure 5.10: Illustration of scenario 1.

Figure 5.11a shows that the reference trajectory χref is well followed by the ego vehicle
χego both in space and time. The longitudinal distance delay is less than 2 m (data points 1
and 2), the lateral error less than 20 cm (data points 1 and 2), and the time delay less than
200 ms. Moreover, one notices an o�set to the right side of the road on the lateral position.
This is due to the deformation of the road with curved borders. This is further con�rmed in
Figure 5.11d, where the mean steering angle is shifted to a positive value. In fact, the angle's
control compensates the rightward road camber by pushing the vehicle to the left side.
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In Figure 5.11b, the initial vwish,t0 is �xed at 10 m/s, then decreases to vmin = 9 m/s

at t2 = 12.84 s, and increases at vmax = 12 m/s at t3 = 26.1 s. Its value exceeds the speed
limits at t4 = 57.06 s with vwish,t4 = 15 m/s. Conversely, it is below the speed limits at
t5 = 69.36 s with vwish,t5 = 6 m/s. The reference velocity vref follows the changes of vwish,
while maintaining the reference velocity within the speed limits at t4 and t5. Besides, vref is
well tracked by the controller, as vego ≈ vref along the entire scenario. There are response
delays around 100 ms in acceleration (data points 3) and 350 ms in braking (data points 4),
as well as an overshoot up to 1.7 m/s in acceleration (data point 5) for the velocity tracking.
This is due to the fact that the tracked velocity is taken as the value of vref 1.5 s ahead in
order to prevent oscillations, which causes a time delay in the controller response, and to the
algorithm latency and the dynamic response of the vehicle. Nonetheless, these discrepancies
(response delay and overshoot) remain acceptable. Furthermore, to avoid an important gap
to the velocity controller, vref follows the overshoot of vego to decrease it to vwish with a
feasible braking action.

As noticed in Figure 5.11c, the longitudinal acceleration is bigger than the one �xed by
the reference trajectory ax,ref , but remains under the maximum comfort value set to 3 m/s2

by [Reif & Dietsche 2010]. However, no braking action is clearly observed; the vehicle is
coasting. The di�erence in acceleration is mainly attributed to the fact that the control is
performed on the velocity and not on the acceleration, and to the latency of the dynamics
of the ego vehicle and the implemented architecture. The braking control has a very limited
action in our scenario because the test vehicle had a braking control based on large step
commands. As our motion planner tried to follow the dynamic of the vehicle, its braking
reference was too smooth to be considered by the controller. This control law also explains
why overshoots are perceived during acceleration but not during the braking phases.

Finally, the road camber compensation is observed in the rightward-shifted mean steering
angle values in Figure 5.11d.

The second situation analyses a simple lane change to the right lane without obstacle.
Figure 5.12a shows the lane change trajectory in time for a reference velocity vref = 9.92 m/s.
The time delay along the trajectory is very short, less than 200 ms at the road centerline,
which corresponds in a distance delay less than 1.6 m (data points 1) and a slight overshoot
of 0.25 m to the right at the end of the lane change (data point 2). Figure 5.12b con�rms
the proper tracking of vref . Figures 5.12c and d show the feasible lateral dynamics of the
ego vehicle, where ay is within [dy,lim, ay,lim] and both the steering angle and yaw rate are
reasonable.

To summarize, the performances of both the motion planner and the controllers are eval-
uated good enough for the validation of our algorithms. Besides, the controller performances
stated in this �rst scenario are expected for all scenarios. Since the control design is not in
the scope of the present work, we do not pretend to provide a better controller for the next
scenarios. Please remind the following performances of the controllers:

• the response is stable for both the velocity and angle controllers;

• the steady-state error is very low: the velocity controller has no signi�cant error
(< 0.3 m/s) and less than 20 cm for the lateral controller (which is due to the road
camber);
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Figure 5.11: Trajectory, velocity and dynamics analysis. In (a), the reference trajectory χref is in dashed

line, the ego trajectory χego in solid line and the obstacles trajectories χO1 , χO2 in dashed-dotted lines, if

they exist; in (b) the driver wish velocity vwish is in cyan, the road minimum vmin and maximum vmax speed

limits in dotted and dashed red, the reference velocity vref in solid green, the ego velocity vego in solid blue,

and the obstacles velocities vO1 and vO2 in dashed orange and purple, if they exist; in (c) the ego longitudinal

and lateral accelerations ax and ay are in solid blue and red, the reference longitudinal acceleration and

deceleration ax,ref and dx,ref in dotted and dashed-dotted cyan, and the lateral acceleration and deceleration

limits ay,lim and dy,lim in dotted and dashed-dotted magenta; in (d) the steering angle is in blue and the yaw

rate in orange. [Scenario 1]

• the overshoot on the longitudinal velocity is between 5−30%, and 0−10% for the lateral
position, which represents up to 1.5 m/s in velocity and 25 cm in lateral position;

• a time-delay up to 350 ms is observed on the velocity tracking and up to 200 ms on the
lateral position tracking. This is due to the control law. Indeed, the tracking was done



5.2. Experimental scenarios and results 131

Figure 5.12: Trajectory, velocity and dynamics analysis for a lane changing. [Scenario 1]

1.5 s ahead for the velocity control and the angle control in order to avoid oscillations
and over-reaction if the tracking was done on the next time-step value.

5.2.2 Scenario 2: Vehicle following

In this vehicle following scenario illustrated in Figure 5.13, we consider a single lane with a
moving front obstacle vehicle O1. While maintaining the desired position in the centerline
of the lane, the ego vehicle adjusts its longitudinal dynamics with O1 to maintain safety
distances and passenger comfort.

The recommendations of the Driver Rules are to maintain a 2 s gap as a human driver
with a front obstacle vehicle. During the tests, to ensure the safety of all participants, we
set a �xed front, respectively rear, collision distance df,collision = 50 m, dr,collision = 30 m,
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regardless the velocity of our vehicle vego and the relative speed with obstacles vrel,Oj . As the
maximum allowed velocity in autonomous mode is 50 km/h = 13.9 m/s, this collision distance
is overestimated with respect to the 2 s rule. In this scenario, we �xed a safety distance twice
bigger than the collision distances, i.e. df,safe = 2 ∗ df,collision and dr,safe = 2 ∗ dr,collision.

The front moving obstacle O1 has its initial velocity v01,t0 < vego,t0 . Along the scenario,
we modi�ed vO1 in order to check that the ego vehicle adapts its velocity to the front vehicle.
At the beginning, the obstacle is far enough, out of the safety space of the ego vehicle. The
ego vehicle is in the situation of road following. At t1, the obstacle enters the safety zone
of the ego vehicle. The ego vehicle has to slow down and adapts its velocity to the one of
the obstacle vehicle vO1,t1 . At t2, the obstacle velocity is reduced to vO1,t2 < vO1,t1 . At t4,
the obstacle accelerates above the maximum speed limit, vO1,t4 > vmax. The ego vehicle can
then accelerate and reach its wish velocity vwish.

Figure 5.13: Illustration of scenario 2.

This scenario is a tedious task for the motion planner for two reasons: (i) in this situation,
the motion planner is triggered at each iteration as the obstacle permanently enters the safety
space, (ii) the range of action is very limited to respect the three decision criteria (higher
speed, low relative speed, high time headway). We present a nominal behavior of the motion
planner and a more critical one, for which we show the limits of our algorithm.

Nominal case: At the beginning of the scenario, the longitudinal relative distance xrel,O1

between the ego vehicle and O1 is bigger than the front safe distance df,safe (data points
1 in Figures 5.14a and 5.15b). O1 enters the safety space at t1 = 22.44 s (data point 2 in
Figure 5.15b). Consequently, the �ag collision is activated (data point 2 in Figure 5.15d) and
the motion planner sends a decelerating vref , so that the ego vehicle brakes (data point 2 in
Figure 5.14b). The ego velocity vego then decreases until it reaches the velocity which allows
to maintain the relative distance xrel,O1 above the collision distance df,collision (data area 3 in
Figures 5.15a and b). The vref pro�le is the best compromise of the 3 decision criteria: time
headway Th, relative velocity vrel,O1 , and ego velocity vego, see subsection 5.1.2.3. Logically,
vref follows vO1 as depicted in data area 3 in Figure 5.14b.

