Thèse soutenue

Contributions à l'analyse de séries temporelles d'images SAR

FR  |  
EN
Auteur / Autrice : Ammar Mian
Direction : Jean-Philippe OvarlezGuillaume Ginolhac
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et des images
Date : Soutenance le 26/09/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : SONDRA (Gif-sur-Yvette, Essonne ; 2004-....)
établissement opérateur d'inscription : CentraleSupélec (2015-....)
Jury : Président / Présidente : Frédéric Pascal
Examinateurs / Examinatrices : Jean-Philippe Ovarlez, Guillaume Ginolhac, Frédéric Pascal, André Ferrari, Jean-Yves Tourneret, Abdourrahmane Mahamane Atto, Maria Greco
Rapporteurs / Rapporteuses : André Ferrari, Jean-Yves Tourneret

Résumé

FR  |  
EN

La télédétection par Radar à Synthèse d’Ouverture (RSO) offre une opportunité unique d’enregistrer, d’analyser et de prédire l’évolution de la surface de la Terre. La dernière décennie a permis l’avènement de nombreuses missions spatiales équipées de capteurs RSO (Sentinel-1, UAVSAR, TerraSAR X, etc.), ce qui a engendré une rapide amélioration des capacités d’acquisition d’images de la surface de la Terre. Le nombre croissant d’observations permet maintenant de construire des bases de données caractérisant l’évolution temporelle d’images, augmentant considérablement l’intérêt de l’analyse de séries temporelles pour caractériser des changements qui ont lieu à une échelle globale. Cependant, le développement de nouveaux algorithmes pour traiter ces données très volumineuses est un défi qui reste à relever. Dans ce contexte, l’objectif de cette thèse consiste ainsi à proposer et à développer des méthodologies relatives à la détection de changements dans les séries d’images ROS à très haute résolution spatiale.Le traitement de ces séries pose deux problèmes notables. En premier lieu, les méthodes d’analyse statistique performantes se basent souvent sur des données multivariées caractérisant, dans le cas des images RSO, une diversité polarimétrique, interférométrique, par exemple. Lorsque cette diversité n’est pas disponible et que les images RSO sont monocanal, de nouvelles méthodologies basées sur la décomposition en ondelettes ont été développées. Celles-ci permettent d’ajouter une diversité supplémentaire spectrale et angulaire représentant le comportement physique de rétrodiffusion des diffuseurs présents la scène de l’image. Dans un second temps, l’amélioration de la résolution spatiale sur les dernières générations de capteurs engendre une augmentation de l’hétérogénéité des données obtenues. Dans ce cas, l’hypothèse gaussienne, traditionnellement considérée pour développer les méthodologies standards de détection de changements, n’est plus valide. En conséquence, des méthodologies d’estimation robuste basée sur la famille des distributions elliptiques, mieux adaptée aux données, ont été développées.L’association de ces deux aspects a montré des résultats prometteurs pour la détection de changements.Le traitement de ces séries pose deux problèmes notables. En premier lieu, les méthodes d’analyse statistique performantes se basent souvent sur des données multivariées caractérisant, dans le cas des images RSO, une diversité polarimétrique ou interférométrique, par exemple. Lorsque cette diversité n’est pas disponible et que les images RSO sont monocanal, de nouvelles méthodologies basées sur la décomposition en ondelettes ont été développées. Celles-ci permettent d’ajouter une diversité spectrale et angulaire supplémentaire représentant le comportement physique de rétrodiffusion des diffuseurs présents la scène de l’image. Dans un second temps, l’amélioration de la résolution spatiale sur les dernières générations de capteurs engendre une augmentation de l’hétérogénéité des données obtenues. Dans ce cas, l’hypothèse gaussienne, traditionnellement considérée pour développer les méthodologies standards de détection de changements, n’est plus valide. En conséquence, des méthodologies d’estimation robuste basée sur la famille des distributions elliptiques, mieux adaptée aux données, ont été développées.L’association de ces deux aspects a montré des résultats prometteurs pour la détection de changements.