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Chapter 1

Résumé

Soit F un corps fini Fq de caractéristique p ou bien un corps local non archimédien

dont le corps résiduel est fini et de caractéristique p. Notons G le groupe des

points F -rationnels d’un groupe algébrique réductif connexe défini sur F . Soit k

un corps algébriquement clos de caractéristique ` (avec ` 6= p). La thèse porte sur

les représentation modulaires (i.e., ` 6= 0) de G. Tous les représentations considérées

dans la thèse pour F non archimédien sont lisses.

La théorie des représentations modulaires a des grandes similitudes avec la

théorie complexe mais aussi des différences importantes. Par exemple, la condi-

tion ` 6= p assure l’existence d’une mesure de Haar sur G à valeurs dans k, mais

le fait que ` soit non nul implique que la mesure d’un sous-groupe ouvert compact

de G peut être nulle. D’autre part, les représentations modulaires d’un sous-groupe

ouvert compact ne sont pas semi-simples en général et les notions de représentation

cuspidale et supercuspidale ne sont pas équivalentes, car il existe des représentation

cuspidales qui ne sont pas supercuspidales. Pour ces raisons les méthodes utilisées

dans le cas complexe ne sont pas entièrement utilisables dans le cas modulaire.

Dans l’étude de la catégorie des représentations du groupe G, une étape impor-

tante est la décomposition de Bernstein, qui affirme que la catégorie Repk(G) des

k-représentations lisses de G se décompose en un produit infini de sous-catégories

pleines et indécomposables. Toute k-représentation de G se decompose de façon

unique en somme directe de sous-représentations, chacune appartenant à un bloc, et

tout morphisme entre représentations est alors un produit de morphismes, chacun

appartenant à bloc. En conséquence, pour la compréhension de la catégorie, il suffit

d’étudier chaque bloc séparément.

La décomposition de Bernstein admet un analogue du “côté galoisien” via la

correspondance de Langlands. Fixons un nombre premier r différent de p . Lorsque

` > 0, nous prendrons r = `. Notons WF le groupe de Weil de F . Pour G = GLn, la

correspondance de Langlands a été prouvée pour F de caractéristique p par Laumon,

Rapoport et Stuhler [LRS], et pour F de caractéristique 0, indépendamment par Har-

ris et Taylor [HT], par Henniart [Hen], et par Scholze [Sch]. Elle fournit une bijection
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8 CHAPTER 1. RÉSUMÉ

canonique de l’ensemble des classes d’isomorphisme de représentations irréductibles

r-adiques de GLn(F ) vers celui des classes d’isomorphisme de représentations de

Deligne WF -semisimple r-adiques de dimension n, qui généralise l’application de

réciprocité d’Artin de la théorie du corps de classes. Via la correspondance de Lang-

lands, deux k-représentations irréductibles π et π′ appartiennent au même bloc si

et seulement si leurs paramètres de Langlands ont des restrictions au sous-groupe

d’inertie IF de WF isomorphes. Pour G un groupe réductif connexe quelconque

défini sur F , un analogue de la décomposition de Bernstein pour les paramètres de

Langlands enrichis a été construit dans [AMS].

On souhaiterait décomposer aussi la catégorie Repk(G) en somme directe de sous-

catégories, appelées blocs de Bernstein, lorsque ` est non nul. Dans le cas ` = 0,

la décomposition de Bernstein repose notamment sur la propriété d’unicité du sup-

port supercuspidal, qui affirme que le support supercuspidal d’une k-représentation

lisse irréductible π de G est une classe de G-conjugaison d’une paire (M, σ), où M

est un sous-groupe de Levi de G et σ est une k-représentation lisse irréductible su-

percuspidale de M. En particulier, la définition des blocs repose sur la notion de

support supercuspidal. Autrement dit, l’unicité du support supercuspidal des k-

représentations irréductibles de G impliquerait une décomposition de l’ensemble des

classes d’équivalence Irrk(G) de représentations lisses irréductibles de G, et cette

décomposition impliquerait la décomposition de Bernstein restreinte à l’ensemble

des classes d’équivalence Irrk(G). Quand ` = 0, une k-représentation cuspidale est

supercuspidale donc l’unicité de support supercuspidal est impliquée par l’unicité de

support cuspidal, qui est simple à vérifier. Mais dans le cas ` 6= 0, comme on l’a ex-

pliqué dans le second paragraphe, la notion de support cuspidal n’est pas suffisante

pour résoudre ce problème. Malheuresement, l’unicité de support supercuspidal

n’est pas toujours vraie. Un contre-exemple a été exhibé par Jean-François Dat pour