At t2 = 50 s, O1 increases its velocity up to 10 m/s. Its dynamics can be followed by
the ego vehicle, thus the motion planner adapts vref to vO1 (data area 4 in Figure 5.14b).
When vO1 decreases at t3 = 64 s, the motion planner sends a decreasing vref too (data area
5 in Figure 5.14b). As the dynamics of O1 is steeper than that of the ego vehicle, one notices
that xrel,O1 decreases too (data area 5 in Figure 5.15b). When O1 increases its velocity at
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t4 = 83 s over the maximum speed limit vmax = 12 m/s, the ego vehicle can also accelerate
to its initial wish velocity vwish = 11 m/s. If the obstacle velocity is over the maximum speed
limit vmax (at t5 = 85 s), vref plateaus at vwish = 11 m/s, as seen in Figure 5.14b. O1 leaves
the safety space at t6 = 89.58 s (data points 6 in Figures 5.15b and d).

Moreover, the reference trajectory is well followed in Figure 5.14a. One notices a 10 cm-
shift to the right due to the road camber. Slight overshoots (≈ 1m/s) on the velocity control
are shown in Figure 5.14b, as explained in scenario 1.

In this scenario, the motion planner has enough time and distance to adapt well to
the obstacle dynamics. In Figure 5.15d, one notices that the no solution �ag is always
inactivated, even if the collision �ag is activated.

Finally, the longitudinal and lateral accelerations and angle constraints for both safety
and comfort are respected as shown in Figures 5.14c and d.

Critical case: In the critical case, the minimum speed limit vmin is set to 8 m/s, which is
the velocity of O1 at the beginning of the scenario. As a result, there are very small velocity
(< 1 m/s) and distance (< 50 m) ranges for the ego vehicle to maintain xrel,O1 > df,collision
(Figure 5.16b). Besides, the motion planner only selects a velocity pro�le that does not
present any collision state along the prediction horizon Hp. Consequently, if the relative
velocity and distance do not allow the ego vehicle to reach a collision-free velocity pro�le
before O1 enters the collision space xrel,O1 < df,collision, none of the allowed velocities are
safe. This inconvenience is emphasized with the poor braking capacity of the ego vehicle in
our experiments. In this critical case, we thus observe that O1 enters df,safe at t1 = 20.46 s

and df,collision after t2 = 36.18 s (data points 1 and 2 in Figures 5.16b and d). The motion
planner has di�culty maintaining this collision distance, as a safe velocity pro�le does not
always exist. This is represented by the no solution �ag in area 2 in Figure 5.16d. In
practice, this situation leads to the default mode, with an emergency trajectory tending
towards yref,R = 0 m with a reference velocity pro�le decreasing to 0 m/s. However, as
soon as the collision distance is recovered, the motion planner replans a collision-free velocity
pro�le. O1 leaves the safety space at t3 = 74.58 s (data points 3 in Figures 5.16b and d).

To conclude, the condition of collision-free ego pro�le along the prediction horizon may be
too strong for real life application, as observed in the critical case. Furthermore, the collision
distance should be taken proportional to the ego and relative velocities in future work.
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Figure 5.14: Trajectory, velocity and dynamics analysis. The position outliers of O1 are due to errors in the

communication blocks. [Scenario 2]
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Figure 5.15: Relative longitudinal velocity, longitudinal and lateral positions and �ag analysis. The position

outliers of O1 are due to errors in the communication blocks. In (a), the relative velocities vrel,O1 and vrel,O2

are in orange and purple, if they exist; in (b), the longitudinal relative distances xrel,O1 and xrel,O2 are in

orange and purple, if they exist, the safe front df,safe and rear dr,safe distances in dotted red and yellow, the

front df,collision and rear dr,collision collision distances in dashed red and yellow; in (c), the lateral relative

distances yrel,O1 and yrel,O2 are in orange and purple, if they exist; in (d) the motion planner �ags denote

collision in blue, lane changing in red, right lane decision in yellow, no solution in purple and navigating o�

the road limits in green. [Scenario 2]
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Figure 5.16: Relative longitudinal velocity, longitudinal and lateral positions and �ag analysis in critical case.

The position errors of O1 are due to errors in the communication blocks. [Scenario 2]
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5.2.3 Scenario 3: Overtaking one front obstacle

The scenario 3 consists in overtaking the front obstacle O1 on a 2-lane road. The overtaking
maneuver is split into three phases: lane changing to the left behind the front obstacle at
t2, passing the obstacle on its left lane at t3, and lane changing back to the right in front of
the obstacle at t4, as depicted in Figure 5.17. In this scenario, two intervals are de�ned for
the �rst lane change � straight front I1 and left I2 in Figure 5.18a, and three intervals for
the right lane change maneuver � straight front I1, right rear O1 for I2, and right front O1

for I3 in Figure 5.18b. This scenario is tested with O1 at a constant velocity lower than our
wish velocity vO1,t0 < vwish. As soon as O1 violates the safety zone of the ego vehicle at t1,
i.e. xrel,O1 < df,safe, the motion planner analyzes the situation in order to make a decision
that will provide the best compromised trajectory. In this scenario, the best decision is to
overtake O1, which is initiated at t2. The �rst lane change ends at t3. Subsequently, the
passing phase follows until O1 is considered as a rear right obstacle. The �nal lane change
starts at t4, as soon as the decision-maker �nds a collision-free ego velocity pro�le for a lane
change to the right. At t5, the ego vehicle is back on its initial lane in front of O1 with a
su�cient rear collision distance dr,collision.

Figure 5.17: Illustration of scenario 3.

(a) First lane change. (b) Second lane change.

Figure 5.18: Intervals representation for scenario 3.
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When O1 is detected below the safety distance df,safe at t1 = 12.6 s (data point 1 in Fig-
ure 5.20b), the motion planner sends a True collision �ag value (data point 1 in Figure 5.20d).
Then, a new reference trajectory χref is calculated. As the left lane is free of obstacle, the
best trajectory in order to respect the 3 decision criteria is a left lane change maneuver, as
indicated by the lane change �ag in Figure 5.20d (data point 1) and illustrated with χref
in Figure 5.19a (data area 1). This decision is made immediately at t2 = t1 = 12.6 s. The
selected reference velocity for this maneuver is set at vref = 11 m/s (data point 1 in Fig-
ure 5.19b). One notices that vref is not equal to vwish. This is due to the fact that the fuzzy
logic returns a �at evaluation function as explained in Figure 5.22 and the Simulated Anneal-
ing architecture returns the �rst global minimum encountered. Indeed, the FIS presents a lot
of constant warning areas. This means that the evaluation function will also presents these
constant areas which are similar to local minima. Moreover, the evaluation of two solutions
in the constant areas will return the same value. This can be an inconvenient when searching
for the globally optimal solution. A set of close trajectories (i.e. for which the variables
present little variation from one trajectory to another) is evaluated as near-optima. How-
ever, the non-uniqueness of a solution is still acceptable in our experiments for autonomous
driving, because only the obstacle safety category is considered here. This particularity will
also in�uence the neighborhood search in the simulated algorithm method: (i) it is important
that the neighborhood search is large at high temperature, so that candidate solutions from
di�erent constant areas can be tested, and (ii) it appears useless to continue the SA search
in a small neighborhood over a constant warning areas. The integration of the category 5 �
Reference wishes from Table 3.1 (p. 55) in the decision-maker can solve this issue.

Besides, this �rst reference lane change is well followed (Figure 5.19a), and the collision
distances are maintained as long as O1 is on the ego lane (Figures 5.19a and 5.20b).

