Thèse soutenue

L'algorithme des directions alternées non convexe pour graphes : inférence et apprentissage
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Dien Khuê Lê-Huu
Direction : Nikos Paragios
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et des images
Date : Soutenance le 04/02/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : CentraleSupélec (2015-....)
Laboratoire : Centre de vision numérique (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Isabelle Bloch
Examinateurs / Examinatrices : Nikos Paragios, Isabelle Bloch, Florence Forbes, Nikos Komodakis, Karteek Alahari, Ramin Zabih
Rapporteurs / Rapporteuses : Florence Forbes, Nikos Komodakis

Résumé

FR  |  
EN

Cette thèse présente nos contributions àl’inférence et l’apprentissage des modèles graphiquesen vision artificielle. Tout d’abord, nous proposons unenouvelle classe d’algorithmes de décomposition pour résoudrele problème d’appariement de graphes et d’hypergraphes,s’appuyant sur l’algorithme des directionsalternées (ADMM) non convexe. Ces algorithmes sontefficaces en terme de calcul et sont hautement parallélisables.En outre, ils sont également très générauxet peuvent être appliqués à des fonctionnelles d’énergiearbitraires ainsi qu’à des contraintes de correspondancearbitraires. Les expériences montrent qu’ils surpassentles méthodes de pointe existantes sur des benchmarkspopulaires. Ensuite, nous proposons une relaxationcontinue non convexe pour le problème d’estimationdu maximum a posteriori (MAP) dans les champsaléatoires de Markov (MRFs). Nous démontrons quecette relaxation est serrée, c’est-à-dire qu’elle est équivalenteau problème original. Cela nous permet d’appliquerdes méthodes d’optimisation continue pour résoudrele problème initial discret sans perte de précisionaprès arrondissement. Nous étudions deux méthodes degradient populaires, et proposons en outre une solutionplus efficace utilisant l’ADMM non convexe. Les expériencessur plusieurs problèmes réels démontrent quenotre algorithme prend l’avantage sur ceux de pointe,dans différentes configurations. Finalement, nous proposonsune méthode d’apprentissage des paramètres deces modèles graphiques avec des données d’entraînement,basée sur l’ADMM non convexe. Cette méthodeconsiste à visualiser les itérations de l’ADMM commeune séquence d’opérations différenciables, ce qui permetde calculer efficacement le gradient de la perted’apprentissage par rapport aux paramètres du modèle.L’apprentissage peut alors utiliser une descente de gradientstochastique. Nous obtenons donc un frameworkunifié pour l’inférence et l’apprentissage avec l’ADMMnon-convexe. Grâce à sa flexibilité, ce framework permetégalement d’entraîner conjointement de-bout-en-boutun modèle graphique avec un autre modèle, telqu’un réseau de neurones, combinant ainsi les avantagesdes deux. Nous présentons des expériences sur un jeude données de segmentation sémantique populaire, démontrantl’efficacité de notre méthode.