G = Sp8(F ) où F est non archimédien. Ce contre-exemple est obtenu par relèvement

d’un contre-exemple similaire construit par Olivier Dudas pour G = Sp8(Fq), où

q = pm,m ∈ Z. Mais pour G = GLn(F ), l’unicité de support supercuspidal est un

théorème, démontré par Vignéras dans [V2].

Nous supposons désormais ` 6= 0. Soient W (k) l’anneau des vecteurs de Witt

de k et K = Frac(W (k)) le corps des fractions de W (k) . Une preuve de la

décomposition de Bernstein pour la catégorie des W (k)[GLn(F )]-modules lisses a été

donnée par David Helm dans [Helm]. Vincent Sécherre et Shawn Stevens ont donné

une preuve de la décomposition de Bernstein des catégories des k-représentations

lisses de GLn(F ) et de ses formes intérieures dans [SeSt]. Ces preuves reposent de

manière cruciale sur l’unicité du support supercuspidal des k-représentations lisses

irréductibles de GLn(F ). La décomposition de Bernstein de Repk(G) n’est pas con-

nue pour un groupe réductif G défini sur F arbitraire.

De plus, dans le cas G = GLn(F ), Vignéras a construit dans [V4] une bijec-

tion entre l’ensemble des classes d’isomorphisme de représentations irréductibles `-

modulaires de GLn(F ) et l’ensemble des classes d’isomorphisme de représentations
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de Deligne WF -semi-simples `-modulaires de dimension n et d’opérateur de Deligne

nilpotent. Il s’ensuit que deux F`-représentations irréductibles π et π′ de G sont dans

le même bloc si et seulement si leurs paramètres de Langlands ont des restrictions

à I`F (le noyau de l’application canonique IF → Z`) qui sont isomorphes, ainsi que

l’a observé Dat dans [DaII] §1.2.1.

Dans cette thèse, nous étudions la catégorie des représentations lisses du groupe

spécial linéaire SLn(F ) à coefficients dans un corps k algébriquement clos de car-

actéristique ` avec ` différent de p. Le résultat principal de la thèse est la preuve de

l’unicité du support supercuspidal pour toutes les k-représentations irréductibles de

SLn(F ), dans le cas où F est soit fini (Théorème 4.1.11), soit local non archimédien

(Théorème 6.1.10).

Theorem 1.0.1. Soient M′ un sous-groupe de Levi de SLn(F ), et ρ une k-repré-

sentation irréductible de M′. Le support supercuspidal de ρ est la classe de M′-

conjugaison d’une paire (L′, τ ′), où L′ est un sous-groupe de Levi de M′ et τ ′ est une

k-représentation irréductible supercuspidale de L′.

Désormais, nous utilisons G pour désigner GLn(F ) et G′ pour SLn(F ), sauf men-

tion contraire. Cette thèse est constituée de deux parties : la section 4 est consacrée

à l’étude des k-représentations des groupes finis, et la section 5 est consacrée au cas

où F est non-archimédien. L’unicité du support cuspidal est connue pour toutes

les k-représentations irréductibles cuspidales de M′, où M′ désigne un sous-groupe

Levi de G′. Cela nous permet de réduire le problème à celui de l’unicité du sup-

port supercuspidal pour un sous-groupe de Levi M′ de G′. Dans tous les cas, pour

toute k-representation cuspidale irréductible π′ de M′, il existe une k-représentation

irréductible cuspidale π de M (un sous groupe de Levi de G, et M∩G′ = M′) telle que

π′ intervienne dans la k-representation resM
M′π, qui est semi-simple de longueur finie

(voir [Ta] quand ` = 0, et Proposition 5.1.32 quand ` est positif). Notre stratégie

consiste à étudier π′ via l’étude de π.