When the lane change is over at t3 = 20.1 s (data points 2 in Figures 5.20c and d),
the reference behavior consists in maintaining vwish in the straight direction (data area 2 in
Figure 5.19a and data point 2 in Figure 5.19b). Then, once the ego vehicle has passed O1

(data points 3 in Figure 5.20b and c), the right choice �ag is activated at t4 = 39.78 s

(data points 3 in Figure 5.20d), which means that the motion planner is triggered to return
a reference trajectory to navigate in the right lane. As vego > vO1 , the best maneuver is a
rightward lane change ahead of O1. This is decided and initiated at time t4. Indeed, the
motion planner has enough rear distance (xrel,O1 > dr,collision) to maneuver and navigate
back on the right lane at t5 = 48.96 s (data points in Figures5.20b, c and d). This second
lane change is also well followed (data area 4 in Figure 5.19a).

Moreover, the lateral dynamics limits are respected for both the acceleration and angle
in Figures 5.19c and d. In Figure 5.19d, one observes the left deviation of the steering angle
when the ego vehicle is on the right lane (data areas 5 and 6) and the right deviation when
the ego vehicle is on the left lane (data area 7) due to the road camber.

In Figure 5.21, we notice that the calculation times for the 2 maneuvers (data points 1 for
left lane changing and 2 for right lane changing) are below 50 ms, which proves the real-time
e�ectiveness of our algorithm.

To conclude, we notice that the fuzzy logic tuning is important to return the expected
behavior (e.g. driver wishes). Our evaluation function, as represented in Figure 4.13 (p. 104),
presents �at areas. This means that several di�erent trajectories have the same evaluation
function. According to the architecture of the Simulated Annealing algorithm, the output
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Figure 5.19: Trajectory, velocity and dynamics analysis. [Scenario 3]
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Figure 5.20: Relative longitudinal velocity, longitudinal and lateral positions and �ag analysis. [Scenario 3]

Figure 5.21: Calculation time. The peaks 1 and 2 correspond to the time step at which the motion planner

is triggered. The two other peaks are outliers in the motion planner proceedings. [Scenario 3]
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Figure 5.22: FIS output membership degree for the 3 criteria. Top: variations of relative velocity and time

headway with �xed vego = 30 km/h. Middle: variations of relative velocity and ego velocity with �xed

Th = 2 s. Bottom: variations of time headway and ego velocity with �xed vrel = 0 km/h. The darker and

higher warning is, the riskier it is, and vice versa.
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value is the �rst trajectory with the best evaluation function. Thus, it might be interesting to
test our algorithm when considering the category 5 � Reference wishes to verify that the best
velocity corresponds to the wish velocity vwish when this latter features a global optimum
too.

5.2.4 Scenario 4: Overtaking two front obstacles

A second obstacle O2 to overtake is added to the previous scenario, see illustration in Fig-
ure 5.23. Both obstacles are navigating on the right lane at a velocity below the wish velocity
vwish. The two obstacles are close to each other (less than 50 m), and do not allow a merging
of the ego vehicle between them. One of the hypotheses of our algorithm is to consider only
the closest front obstacle in the ego lane. Thus, in this scenario, our algorithm only sees O1 at
t1 with the interval representation in Figure 5.24a. When the ego vehicle navigates to the left
lane at t2, it sees O2 in front of O1, both in the right lane with the intervals in Figure 5.24b.
The motion planner then calculates at t3 whether a left lane changing maneuver I1→3 is safe,
or if it should pass the 2 obstacles at once, staying in I1. The latter is the safest solution
trajectory as O1 and O2 are too close to each other. At t4, the ego vehicle initiates a right
lane change I1→4 in Figure 5.24c, which ends at t5 when the ego vehicle is in front of O2 on
the right lane.

Figure 5.23: Illustration of scenario 4.

O1 is detected by the LIDAR and O2 communicates its positions and velocity (see sub-
section 5.1.2.2 for more details). As the LIDAR obstacle detection is stable within a distance
of 50 m, the initial vwish is set to 8 m/s (data point 1 in Figure 5.25b), df,safe = 50 m,
df,collision = 20 m, dr,safe = 37.5 m, dr,collision = 15 m in order to have time for manually
selecting O1 in DeTroLi algorithm. O1 is thus detected with xrel,O1 = 58.1 m (data point 0 in
Figure 5.26b). When xrel,O1 is below df,safe at t1 = 50.28 s (data points 1 in Figures 5.26b, c
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(a) First lane change. (b) Passing.

(c) Second lane change.

Figure 5.24: Intervals representation for scenario 4.

and d), the motion planner calculates a new reference trajectory χref , and decides a left lane
change with vref = 8.359 m/s (data area 2 in Figure 5.25a and data point 2 in Figure 5.25b).
This lane change is very aggressive with only 30 m to �nd the sigmoid distance delay c. We
observe that χego has an overshoot of 40 cm and 4.5 m longitudinal error, which corresponds
to 720 ms time delay.

At the end of left lane change t3 = 55.44 s (data points 3 in Figures 5.26c and d), we
decide to change vwish at 11 m/s (data point 3 Figure 5.25b).

When the ego vehicle reaches the left lane, O2 becomes visible. The motion planner
determines that there is not enough space to return to the right lane and discards the right
lane change maneuver. In Figure 5.26d, the right choice �ag is not activated.

When the ego vehicle has passed O2 at t4 = 71.1 s (data point 4 in Figure 5.26b), the
motion planner searches and �nds a trajectory to go back to the right lane in front of O2

(data points 4 in Figures 5.26d), with vref = 11.28 m/s (data areas 4 in Figures 5.25a and
b). The right lane change ends at t5 = 80.58 s with xrel,O2 = 48.76 m bigger than dr,collision
(data points 5 in Figures 5.26b, c and d).

Finally, the longitudinal and lateral accelerations and angle constraints for both safety
and comfort are respected (Figures 5.25c and d).
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Figure 5.25: Trajectory, velocity and dynamics analysis. [Scenario 4]
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Figure 5.26: Relative longitudinal velocity, longitudinal and lateral positions and �ag analysis. [Scenario 4]
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5.2.5 Scenario 5: Overtaking in front and behind a left obstacle

For a lane changing with two or more obstacles, the ego vehicle has to consider both the
dynamics of the obstacle to overtake and the one of the obstacles in the passing lane. To
illustrate how our motion planner works in this situation, two scenarios are presented with
two obstacles (obstacle O1 is the one initially in the front ego lane, obstacle O2 is the one
initially on the passing lane):

• If O2 is behind the ego vehicle and its relative velocity vrel,O2 and longitudinal dis-
tance xrel,O2 are su�cient for the ego vehicle to pass in front of it and behind O1, see
subsection 5.2.5.1;

• If O2 is behind the ego vehicle but vrel,O2 and xrel,O2 are not su�cient for the ego
vehicle to pass in front of it, or if O2 is in front but it blocks a lane changing for the ego
vehicle because vrel,O2 and xrel,O2 are not advantageous in comparison to stay in the
ego lane. In this situation, the ego vehicle has to wait for su�cient vrel,O2 and xrel,O2

in order to make a lane change and pass O1 behind O2, see subsection 5.2.5.2.

For both scenario the evolution space is decomposed into three intervals: straight front
I1, left front O2 for I2 and left rear O2 for I3 for the �rst lane change, see Figure 5.27a;
straight front I1, right front O1 for I2 and right rear O1 for I3 for the second lane change to
go to the mostright lane after overtaking O1, see Figure 5.27b.

(a) First lane change. (b) Second lane change.

Figure 5.27: Intervals representation for scenario 5.

As explained in scenario 4, we set df,safe = 50 m, df,collision = 20 m, dr,safe = 37.5 m,
dr,collision = 15 m. The scenarios are tested with vwish = 11 m/s and vO1,t0 ≈ vO2,t0 ≈ 8 m/s.

5.2.5.1 Scenario 5.1: Overtaking a slower ego front vehicle with a slower rear

left vehicle

This �rst maneuver is depicted in Figure 5.28. O1 is in front ego lane and O2 is rear on
the left lane. When O1 enters the safety area at t1, the motion planner is triggered. As
vwish > vO1 and vwish > vO2 , the best decision is to pass O1 in front of O2, whose relative
velocity and position guarantee rear safety. This decision is initiated at t2. The lane change
ends at t3. The ego vehicle passes O1 until it can go back into the right lane in front of O1,
as the relative velocity and distance with O2 are su�cient not to be in collision.

