Ultrafast optical response of complex plasmonic nanoparticles - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Ultrafast optical response of complex plasmonic nanoparticles

Réponse optique ultrarapide de nanoparticules plasmoniques complexes

Résumé

The remarkable properties associated with the localized plasmon resonance (LSPR) in noble metal nanoparticles (NPs) make plasmonics an important topic with multiple applications. When NPs are illuminated by ultrashort laser pulses they undergo a rapid dynamics of energy exchanges which leads to the ultrafast variation of their optical properties, associated with other effects such as broadband photoluminescence, hyperlocalized heat release, electron photoemission, production of reactive oxygen species and nano-cavitation. The design of complex hybrid nanostructures can enable us to tailor the plasmonic properties as to optimize the applications. We have studied some hybrid nanostructures by broadband pump-probe absorption spectroscopy and a dedicated modeling: AuNP-decorated silica fibers and core-shell Au-Ag NPs. Their stationary and transient optical responses are analyzed depending on the NP morphology.In the developments evoked above the enhanced near field around plasmonic NPs plays a key role. However, the study of the ultrafast transient modulation of the near field is limited by the inability of the conventional numerical tools to catch the small variations of the NP permittivity. Here, a complex-conjugate pole-residue pair based FDTD method is successfully implemented to simulate the time-dependence of the plasmonic near-field topography. Beyond, the LSPR mode can be resonantly coupled with a photonic mode in a hybrid microcavity for conceiving optically-controlled photonic functionalities. The coupling of a 2D array of parallel gold nanorods with the defect mode of a 1D photonic crystal cavity is investigated theoretically. The optical anisotropy enables us to play with several degrees of freedom like field polarization. The ultrafast modulation of the optical response that is predicted in such hybrid nanostructures opens the possibility of their future optimization for designing time-resolved sensors.
Les propriétés remarquables associées à la résonance plasmon localisée (LSPR) dans les nanoparticules (NP) de métaux nobles font de la plasmonique un sujet aux applications multiples. Lorsque les NP sont éclairées par des impulsions laser ultracourtes, une dynamique rapide d'échanges d'énergie conduit à la variation ultrarapide de leurs propriétés optiques, accompagnée d’autres effets comme la photoluminescence, l’échauffement hyperlocalisé, la photoémission électronique, la production de radicaux libres, la nano-cavitation. La conception de nanostructures hybrides complexes permet d'adapter les propriétés plasmoniques pour optimiser les applications. Nous avons étudié certaines nanostructures hybrides par spectroscopie d'absorption pompe-sonde large bande et une modélisation dédiée : fibres de silice décorées de NP d’or, NP cœurs-coquilles Au-Ag. Leurs réponses optiques stationnaire et transitoire sont analysées en fonction de la morphologie des NP.Dans les développements évoqués ci-dessus, l’exaltation de champ proche autour des NP plasmoniques joue un rôle clé. Cependant, l’étude de la modulation transitoire du champ proche est limitée par l'incapacité des outils numériques usuels à saisir de faibles variations de la permittivité des NP. Nous mettons en œuvre une méthode FDTD basée sur les paires pole-résidu complexes-conjugués pour pouvoir simuler l’évolution temporelle de la topographie du champ proche plasmonique. Au-delà, le mode LSPR peut être couplé à un mode photonique dans une cavité hybride pour concevoir des fonctionnalités photoniques optiquement contrôlées. Le couplage d'un réseau 2D de nanobâtonnets d'or parallèles avec le mode de défaut d'une cavité d’un cristal photonique 1D est étudié théoriquement. L'anisotropie optique permet de jouer avec plusieurs degrés de liberté comme la polarisation du champ. La modulation ultrarapide de la réponse optique prédite dans de telles nanostructures hybrides ouvre la possibilité de leur optimisation future pour la conception de capteurs résolus en temps.

Domaines

Plasmas
Fichier principal
Vignette du fichier
83078_OTOMALO_2019_archivage.pdf (26.46 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03092306 , version 1 (02-01-2021)

Identifiants

  • HAL Id : tel-03092306 , version 1

Citer

Tadele Otomalo. Ultrafast optical response of complex plasmonic nanoparticles. Plasmas. Université Paris Saclay (COmUE), 2019. English. ⟨NNT : 2019SACLC102⟩. ⟨tel-03092306⟩
272 Consultations
34 Téléchargements

Partager

Gmail Facebook X LinkedIn More