Dans la première partie nous posons F = Fq. En s’inspirant de travaux de

Gerhard Hiss, nous décrivons le support supercuspidal d’une k-représentation irré-

ductible cuspidale π′ d’un sous-groupe de Levi M′ de G en fonction de son enveloppe

projective. En utilisant la théorie de Deligne-Lusztig, on construit l’enveloppe pro-

jective Pπ′ de π′. Ensuite, pour π une k-représentation irréductible de M comme

ci-dessus, nous remarquons que Pπ′ est une composante indécomposable de la restric-

tion de l’enveloppe projective Pπ de π. En considérant les restrictions paraboliques

Pπ′ de π′ aux sous-groupes de Levi de M′, lesquelles ont des propriétés similaires

aux restrictions paraboliques Pπ aux sous-groupes de Levi de M, nous déduisons

l’unicité du support supercuspidal de π′ de celle du support supercuspidal de π.

Le reste de cette thèse étudie les k-représentations du groupe SLn(F ), où F est

local non-archimédien, au moyen de la théorie des types. La construction de Bushnell

et Kutzko a été généralisée du cas complexe au cas modulaire avec ` 6= p par Marie-

France Vignéras pour GLn(F ). Pour le groupe SLn(F ), cette théorie n’avait été
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établie que dans le cas complexe (pour les représentations supercuspidales par Colin

Bushnell et Philip Kutzko, pour les non-supercuspidales par David Goldberg et Alan

Roche).

Nous construisons un k-type simple maximal cuspidal pour toute k-représentation

cuspidale π′ d’un sous-groupe de Levi M′ du groupe G′ = SLn(F ), i.e., un cou-

ple (NM′(µ
′
M), τM′), formé d’un sous-groupe ouvert NM′(µ

′
M) de M′, compact mod-

ulo le centre, et d’une k-représentation irréductible τM′ de NM′(µ
′
M), telle que

l’induite compacte de τM′ à M′ soit isomorphe à π′. Comme dans le cas complexe,

(NM′(µ
′
M, τM′)) s’obtient à partir d’un k-type simple maximal cuspidal (JM, λM)

(construit précédemment par Vignéras) de M, où M est un sous-groupe de Levi de

G = GLn(F ) tel que M ∩ G′ = M′. Nous considérons d’abord le normalisateur

projectif J̃M de (JM, λM) et l’induite compacte irréductible λ̃M de λM à J̃M, qui

est une notion introduite dans le cas complexe par Bushnell et Kutzko dans leur

construction des types simples maximaux dans SLn(F ). Soient µ′M une composante

irréductible de la restriction de λ̃M à J̃M∩G′, et τM′ une k-représentation irréductible

du normalisateur NM′(µ
′
M) de µ′M dans M′ telle que τM′ |J̃M∩G′ contient µ′M. Nous

démontrons que les couples de la forme (NM′(µ
′
M), τM′) sont les k-types simples ma-

ximaux cuspidaux de M′. L’un des points délicats est la preuve de l’irréductibilité

de l’induite compacte de τM′ à M′. Alors que dans le cas complexe, il suffit de mon-

trer que le groupe d’entrelacement de la représentations τM′ cöıncide avec NM′(µ
′
M),

lorsque ` 6= 0, il est nécessaire de prouver qu’une condition technique supplémentaire,

qualifiée de seconde condition pour l’irréductibilité dans cette thèse, est satisfaite.

Une fois ce résultat obtenu, nous montrons que si [L, σ] est le support super-

cuspidal de π (π, π′ comme ci-dessus), avec L un sous-groupe Levi de M et σ une

k-représentation irréductible supercuspidale de L, et σ′ est un facteur direct de la

restriction de σ sur L′ = L ∩ G′ de σ, alors le support supercuspidal de π′ est con-

tenu dans la classe de M-conjugaison de (L′, σ′). Il existe une autre méthode pour

montrer cette propriété, qui n’utilise pas la théorie des types, consistant à appli-

quer la méthode de Tadić. Mais notre construction des k-types simples maximaux

cuspidaux est intéressante en elle-même: lors de sa démonstration dans [Helm] de

la décomposition de Bernstein de RepW (k)(GLn(F )), Helm construit au moyen des

k-types simples maximaux cuspidaux une famille d’objets projectifs, qui sont au

coeur de la démonstration.