O1 is detected at t1 = 18.3 s and is already below df,safe (data points 1 in Figures 5.30b
and d). The motion planner is triggered. However, vO1 is calculated equal to 0 m/s (data
points 1 in Figures 5.29b and 5.30a) and xrel,O1 < df,safe. Consequently, there is no solution:
no velocity pro�le for lane following, nor place for lane changing; χref is the default trajectory
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Figure 5.28: Illustration of scenario 5.1.

(data area 2 in Figures 5.29a and b) and the �ag offroad is activated (data point 2 in
Figure 5.30d). Nonetheless, as xrel,O1 is still below df,safe, the �ag collision is still activated
(data areas 2 in Figures 5.30b and d). Thus, the motion planner is triggered every time-step
to �nd the best χref . For t = [18.36, 18.78] s, χref is staying on the ego lane. Indeed, vO1 is
over the maximum speed limit vmax (data area 3 in Figure 5.29b). Staying on the ego lane
or left lane changing are equivalent.

At t2 = 18.84 s, the motion planner �nds a better evaluation function Ip for lane chang-
ing with vref = 11.12 m/s (data points 4 in Figures 5.29b and 5.30d). The ego vehicle
overtakes O1 in front of O2 while maintaining the collision distances, respectively df,collision
and dr,collision (data area 4 in Figure 5.29a and data points 4 in Figures 5.30b and c). When
on the left lane, vref = vwish = 11 m/s (data point 0 in Figure 5.29b). When O2 is behind
the ego vehicle on its ego lane, it will no longer be analyzed by the motion planner according
to Assumption 6 (p. 94).

Once O1 is overtaken, the motion planner suggests to go back into the right lane with
vref = 11.28 m/s at t3 = 28.62 s while maintaining dr,safe (data area and points 5 and 6 in
Figures 5.29a and b and 5.30b and d).

Finally, the longitudinal and lateral accelerations and angle constraints for both safety
and comfort are respected as shown in Figure 5.29c and d.
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Figure 5.29: Trajectory, velocity and dynamics analysis. [Scenario 5-1]
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Figure 5.30: Relative longitudinal velocity, longitudinal and lateral positions and �ag analysis. [Scenario 5-1]
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5.2.5.2 Scenario 5.2: Overtaking a slower ego front vehicle with a blocking left

vehicle

This last scenario in Figure 5.31 is tested with O1 in front ego lane and O2 in front left
lane behind O1. The minimum speed limit vmin is set to 6 m/s as the vehicles are close to
each other. When O1 enters the safety area at t1, the motion planner is triggered. The best
decision is �rst to follow O1. Indeed, O2 is closer to the ego vehicle. The evaluation of any
left lane change is worse than for staying trajectory. However, at t3, O2 accelerates to pass
O1. Thus, the left lane change is free of collision and has a better evaluation than staying
behind O1. Consequently, the motion planner decides to overtake O1 behind O2. The lane
change ends at t4. The ego vehicle passes O1 and goes back into the right lane in front of O1.

Figure 5.31: Illustration of scenario 5.2.

O1 is below df,safe at t1 = t2 = 20.52 s (data points 1 in Figures 5.33b and d). The motion
planner is triggered. As vO2 ≈ vO1 and xrel,O1 > xrel,O2 , the left lane change maneuver has
a lower evaluation function Ip than staying in the ego lane. However, the ego vehicle is
still in collision with O1 (data area 2 in Figure 5.33d). Consequently, the motion planner
applies a car following behavior with O1 and decreases vref to adapt to vO1 (data area 3 in
Figures 5.32b and 5.33a).

When O2 increases its velocity at t3 = 38.34 s, the left lane changing maneuver becomes
safe and has a higher evaluation function Ip. The motion planner sends a reference left lane
change with vref = 8.246 m/s (data area and points 4 in Figures 5.32a, b and 5.33d). We
observe that χego has an overshoot of 57 cm and 4.2 m longitudinal error, which corresponds
to 660 ms time delay. This is due to the small lane change space behind O1. One notices
that the �ag collision is activated when the lane changing is completed (data point 5 in
Figure 5.33d). This is due to O2 in the safety space of the ego vehicle (data points 5 in
Figures 5.33b and c). Nonetheless, χref is still a lane following, as O2 is driving faster than
the ego vehicle (data area 5 in Figure 5.32a).

Once O1 is overtaken at t4 = 55.2 s (data point 6 in Figure 5.33b), the motion planner
suggests to go back into the right lane (data point 6 in Figure 5.33d). The right lane change
starts at t5 = 55.74 s with vref = 10.58 m/s (data area and points 7 in Figures 5.32a and b
and 5.33d), and safely ends at t6 = 65.52 s (data points 8 in Figures 5.33b and d).

Finally, the longitudinal and lateral accelerations and angle constraints for both safety
and comfort are respected as shown in Figures 5.32c and d.
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Figure 5.32: Trajectory, velocity and dynamics analysis. [Scenario 5-2]



152 Chapter 5. Experimentation and Results

Figure 5.33: Relative longitudinal velocity, longitudinal and lateral positions and �ag analysis. [Scenario 5-2]
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5.2.6 Algorithm performances

In order to analyze the performances of the algorithm, we show in this subpart the convergence
and time calculation of the Simulated Annealing method for all the scenarios, except scenario
1 (no planning).

Table 5.4 indicates the number of times where the motion planner has been triggered. For
scenarios 3 and 4, the motion planner needs only one iteration to �nd a trajectory for both
the left lane change and the right lane change. For scenario 5-1, the motion planner needs 10
iterations to �nd the appropriate maneuver. This is due to the small distance between the
ego vehicle and O1 for the left lane changing. Scenarios 2 and 5-2 have a higher number of
iterations as the motion planner refers to a car following behavior with replanning at each
time step.

Table 5.4: Number of triggering of the motion planner.

Scenario 2 3 4 5-1 5-2
Nb of triggering of the motion planner 838 2 2 10 303

The convergence iterations histogram for all the scenario is plotted in Figure 5.34. We
also display the convergence of the evaluation function for scenarios 3, 4 and 5-1 in Fig-
ure 5.35. The maximum number of iteration for the Simulated Annealing was �xed at 200
for real-time integration. We notice that the algorithm converges in less than 200 iterations,
which validates our algorithm tuning and our approach. With the chosen parameters, the
convergence value at 5% is around 120 iterations. However, if there is a small variables search
space, the convergence is faster as the corresponding evaluation function is probably within
a �at area. This is the case at the end of the scenario 2, which leads to the smaller peak in
Figure 5.34 around 70 iterations.

Figure 5.34: Histogram of the calculation time for all the scenarios.
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(a) Convergence for scenario 3.

(b) Convergence for scenario 4.

(c) Convergence for scenario 5-1.

Figure 5.35: Convergence to the near-optimal value of the evaluation function Jobj for Simulated Annealing.

For each scenario, the top, middle, and bottom �gures respectively show the convergence for the left lane

change, straight following, and right lane change.
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5.3 Conclusion and future work

The experimental tests made it possible to demonstrate that the algorithm works as expected
in all the described scenarios. The uni�ed architecture of both the decision making and tra-
jectory generation gives real-time computation for continuous optimization of the reference
trajectory. Moreover, considering real obstacles localization with communication and percep-
tion algorithms shows the robustness of our algorithm to noisy inputs, which is promising to
extend our work to real applications. Furthermore, even if the scenarios have been staged,
the algorithm was not �xed on particular scenario values, and was able to adapt to the real
behavior of the obstacles. The use of a simple dynamic model for the ego vehicle motion has
also been validated with the use of a simple controller and a satisfying reference trajectory
tracking in velocity and position (small overshoot and steady error).

