Modèles périodiques et variations appliqués aux problèmes de santé
Auteur / Autrice : | Paulo Roberto Prezotti Filho |
Direction : | Pascal Bondon, Valdério Anselmo Reisen |
Type : | Thèse de doctorat |
Discipline(s) : | Traitement du signal et des images |
Date : | Soutenance le 26/02/2019 |
Etablissement(s) : | Université Paris-Saclay (ComUE) en cotutelle avec Universidade Federal do Espírito Santo (Vitória, Brésil) |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire des signaux et systèmes (Gif-sur-Yvette, Essonne ; 1974-....) |
établissement opérateur d'inscription : CentraleSupélec (2015-....) | |
Jury : | Président / Présidente : Jane Meri Santos |
Examinateurs / Examinatrices : Pascal Bondon, Valdério Anselmo Reisen, Paulo Cañas Rodrigues, Alexandre Renaux | |
Rapporteur / Rapporteuse : Pierre-Olivier Amblard, Paulo Cañas Rodrigues |
Mots clés
Résumé
Ce manuscrit porte sur certaines extensions à des séries temporelles prenant des valeurs entières du modèle paramétrique périodique autorégressif établi pour des séries prenant des valeurs réelles. Les modèles que nous considérons sont basés sur l'utilisation de l'opérateur de Steutel et Van Harn (1979) et généralisent le processus autorégressif stationnaire à valeurs entières (INAR) introduit par Al-Osh & Alzaid (1987) à des séries de comptage périodiquement corrélées. Ces généralisations incluent l'introduction d'un opérateur périodique, la prise en compte d'une structure d’autocorrélation plus complexe dont l’ordre est supérieur à un, l'apparition d'innovations de variances périodiques mais aussi à inflation de zéro par rapport à une loi discrète donnée dans la famille des distributions exponentielles, ainsi que l’utilisation de covariables explicatives. Ces extensions enrichissent considérablement le domaine d'applicabilité des modèles de type INAR. Sur le plan théorique, nous établissons des propriétés mathématiques de nos modèles telles que l'existence, l'unicité, la stationnarité périodique de solutions aux équations définissant les modèles. Nous proposons trois méthodes d'estimation des paramètres des modèles dont une méthode des moments basée sur des équations du type Yule-Walker, une méthode des moindres carrés conditionnels, et une méthode du quasi maximum de vraisemblance (QML) basée sur la maximisation d'une vraisemblance gaussienne. Nous établissons la consistance et la normalité asymptotique de ces procédures d'estimation. Des simulations de type Monte Carlo illustrent leur comportement pour différentes tailles finies d'échantillon. Les modèles sont ensuite ajustés à des données réelles et utilisés à des fins de prédiction. La première extension du modèle INAR que nous proposons consiste à introduire deux opérateurs de Steutel et Van Harn périodiques, l'un modélisant les autocorrélations partielles d'ordre un sur chaque période et l'autre captant la saisonnalité périodique des données. Grâce à une représentation vectorielle du processus, nous établissons les conditions l'existence et d'unicité d'une solution périodiquement corrélées aux équations définissant le modèle. Dans le cas où les innovations suivent des lois de Poisson, nous étudions la loi marginale du processus. Á titre d'exemple d'application sur des données réelles, nous ajustons ce modèle à des données de comptage journalières du nombre de personnes ayant reçu des antibiotiques pour le traitement de maladies respiratoires dans la région de Vitória au Brésil. Comme les affections respiratoires sont fortement corrélées au niveau de pollution atmosphérique et aux conditions climatiques, la structure de corrélation des nombres quotidiens de personnes recevant des antibiotiques montre, entre autres caractéristiques, une périodicité et un caractère saisonnier hebdomadaire. Nous étendons ensuite ce modèle à des données présentant des autocorrélations partielles périodiques d'ordre supérieur à un. Nous étudions les propriétés statistiques du modèle, telles que la moyenne, la variance, les distributions marginales et jointes. Nous ajustons ce modèle au nombre quotidien de personnes recevant du service d'urgence de l'hôpital public de Vitória un traitement pour l'asthme. Enfin, notre dernière extension porte sur l'introduction d'innovations suivant une loi de Poisson à inflation de zéro dont les paramètres varient périodiquement, et sur l’ajout de covariables expliquant le logarithme de l'intensité de la loi de Poisson. Nous établissons certaines propriétés statistiques du modèle et nous mettons en oeuvre la méthode du QML pour estimer ses paramètres. Enfin, nous appliquons cette modélisation à des données journalières du nombre de personnes qui se sont rendues dans le service d'urgence d'un hôpital pour des problèmes respiratoires, et nous utilisons comme covariable la concentration de polluant dans la même zone géographique.