Les autres ingrédients de la preuve de l’unicité de support supercuspidal de π′

sont l’étude du modèle de Whittaker de σ′ (section 5.2), et la généralisation aux

k-représentations de M′ d’une formule sur les dérivations obtenue par Bernstein

et Zelevinsky dans le cas complexe pour GLn(F ) (section 6 et appendice). Plus

précisement, notons T le sous-groupe formé des matrices diagonales et U celui des

matrices strictements triangulaires supérieures. Nous montrons l’existence d’un ca-

ractère θ non-dégénéré de U ∩M′ tel que la plus haute dérivée associée à θ|U∩M′ de

π′ est non-triviale. Soit (L′, σ′) contenu dans le support supercuspidal de π′. Nous

déduisons de la généralisation de la formule de Bernstein et Zelevinsky que la plus
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haute dérivée associée à θ|U∩L′ est non-triviale. Nous établissons aussi l’existence

d’un unique facteur direct de la restriction de σ sur L′ tel que la plus haute dérivée

associée à θ|U∩L′ est non-triviale.
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Chapter 2

Introduction

2.1 Introduction

Let F be a finite field of characteristic p, or a non-archimedean locally compact

field whose residue field is of characteristic p, and G a reductive connected algebraic

group defined over F . We denote by G the group G(F ) of the F -points of G, and

endow it with the locally pro-finite topology through F . Let k be an algebraically

closed field of characteristic ` (6= p), and W (k) its ring of Witt vectors. We use

K = Frac(W (k)) to denote the fraction field of W (k). We denote by Repk(G) the

category of smooth k-representations of G, where a k-representation (π, V ) (here V

is the k-space of representation π) of G is smooth if any element v ∈ V is stabilised

by an open subgroup of G. In the thesis, when we say a k-representation, we always

assume it is smooth.

When ` = 0 and F is a non-archimedean locally compact field, the existence

of Bernstein decomposition of the category Repk(G) has been proved by Bernstein:

The category Repk(G) is equivalent to the direct product of some full-subcategories,

which are indecomposable and called blocks. This means that each k-representation

is isomorphic to a direct sum of sub representations belonging to different blocks,

and each morphism of k-representations is isomorphic to a product of morphisms

belonging to different blocks. We say that a full-subcategory of Repk(G) is inde-

composable (or a block) if it is not equivalent to a product of any two non-trivial

full-subcategories.

This decomposition has a counterpart in the “Galois side” through local Lang-

lands correspondence. Let r be a prime number such that r 6= p. When ` > 0,

we will take r = `. Let LG denote the L-group of G and WF the Weil group of

F . In the case when G equals GLn, the local Langlands correspondence (LLC) was

proved when F has characteristic p by Laumon, Rapoport and Sthuler [LRS], and,

when F has characteristic 0, independently by Harris and Taylor [HT], by Hen-

niart [Hen], and by Scholze [Sch]. It provides a canonical bijection between the set

of isomorphism classes of r-adic irreducible representations of GLn(F ) and the set

13
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of isomorphism classes of r-adic n-dimensional WF -semisimple Deligne represen-

tations, generalizing the Artin reciprocity map of local class field theory. A nice

property of LLC is that the Rankin-Selberg local factors of a pair of irreducible Qr-
representations of GLn(F ) and GLm(F ), and the Artin-Deligne local factors of the

corresponding tensor product of representations of WF are equal, and moreover this

condition characterizes LLC completely. Under the local Langlands correspondence,

two irreducible k-representations π and π′ belong to the same block if and only if

their Langlands parameters are isomorphic when restricting to the inertial subgroup

IF of WF . For G an arbitrary connected reductive group defined over F , an analog

of the Bernstein decomposition for (enhanced) Langlands parameters is constructed

in [AMS].

When ` is positive and F is a non-archimedean locally compact field. Helm gives

a proof of the Bernstein decomposition of Rep
W (F`)

(G) in [Helm], where W (F`) de-

notes the ring of Witt vectors of F`, and this deduces the Bernstein decomposition

of RepF`(G). Sécherre and Stevens gave a proof of the Bernstein decomposition of

the category of smooth k-representations of GLn(F ) and its inner forms in [SeSt].