However, the tests highlight some aspects of the methodology that could be blocking, in
the sense of an overly conservative behavior for the implementation of the proposed algorithm
in real life. The main changes to be made to the algorithm in future work are as follows:

• Having a continuous fuzzy inference system (FIS): The �at area of the evaluation func-
tion suggests that several di�erent combinations of criteria will have the same risk
indicator. This is not a problem for the motion planner itself, but it can lead to a
non-e�ective optimization process. Testing a continuous fuzzy system could increase
the e�cacy of the optimization process and provide a more intuitive decision process.

• Relaxing Assumptions 4 and 5 (p. 94) to discard a pro�le having a collision along the
prediction horizon: The experimental results show that the collision test becomes too
conservative with a large prediction horizon (Hp > 5s). On one hand, it may be possible
to replan after a lane change completion for the front collision test (Assumption 4). On
the other hand, the lane change back is far away from what can be observed in real life
(Assumption 5). Besides, an anticipation horizon can be considered, which would be
smaller than the prediction horizon and correspond to the minimum safe horizon for
the ego vehicle to reduce or increase its velocity in order to stay safe.

• Relaxing Assumption 6 (p. 94) not to consider the ego lane rear obstacles: In fact,
the Driver Rules recommend to perceive and analyze its environment before acting.
Therefore, the prediction of the rear obstacle has to be considered before making a
decision.

• Relaxing Assumption 10 (p. 119) freezing the lane change maneuver: A lane change
maneuver might not be safe along the navigation, and the motion planner should be
able to react to any surroundings change.

• The prediction horizon Hp should be both velocity- and distance-dependent as well as
�exible with the maneuver. For example, a lane changing maneuver needs a higher
prediction time than a lane following. In this case, Hp = 5 s for lane changing and
Hp = 1 s for lane following would be su�cient.

• Considering the acceleration as a fourth variable to optimize in order to consider not
constant acceleration for the maneuvers. This consideration will lead to more aggressive
behaviors.
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• Calculating the safety distances based on the ego and relative velocities to adapt the
safety risk to the context. For instance, the safety distances at low velocities are smaller
than the one at high velocities, similarly with a small relative velocity and a higher one.

• Considering more complex obstacles' prediction and testing the algorithm with uncer-
tainties (see section 6.2 for more details).

• Parallelizing the algorithm to decrease the calculation time below 50 ms, and thus being
able to consider more intervals.

• Dealing with tra�c behavior to observe the integration of our ego vehicle in tra�c.
The �rst aspect is to test the impact of our decision in tra�c and to notice the limit
of good working for our algorithm. The second one is to test the interaction of many
autonomous vehicles that use our motion planning solution. In particular, to verify the
robustness of the decision-maker in case of aggressive or conservative fuzzy sets.
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This last chapter summarizes and concludes the developments presented along this manuscript
in section 6.1 and proposes future work and perspectives regarding our approach in section
6.2. Section 6.3 discusses more generally the gaps to be �lled in motion planning by the next
autonomous driving car generation.
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6.1 Conclusions on our contributions

In this thesis, we proposed a motion planner algorithm for autonomous vehicles in a highway
environment, integrating a uni�ed decision-maker and trajectory generator able to handle
multi-criteria consideration and o�ering a continuous optimization of a spatiotemporal evo-
lution space. This manuscript details the di�erent developments resulting from our research,
from the study of the state of the art to the experimentations of our proposed strategy.

The study of the literature, presented in Chapter 2, has evidenced four problems in
research on motion planning. The �rst one (i) is the use of separated or sequential architecture
of the two studied motion planning functions �decision making and trajectory generation�
either by �rst applying decision making to decide on a maneuver and then proceeding to
motion generation to properly �t this maneuver, or vice versa. Treating these two tasks
in a separate fashion may indeed lead to a �nal motion that is not consistent or optimal
with respect to the evolution space. The second issue (ii) concerns the discrete handling of
the navigation area. Indeed, if the discretization is too small, the evolution space may be
truncated; conversely, if the discretization is too high, the calculation time may be too long.
The third area of improvement (iii) is that trajectories are usually obtained by separately
optimizing velocity and position. A spatial path solution is de�ned on a static decomposition
of the space, the path is adjusted to the dynamic obstacles by choosing a velocity/acceleration
pro�le, or reverse by de�ning the optimal velocity pro�le dynamically and then the static
path. These �rst three aspects may harm the consistency of the motion planner and most
often reduce the solution-space. Finally, the last point to be considered (iv) concerns the
treatment of multi-criteria decision making without context. By de�ning the nature of a
criterion in the sense of its value and its evolution in a context, it is necessary to provide the
human passengers with an understandable reasoning on the contribution of each criterion,
in particular regarding the context. For instance, at low velocities, a small time headway is
acceptable, whereas it is not at high velocities.

In order to address the issues evidenced in Chapter 2, we �rst investigated a strategy to
incorporate the nature of the criteria into multi-criteria decision making, and then developed
a uni�ed architecture for decision-maker and trajectory generator.

In Chapter 3, we focused on the decision making function. The main objectives were to
propose a deterministic multi-criteria approach considering the uncertainties of perception,
while avoiding an overly conservative vehicle's behavior. This presents two main issues: the
heterogeneous criteria and the uncertain data. The proposed framework for decision making
addresses both by combining the fuzzy logic approach and the Belief theory. Using the fuzzy
logic to translate the speci�c criteria scales into a risk scale, which is common to all the
criteria, we were able to consider heterogeneous criteria without loosing their nature, and
to combine them into a human readable risk assessment, thus proposing a solution to the
literature problem (iv). Moreover, the criteria combination follows a rule-base, which allows
for a decision-reasoning that is easily understandable and traceable for humans, and also
for the interpretation of the context before making the decision. Besides, tuning the fuzzy
set now o�ers the possibility to adapt the risk scale to the passengers of the vehicle. As all
the criteria may not have the same importance regarding the passenger' behavior, we also
used a belief theory framework within the Fuzzy Dempster-Shafer Theory. The advantage
of this framework is its ability to assign criteria to di�erent categories corresponding to
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di�erent decision-states, such as safety or comfort. The categories are then considered as
diverse sources of information to obtain the �nal decision. Thus, the combination of the
categories returns two major information for decision making: the probability to be in the
state and the belief in actually being in this state. Moreover, the consideration of uncertainties
and trustworthiness becomes possible by using fuzzy logic and weighting the criteria and
categories. Finally, the Fuzzy Dempster-Shafer reasoning avoids both the defuzzi�cation
process for fuzzy logic by using belief theory and the problem of fallacy of the excluded
middle for belief theory by using fuzzy set and appropriate rule-base.

In Chapter 4, we �rst studied the problem of the sequential motion planning architecture
for the literature problem (i), proposing a uni�ed approach so that both functions of motion
generation and decision making are optimized in a combined manner. To do so, we devel-
oped an all-in-one architecture, within which the decision making algorithm from Chapter 3
corresponds to the evaluation function used in the optimization approach for trajectory gen-
eration. At the end, this architecture returns a near-optimal reference trajectory to follow.
The main advantage is thus the joint processing of decision making and trajectory generation
resulting in a consistent motion planner. Another advantage of this architecture is its ability
to work in a continuous trajectory solution space, which eludes the issue of trajectory dis-
cretization (literature problem (ii)). Secondly, we presented a deterministic and continuous
characterization of the evolution space, considering it as a set of intervals. We introduced the
Non-Collision Nominal Intervals (NCNI), which consist in a collision-free space delimited by
road lanes and spaces between obstacles. The NCNI contain all the spatiotemporal motions
allowed for the ego vehicle in the evolution space along the prediction horizon. The high-level
maneuvers are carried out to move from one interval to another. The position and velocity
prediction of obstacles and the dynamically feasible motions of the ego vehicle characterize
the spatiotemporal intervals. By optimizing a trajectory inside these intervals, we also avoid
the decoupling issue in motion generation (literature problem (iii)). Lastly, in order to uti-
lize the implicit evaluation function of the decision-maker developed in Chapter 3, we have
opted for a metaheuristics approach with a Simulated Annealing algorithm, that allow us to
�nd a near-optimal solution in a �nite time. Furthermore, it o�ers the possibility to adjust
the calculation time according to the encountered situation, while guaranteeing to return an
acceptable solution.

In Chapter 5, we successfully demonstrated the e�ectiveness of our approach implemented
in an autonomous prototype vehicle. The motion planning algorithm has been integrated with
the controller and perception modules. The tested scenarios highlighted the real-time and
robustness performances of our work with two manually-driven obstacles.

6.2 Future work regarding our contributions

The research solutions presented in this thesis have shown encouraging results. The following
future work will enrich the re�ection carried out to e�ectively bring these ideas into a fully
autonomous vehicle application.

Extending the highway environment Even if we tested some merging use cases with
the 2-obstacle scenarios, future work will consist in addressing highway ramp-entrances and
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exits. This environment requires a socially cooperative driving: either the ego vehicle enters
the highway and merges into the current tra�c, or the ego vehicle is in tra�c and adjusts
its own behavior to facilitate the merging of the incoming vehicles. Besides, considering this
road context will also change the nominal conditions of driving, otherwise the ego vehicle will
be confronted with a blockage action. For instance, the relative safe distances or ego velocity
for merging can be reduced. Both situations of merging refer to the ability to plan adequate
courtesy behaviors, which may lead to the creation of a new courtesy category in our work.

Dealing with uncertainty From a theoretical standpoint, the current development of our
Fuzzy Dempster-Shafer approach can accommodate trustworthiness. Additional research is
needed to build a Fuzzy Dempster-Shafer reasoning which also considers uncertainty as input
of the fuzzy logic. Moreover, considering several obstacles' predictions is necessary, as the
predicted behaviors are only accurate for a short time horizon. One of the direction could be
the addition of weights on the criteria according to the probability and dangerousness of the
predicted obstacle's behavior, as it has been done with the data trustworthiness.

Improving the fuzzy relationships The de�nition of the fuzzy sets and the associated
rule-base is of major importance in our decision making process. We noticed the two fol-
lowing issues: (i) the consistency of the rule-base, and (ii) the constant warning areas in the
evaluation function. The �rst improvement requires further research to make the rule-base
coherent and consistent in order to prevent non-intuitive results and missing association of
the fuzzy sets. The second improvement consists in studying the coherence and in�uence of
the fuzzy set membership functions on the evaluation function. For example, a trapezoidal
membership function will return a �at evaluation function, which results in an area with local
minima. The non-uniqueness of a solution is acceptable for motion planning in the case of
autonomous vehicles, but it in�uences the optimization process, which can become ine�cient.

Making explicit the decision-maker We developed a deterministic decision-maker. In
the proposed method, each criterion is indirectly associated to risk levels, the combination
of all the criteria of a category returns a local warning for the category, and the combination
of all the categories returns a global risk assessment. Thus, it can be cumbersome to clearly
identify the criteria leading to an unsafe evaluation of the decision-maker. Consequently,
improvements have to be done in order to propose an easily readable interface for humans to
understand why a maneuver is evaluated as unsafe or safe.

Dealing with ethics behavior In order to adapt the behavior of the fuzzy inference
systems to a human-in-the-loop behavior, learning techniques can also be considered for
di�erent driver pro�le datasets to form the fuzzy sets. This improvement is useful for at least
two reasons: (i) reproducing a human behavior leads to a better acceptation in case of a mix
human- and robot-driver, (ii) learning the fuzzy sets will consist in adapting the risk levels
to the context, and thus integrating somehow a cognitive reasoning.
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6.3 Future research directions in motion planning for autonomous

vehicles

This section spotlights some critical and forthcoming issues of research in the wider scope of
motion planning for autonomous vehicles in general.

6.3.1 Data management

The scene representation input in motion planning algorithms is characterized by data, their
uncertainties and trustworthiness. The quality and quantity of these data are crucial to ensure
safe decisions. For example, the authors in [Wang et al. 2017] propose a method to evaluate
the appropriate number of naturalistic driving data to model a car following behavior. Some
research has been conducted on data uncertainties and trustworthiness on applied methods,
such as Kalman estimators [Yu et al. 2016, Xu et al. 2014], Markov processes [Ulbrich &
Maurer 2015, Altho� & Mergel 2011], Monte Carlo simulation [Altho� & Mergel 2011], evi-
dential theory [Yu et al. 2016], or interval arithmetic [Altho� & Dolan 2014]. Furthermore,
the planning module must also ensure motion continuity to guarantee the safety of the ve-
hicle even if data are missing, or with latency and unsynchronized data. In our thesis work,
we considered the last available data. However, this solution can become critical with more
complex tra�c situation and less time to react.

6.3.2 Adaptive mobility

Adaptive mobility raises the question of the introduction of autonomous vehicles to a human
environment. In fact, all the infrastructure and driving rules for transportation means are
built from human models. Thus, it can be wise to ask whether it is reasonable to expect to
model and to reproduce human behavior/reasoning on a robotic system whose environmental
knowledge is not adapted in terms of perception and reasoning means. Three aspects of
motion planning are especially subject to this question: safety, perception compensation,
and route context.

Safety The safety considerations impose the need for intelligent enough algorithms to dis-
tinguish a permanent or temporary danger, such as the front vehicle suddenly stopping, or
another one cutting in.

From a motion planning perspective, the ego vehicle is safe if it is not in con�ict with
its environment. However, this safety space highly depends on the safety capacity of robot
driving, which can be di�erent from a human one. As stated in [Altho� & Lösch 2016],
longitudinal distance and speed controls are generally faster in autonomous driving, and so
longitudinal safety space could be smaller. In contrast, lateral distance control is generally
more stable with human drivers; thus, lateral safety space must be larger. Furthermore, this
safety space has to be su�cient against the unexpected challenges of the environment (e.g.
unexpected braking from leading vehicle, unforeseen road's dead end). The formal methods
are thus used to mathematically prove safety properties [Pek et al. 2017a, Pek et al. 2017b]
in any conditions including the most critical ones.
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Moreover, at the moment, automakers are developing automated vehicles with human
takeover and human-robot mixed driving. This implies a possibly shared decision making
between automated vehicles and drivers. The �rst problem is retaining a stable and predictive
decision in case the driver takes the control back [Merat et al. 2014]. The second one is
that the decisions of the human driver and the machine may contradict each other [Da Lio
et al. 2015]. The third safety consideration is of human drivers' behaviors towards robot
drivers in the sense of respect, acceptability, and predictability [Verberne et al. 2012], or
comfort [Elbanhawi et al. 2015].

Perception compensation One of the problems regarding perception is the constraint
of a �xed point of view of the driving scene. However, when a human driver has to make
a decision, he/she optimizes his/her perception by moving the ego vehicle to capture more
information on a larger perceived environment. This perception compensation places the
ego vehicle in a position to optimize the capacity of the sensors with a geometrically wide
perception, as suggested in [Andersen et al. 2017] for city driving. This can be adapted to
highway driving in order to anticipate an exit-ramp or a tra�c jam, thus constraining the
reference trajectory along the road lanes.

Route context The route planner is well studied with a trip scheduler. However, there
are very few examples in the literature of integrating these data for decision and generation
functions. In fact, route planning constrains the evolution space, especially on highways;
e.g. a right-hand highway exit involves the ego vehicle to navigate to the rightmost lane.
These requirements imply respecting constraints in actions, distances, and time to follow the
instructions of the navigator.

6.3.3 Validation and evaluation

The evaluation of the algorithms must include a veri�cation of behaviors, judgments, and
responsibilities. This evaluation can be done qualitatively, as we did in Chapter 5, but
motion planning research is missing a common evaluation framework in order to compare
the algorithms to each other. In addition to the algorithmic performances, the validation
of transition stability with di�erent planners, the evaluation of motion planning methods on
prede�ned use cases, the ethics dilemmas, and the topic of rules relaxation are important in
the implementation of the motion planner.

Transition stability The variety of the encountered situations often requires the use of
di�erent combined motion planning algorithms. In this case, we need to know whether
the resulting architecture is stable, reliable and robust, or whether it is necessary to add
a high-level supervisor to validate the coherence of observations, decisions and actions. In
[Broggi et al. 2013b], the authors propose a behavior paradigm analogous to the FSM decision
to implement an architecture able to switch maneuver modes from manual to autonomous
driving.