The Bernstein decomposition of Repk(G) is unknown for general reductive groups

G defined over F . In the case where G equal GLn, Vignéras constructed in [V4] a

bijection between the set of isomorphism classes of `-modular irreducible represen-

tations of GLn(F ) and the set of isomorphism classes of `-modular n-dimensional

WF - semisimple Deligne representations with nilpotent Deligne operator. Combining

with the Bernstein decomposition, it implies that two irreducible F`-representations

π, π′ of G belong to the same block if and only if their Langlands parameters are

isomorphic when restricting to I`F , which is the kernel of the canonical map IF → Z`,
as observed by Dat in [DaII] §1.2.1.

The theory of Rankin-Selberg local factors of Jacquet, Shalika and Piatetski-

Shapiro has a natural extension at least to generic k-representations of GLn(F ).

However, via the `-modular local Langlands correspondence these factors do not

agree with the factors of Artin-Deligne. In [KuMa], Kurinczuk and Matringe clas-

sified the indecomposable `-modular WF -semisimple Deligne representations, ex-

tended the definitions of Artin-Deligne factors to this setting, and define an `-

modular local Langlands correspondence where in the generic case, the Rankin-

Selberg factors of representations on one side equal the Artin-Deligne factors of the

corresponding representations on the other.

In this thesis, we study the category Repk(SLn(F )). The proofs of Helm, Sé

cherre and Stevens in [Helm] and [SeSt] of the Bernstein decompositions are based

on the fact that the supercuspidal support (Definition 3.1.13) of any irreducible k-

representation of GLn(F ) is unique, which has been proved by Vignéras in [V2]. As

the main results of this thesis, we prove the uniqueness of supercuspidal support for

SLn(F ) in both cases that F is finite (Theorem 4.1.11) and F is non-archimedean

(Theorem 6.1.10):
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Theorem 2.1.1. Let M′ be a Levi subgroup of SLn(F ), and ρ an irreducible k-

representation of M′. The supercuspidal support of ρ is a M′-conjugacy class of a

pair (L′, τ ′), where L′ is a Levi subgroup of M′, and τ ′ is an irreducible supercuspidal

k-representation of L′.

However, the uniqueness of supercuspidal support of irreducible k-representations

is not always true for general reductive groups when ` is positive. A counter-example

has been found in [Da] by Dat and Dudas for Sp8(F ).

From now on, we use G to denote GLn(F ), and G′ to denote SLn(F ) un-

less otherwise specified. This manuscript has two parts: in section 2, we study

the k-representations of finite groups; next we consider the case that F is non-

archimedean locally compact from section 3. There is a fact that for any irreducible

k-representation π′ of M′, a Levi subgroup of G′, its cuspidal support (see 3.1.13

for the definition) is unique. Hence we could reduce our problem to the unique-

ness of supercuspidal support for irreducible cuspidal k-representations of M′, where

M′ denote any Levi subgroup of G′. In both parts, for any irreducible cuspidal

k-representation π′ of M′, there exists an irreducible cuspidal k-representation π of

M such that π′ is a component of the semisimple k-representation resM
M′π which has

finite length (see [Ta] when ` = 0, and Proposition 5.1.32 when ` is positive). Our

strategy is to study π′ by considering π, in other words, to reduce the problem of π′

to the one of π.

In the first part, we describe the supercuspidal support of an irreducible cuspidal

k-representation π′ of M′ in terms of its projective cover (see the paragraph after

Theorem 4.1.11), which has been considered by Hiss [Hiss]. Using Deligne-Lusztig

theory, we construct the projective cover Pπ′ of π′, which is one of the indecom-

posable components of the restriction of the projective cover Pπ of π to M′. The

construction is based on the Gelfand-Graev lattice. We deduce the uniqueness of

supercuspidal support of π′ by considering the parabolic restrictions of Pπ′ to any

Levi subgroup of M′.

The projective covers Pπ′ constructed in this part are interesting in their own

right. Let K̄ denote an algebraic closure of K. In the article [Helm], Helm gave the

relation between Bernstein decompositions of RepK̄(GLn(F )) and of Repk(GLn(F )).

One of the key objects of his article is a family of projective objects associated to

irreducible cuspidal k-representations. These projective objects are constructed by

projective covers of irreducible cuspidal k-representations of finite groups of GLm
type, where m divides n.

In the second part, G and G′ are defined over a non-archimedean local field.