Evaluation The validation of motion planning algorithms mostly relies on extensive simula-
tion and experimental testing results, where a human driver evaluates the action according to
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a personal reference index, such as safety, smoothness, or operation time [Tehrani et al. 2015].
There is a lack of formal analysis and evaluation methods to hierarchically classify algorithms'
performances. This would change thanks to the open source scenario library developed by
[Altho� et al. 2017] to propose a benchmark for motion planning algorithms, or with the Key
Performance Indicators (KPIs) proposed by [Quilbeuf et al. 2018].

Ethics As soon as robotic systems interact with human beings, questions of ethics in
decision-makers arise. Reference [Goodall 2014] proposes an ethical vehicle deployment strat-
egy in a hybrid rational and AI approach, especially for critical safety situations. The authors
in [Thornton et al. 2017] show how to incorporate ethics into decisions based on ethical frame-
works, such as deontology �as rules constraining the actions and navigation of the system,
consequentialism �as cost-based construction for the objective function, or as morality to
determine the di�erent costs of the system's behaviors.

Algorithm relaxation The strict respect and relaxation of driving rules are key points to
ensure safety in any case for an autonomous vehicle. Indeed, even hard constraints might be-
come dangerous in critical cases [Broggi et al. 2014]. Reference [Morignot & Nashashibi 2013]
introduces an ontology for tra�c rules in unusual situations with knowledge-based inference
engines to avoid blockage situations and to preserve safety with lane crossing or excess speeds.





Appendix A

Lateral acceleration limits calculation

A.1 Second-order time derivative of the sigmoid function

The t-parameterized equation of the sigmoid function, with x(t) the abscissa value and y(t)

the ordinate value, is given in Equation A.1:

y(t) =
b

1 + e−λ(x(t)−c) , (A.1)

where b is the shift value, λ is the sigmoid parameter, and c an abscissa delay of the in�ection
point.

In our problem, b, λ and c are constant values, and x 7→ x(t) is at least a twice di�eren-
tiable function over R. Consequently, y is obviously at least a twice di�erentiable function of
the time variable t.

The �rst-order time derivative of x is written dx
dt , vx.

The second-order time derivative of x is written d2x
dt2

= dvx
dt , ax.

The �rst-order and second-order sigmoid derivatives with respect to x are respectively
expressed in Equations A.2 and A.3:

dy

dx
=
−b(−λ)e−λ(x−c)

(1 + e−λ(x−c))2
= λy(1− y

b
) =

λ

b
y(b− y). (A.2)

d2y

dx2
=

d

dx

(
λ
b y(b− y)

dx

)

=
λ

b

[
dy

dx
(b− y)− y dy

dx

]
=
λ

b

[
λ

b
y(b− y)2 − λ

b
y2(b− y)

]
=
λ2

b2
y(b− y)(b− 2y).

(A.3)

The �rst-order time derivative of the sigmoid function represented in Equation A.1 is
calculated using the chain rule in Equation A.4:
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dy

dx

dx
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=
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y(b− y)vx.

(A.4)
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The second-order time derivative of the sigmoid function based on Equation A.4 is calcu-
lated using the chain rule in Equation A.5:
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(A.5)

Using the Schwarz's Theorem, we express d2y
dtdx in Equation A.6 :
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Using the Schwarz's Theorem, we express d2x
dxdt in Equation A.7 :
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Thus, Equation A.5 becomes Equation A.8:
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Finally, one has:
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A.2 Resolution of the second-order time derivative constraints

We want to �nd the bounds values of λ in order to respect the maximum lateral acceleration
condition in Equation 4.9 (p. 102), as recalled in Equation A.10:

axλ

b
y(b− y) +

v2
xλ

2

b2
y(b− y)(b− 2y) ≤ ay,max (A.10)

We write:

f(y) =
axλ

b
y(b− y) +

v2
xλ

2

b2
y(b− y)(b− 2y),

f1(y) =
axλ

b
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2

b2
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(A.11)

with y ∈ [0, b], by de�nition of b in Equation A.1.
Equation A.10 is then equivalently reformulated as Equation A.12:

f1(y) + f2(y) ≤ ay,max (A.12)

Then, the two terms f1(y) and f2(y) of Equation A.12 are bounded separately.

• Bounds of function f1: we study the variations of f1(y), y ∈ [0, b] in Table A.1.

Table A.1: Variation table of function f1.

y 0 b
2 b
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To conclude, we have Equation A.13:

∀y ∈ [0, b], 0 ≤ f1(y) ≤ axb

4
λ (A.13)

• Bounds of function f2: we study the variations of f2(y), y ∈ [0, b] in Table A.2.

Table A.2: Variation table of function f2.
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2
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To conclude, we have Equation A.14:

∀y ∈ [0, b], f2(y) ≤
√

3

18
v2
xbλ

2. (A.14)

At the end, we obtain an upper bound for function f in Equation A.15:

∀y ∈ [0, b], f(y) ≤ axb

4
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2 . (A.15)

Consequently, we choose λ in order to respect Equation A.12:
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Let g be the function de�ned for λ ∈ R+ as:
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4
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Equation A.16 is equivalent to Equation A.18:

g(λ) ≤ 0 (A.18)

The variation table of g is given in Table A.3.

Table A.3: Variation table of function g
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Finally, the maximum value for λ that ful�lls the condition of Equation 4.9 is given in
Equation A.19:
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Résumés en français

B.1 Chapitre 1 : Introduction

Le premier chapitre introductif présente le contexte et l'évolution des véhicules automatisés
vers le véhicule autonome. Trois phases de recherche et développement se distinguent dans
le temps. Une première phase de recherche s'est manifestée de manière isolée dans di�érents
instituts des années 1920 jusqu'aux années 1980. Une deuxième phase de consortiums a été
mise en place ensuite a�n de pousser la recherche du véhicule autonome vers des systèmes
et environnements plus complexes. De nombreuses expérimentations ont alors montré le
potentiel de l'automatisation des véhicules. Depuis les années 2000, une troisième phase de
développement des véhicules autonomes intéresse fortement les laboratoires de recherche et
l'industrie automobile, et voit également émerger de nouveaux acteurs de services.

Le véhicule autonome soulève de nombreuses questions, dont celle portée par le travail de
doctorat présenté dans ce manuscrit, à savoir la plani�cation de mouvements d'un véhicule
autonome à travers la conception d'une architecture uni�ée de prise de décision et de généra-
tion de trajectoires. Les contributions portent sur quatre points de recherche : une revue
de littérature orientée sur la plani�cation sur autoroute, une nouvelle architecture de prise
de décision et de génération de mouvements, une génération de man÷uvre dans un espace
spatio-temporel continu, et un cadre de décision adaptatif.

B.2 Chapitre 2 : Etat de l'Art

Le chapitre d'état de l'art détaille les considérations spéci�ques à la recherche d'un plan-
i�cateur de mouvement dans un environnement autoroutier. La terminologie propre à la
plani�cation de mouvement, les di�érents niveaux de plani�cation ainsi que les spéci�cités et
contraintes inhérentes au contexte autoroutier sont présentés.

Une revue de littérature est également proposée dans ce chapitre. Les algorithmes des
fonctions de prise de décision, génération de mouvement et déformation sont analysés vis-à-
vis de leur application à un environnement autoroutier. Trois axes sont étudiés : l'utilisation
de l'algorithme, la nature des sorties qu'il renvoie et son orientation mathématique. Les
algorithmes existants sont alors rassemblés en 6 familles. A l'issue de l'état de l'art, un
tableau de comparaison est proposé de manière à mettre en évidence l'algorithme le mieux
adapté au problème dé�ni.

Pour �nir, les conclusions de ce travail bibliographique font ressortir le besoin d'une
méthode de plani�cation de mouvements explicable et déterministe (réplicabilité), intuitive
pour l'humain (acceptabilité), cohérente avec l'environnement d'application (adaptabilité et
faisabilité en temps réel), et contextuelle. Ce travail de recherche se positionne donc sur une
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ré�exion de l'architecture de prise de décision multi-critères contextuelle et génération de
mouvement dans un espace de navigation continu et spatio-temporel.