We prove the uniqueness of the supercuspidal support (Theorem 6.1.10) in two

steps. From section 5 to section 7, we construct maximal simple cuspidal k-types

of M′ (Theorem 5.3.9), where M′ denote any Levi subgroup of G′. This gives a first

description of the supercuspidal support for any irreducible cuspidal k-representation

π′ of M′. In section 6, we describe precisely the supercuspidal support of π′ by
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considering the derivatives of the elements in the supercuspidal support, and deduce

that it is unique.

Definition 2.1.2. An maximal simple cuspidal k-type of M′ for an irreducible cus-

pidal k-representation π′ of M′ is a pair (K ′, τM′) consisting of an open and compact

modulo center subgroup K′ of M′, and an irreducible k-representation τM′ of K′, such

that:

indM′
K′ τM′

∼= π′. (2.1)

Inspired by [BuKuI], [BuKuII], [GoRo] and [Ta], we construct the maximal sim-

ple cuspidal k-types of M′ from those of M, where M is a Levi subgroup of G such

that M ∩G′ = M′. More precisely, let π be an irreducible cuspidal k-representation

of M, such that π′ is an component of resM
M′π. Let (JM, λM) be a maximal simple cus-

pidal k-type of M of π (we inherit the notations from those of [BuKu]), which means

the compact induction indM
K ΛM is isomorphic to π, where K is an open subgroup

of M compact modulo center, which contains JM as the unique maximal compact

subgroup, and ΛM is an extension of λM to K. In the equation (2.1), the group

K′ is also compact modulo centre. Furthermore, the group K′ contains J̃M ∩ M′

as the unique maximal open compact subgroup, and K′ is a normal subgroup of

(K ∩M′)(J̃M ∩M′) with finite index, where J̃M is an open compact subgroup of M

containing JM. The irreducible k-representation τM′ of K′ contains some irreducible

component of the semisimple representation resJ̃M
J̃M∩M′

indJ̃MJMλM. When M′ = G′, the

group K′ equals J̃M ∩M′, and this simple case is considered in section 3, based on

which the case for proper Levi is dealt.

In the construction, the technical difficulty is to prove that the compact induction

indM′
K′ τM′

∼= π′ is irreducible. When char(k) is 0, it is sufficient to prove that the

intertwining group of τM′ equals to K′. In our case, besides of this condition about

intertwining group, we need to verify the second condition explained in section

3.5, which is given by Vignéras in [V3]. After this construction, we give the first

description of thesupercuspidal support of any irreducible cuspidal k-representation

π′ in Proposition 5.3.18:

Proposition 2.1.3. Let π′ be an irreducible cuspidal k-representation of M′, and π

an irreducible cuspidal k-representation of M such that π contains π′. Let [L, τ ] be

the supercuspidal support of π, where L is a Levi subgroup of M and τ an irreducible

supercuspidal k-representation of L. Let τ ′ be a direct component of resL
L′τ . The

supercuspidal support of π′ is contained in the M-conjugacy class of (L′, τ ′).

We finish the proof of the uniquess of the supercuspidal support of π′ by proving

that there is only one irreducible component τ ′0 of resL
L′τ , such that (L′, τ ′0) belongs

to the supercuspidal support of π′. The idea is to study the Whittaker model of τ ′

and apply the derivative formula given by Bernstein and Zelevinsky in [BeZe]. For

this, we need to generalise their formula to the case of k-representations of M′. In

fact, let TM be a fixed maximal split torus of M defined over F and TM′ = TM∩M′.
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Fix BM = TMUM a Borel subgroup of M, and BM′ = TM′UM a Borel subgroup of

M′. There is a non-degenerate character θ̇ of UM such that the highest derivative

of π′ according to θ̇ is non-zero. On the other hand, assume that L is a standard

Levi subgroup of M, and θ denotes θ̇|UL
, which is also a non-degenerate character

of UL. There is only one irreducible component τ ′0 of resL
L′τ , such that the highest

derivative of τ ′0 according to θ is non-zero. If π′ is a subquotient of iM
′

L′ τ
′ for some

irreducible component τ ′ of resL
L′τ , then the highest derivative of iM

′
L′ τ

′ according to

θ̇ is also non-zero (Proposition 6.1.9). Applying the generalised formula of derivative

in Corollary 6.1.7 (4), we obtain that the highest derivative of iM
′

L′ τ
′ according to θ̇

is isomorphic to the highest derivative of τ ′ according to θ. Hence τ ′ ∼= τ ′0. This

ends this thesis.
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Chapter 3

Background

3.1 Modulo ` representations of p-adic groups with p 6= `

Let H be a locally profinite group, and k be an algebraically closed field. Then

Repk(H) denotes the category of smooth k-representations of H. In this thesis, a

k-representation of H always means a smooth k-representation of H.