B.3 Chapitre 3 : Prise de décision

Ce chapitre traite du problème de prise de décision pour les véhicules autonomes sur au-
toroute. L'objectif est de sélectionner une trajectoire de référence sur un horizon prédictif.
La trajectoire sélectionnée est obtenue à partir d'une optimisation multi-critères. Ces critères
peuvent par exemple correspondre à la sécurité avec les obstacles, au respect des règles de
conduite, au confort des passagers, à la consommation énergétique, etc.

Ce travail introduit un nouveau cadre de décision proposant une évaluation de risque.
L'architecture est présentée en trois niveaux. A partir des mesures capteurs et de la pré-
diction de l'environnement sur un horizon de prédiction, pour chaque trajectoire à évaluer,
on obtient les valeurs des critères. Le premier niveau utilise une approche par logique �oue
pour agréger ces critères de décision hétérogènes et incertains. En sortie de ce niveau, chaque
trajectoire candidate se voit attribuer un niveau d'avertissement local. La théorie des croy-
ances est utilisée au deuxième niveau pour combiner les niveaux d'avertissement locaux en
les interprétant comme di�érentes sources de risque pour la prise de décision. A l'issue de ce
niveau, chaque trajectoire candidate est associé à un intervalle de risque. En�n, le troisième
niveau consiste à évaluer l'intervalle de risque a�n de dé�nir la trajectoire la moins risquée
comme trajectoire de référence. Des résultats en simulation sont �nalement exposés dans ce
chapitre pour illustrer le raisonnement appliqué.

B.4 Chapitre 4 : Génération de trajectoires

Le chapitre 4 considère la fonction de génération de mouvement et de manière plus globale
l'architecture des deux fonctions de génération et de prise de décision.

Une nouvelle architecture est proposée, uni�ant les deux fonctions de plani�cation étudiées.
La prise de décision établie dans le chapitre précédent est considérée comme la fonction coût
d'une trajectoire sigmoïde dont les paramètres sont à optimiser dans la fonction de génération
de trajectoires.

Le deuxième aspect de ce chapitre concerne l'espace de recherche pour la génération de
trajectoire. Celui-ci est considéré comme un ensemble d'intervalles spatio-temporels décrivant
ainsi un espace de navigation continu entre les obstacles le long de l'horizon de prédiction. Le
passage d'un intervalle à un autre constitue une man÷uvre du véhicule. Les intervalles sont
ensuite caractérisés en vitesse et en distance selon un critère de non collision en condition
nominale de conduite. Le processus d'optimisation s'applique au sein de ces intervalles pour
le choix du pro�l de vitesse, du point de changement de voie et de la pente du changement de
voie, paramètres de la courbe sigmoïde. Cela évite ainsi les problèmes de discrétisation et de
découplage de trajectoire mis en évidence dans l'état de l'art. L'utilisation d'un algorithme
de recuit simulé est en�n choisi pour permettre l'optimisation d'une fonction non-explicite et
sans connaissance a priori de ses propriétés mathématiques. Des résultats en simulation sont
également exposés dans ce chapitre pour illustrer le fonctionnement de l'algorithme.
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B.5 Chapitre 5 : Expérimentations et résultats

Le chapitre 5 montre les expérimentations implémentées sur véhicule réel. Celles-ci se sont
déroulées sur la piste de vitesse du site de Versailles-Satory. Le véhicule test est instru-
menté par une localisation centrale inertielle et GPS RTK, un module de communication
Ultra Haute Fréquence (UHF) et une ceinture de 5 LIDARs pour la détection d'obstacles.
La cartographie est prédé�nie. Deux véhicules obstacles complètent les moyens expérimen-
taux. Le premier, disposant également d'une centrale inertielle et GPS RTK, communique
sa position par communication UHF. Le second obstacle est perçu par les LIDARs. Les in-
formations de localisation et de perception des obstacles sont envoyées au plani�cateur qui
décide de la trajectoire de référence à suivre par le contrôleur. Ce dernier se compose d'un
contrôleur proportionnel-intégral sur la consigne de vitesse, et d'un contrôleur proportionnel
sur la consigne de position, en considérant l'angle de déviation.

Cinq scénarios ont été e�ectués pour ces expérimentations. Pour chacun des scénarios,
le suivi de la trajectoire de référence, les limites de la dynamique du véhicule et les critères
de sécurité de distance aux obstacles sont étudiés. L'analyse des résultats montrent la re-
productibilité de l'algorithme, une trajectoire de référence réalisable et correctement suivie
(faible dépassement et retard), ainsi que le respect des limites dynamiques du véhicules et
des distances de sécurité aux obstacles. De plus, l'algorithme est temps réel avec un temps
de calcul de 60 ms avec le paramétrage proposé.

B.6 Chapitre 6 : Conclusions et perspectives

Ce dernier chapitre fait état des conclusions du travail de thèse mené ainsi que des perspectives
à développer. Des conclusions et perspectives plus générales sur le problème de plani�cation
sont également proposées.
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Titre : Architecture unifiée de prise de décision et génération de trajectoires pour un véhicule autonome sur
autoroute
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Résumé : Ce travail de thèse s’inscrit dans le
développement d’un véhicule autonome en milieu au-
toroutier. Plus précisément, il s’agit de proposer une
architecture unifiée de génération de trajectoires avec
une prise de décision prenant en compte les limita-
tions de l’environnement et des informations dispo-
nibles actuellement sur un véhicule automatisé.
La méthode propose d’une part de générer des
trajectoires sous forme de sigmoı̈de dans une
représentation spatiotemporelle continue de l’es-
pace de navigation, préalablement réduit par la
modélisation d’intervalles sans collision en condition
nominale de conduite. Les paramètres de la sigmoı̈de
sont ensuite optimisés par une stratégie de recuit si-
mulé utilisant l’algorithme de prise de décision comme
fonction d’évaluation de la trajectoire générée. De

cette manière, les problèmes de discrétisation et
de découplage position/vitesse sont évités. D’autre
part, l’agrégation des théories de logique floue et
des croyances permet une prise de décision sur des
critères hétérogènes et des données incertaines. Le
formalisme présenté offre la possibilité d’adapter le
comportement du véhicule aux passagers, notam-
ment selon leur perception du risque et leur souhait
d’une conduite souple ou sportive.
L’approche développée a finalement été évaluée et
validée en environnement de simulation puis sur un
véhicule de test. La brique de planification a alors été
intégrée à l’architecture existante du véhicule, en aval
des briques de localisation et de perception des obs-
tacles et en amont de la brique de contrôle.

Title : Motion Planning for Autonomous Highway Driving: A Unified Architecture for Decision-Maker and Tra-
jectory Generator
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Abstract : This thesis work is part of the development
of a self-driving car in highway environments. More
precisely, it aims to propose a unified architecture of
trajectory planner and decision-maker taking into ac-
count the limitations of the environment and the avai-
lable data within the current development of sensors
technologies (distance limitations, uncertainties).
On the one hand, the method generates sigmoid tra-
jectories in a continuous spatiotemporal representa-
tion of the evolution space, which is reduced befo-
rehand by modeling collision-free intervals in nomi-
nal conditions of driving. The sigmoid parameters are
subsequently optimized with a simulated annealing
approach that uses the decision-maker algorithm as

the evaluation function for the generated trajectory. It
thus makes it possible to elude both the discretiza-
tion and position/speed decoupling problems. On the
other hand, the aggregation of fuzzy logic and be-
lief theory allows decision making on heterogeneous
criteria and uncertain data. The proposed framework
also handles personalization of the vehicle’s behavior,
depending on the passengers’ risk perception and an
aggressive or conservative driving style.
The presented approach was finally evaluated and va-
lidated in a simulation environment, and then in a test
vehicle. The planning block was integrated into the
existing vehicle’s architecture, interfaced with the lo-
calization, obstacles’ perception and control blocks.
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