3.1.1 Restrictions and compact inductions

Let G denote the group of F -points of a reductive connected algebraic group defined

over F , where F is a non-archimedean locally compact field whose residue field is

of characteristic p. Let res, ind, Ind denote the functors of restriction, compact

induction and induction, respectively.

Proposition 3.1.1 (Mackey’s decomposition formulae). Let H, K be two closed

subgroups of G, such that the double cosets HgK, g ∈ G are open and closed. For

any k-representation σ ∈ Repk(H), the restriction on double cosets induces the

isomorphisms:

resG
KIndG

H(σ) ∼=
∏
HgK

IK,g(H)g(σ),

resG
K indG

H(σ) ∼=
⊕
HgK

iK,g(H)g(σ),

where

IK,g(H)g(σ) = IndKK∩g(H)res
g(H)
K∩g(H)g(σ), iK,g(H)g(σ) = indKK∩g(H)res

g(H)
K∩g(H)g(σ).

Remark 3.1.2. • The functions in resG
K indG

H(σ) are supported on finitely many

double cosets HgK for g ∈ G, while the functions in resG
KIndG

H(σ) can be

supported on infinitely many double cosets HgK for g ∈ G.

• The double cosets HgK, g ∈ G are open and closed when H is open or K is

open. In fact, the group G can be written as a disjoint union of HgK for a

19
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family of g ∈ G, and HgK are open, since HgK is a union of left cosets of H

as well as a union of right cosets of K, which are open by our hypothesis.

Proposition 3.1.3 (Frobenius reciprocity). Let H and K be closed subgroups of G.

1. The restriction functor resG
H : Repk(H)→ Repk(G) has a right adjoint IndG

H .

2. If K is open, the restriction functor resG
K has also a left adjoint indG

K .

Proof. A proof is given in §5.7 [V1].

We take the notations as in Proposition 3.1.3. We have four natural transforma-

tions deduced from the Frobenius reciprocity above:

• v → f(v) : V → IndG
HresG

HV is injective;

• f → f(1) : resG
HIndG

HW →W is surjective;

• ω → iω : W → resG
K indG

KW is injective, and the image of W is a direct factor;

• f →
∑

Kg g
−1f(g) : indG

KresG
KV → V is surjective.

To prove the injectivity or surjectivity for these four morphisms, we check directly

the definition of these morphisms as in the proof of Proposition 3.1.3. For the third

morphism, the fact that the image of W is a direct factor is deduced by applying

Proposition 3.1.1, the Mackey’s decomposition formulae.

3.1.2 Schur’s lemma and Mackey’s criterions of irreducibility

Let G denote the group of F -points of some reductive connected algebraic group

defined over F , and F be as in Section 3.1.1. Each irreducible k-representation

(π, V ) of G is admissible (§II, 2.8 in [V1]), hence there exists an open compact

subgroup K, such that dim(eKV ) = dim(V K) < ∞, where eK is an idempotent

contained in the Heck algebra Hk(G) of G.

Proposition 3.1.4 (Schur’s lemma). Let A be an algebra defined over an alge-

braically closed field R, and M a simple A-module. Then EndAM = R if condition

(1) or (2) hold:

1. dimRM < |R|,

2. there exists an idempotent e of A, such that eM 6= 0, and dimR(eM) < |R|,
where |R| indicates the cardinality of field R.

Definition 3.1.5. The global Hecke algebra Hk(G) of G over k is the algebra formed

by k-algebra k∞c G, the set of isomorphism classes of locally constant k-functions on

G with compact support, endowed with convolution product after fixing a normalised

Haar measure.

Since the category Repk(G) is equivalent to the category of modules over the

Hecke algebra Hk(G), irreducible k-representations of G always verify the condition

(2) of Proposition 3.1.26.
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3.1.3 Intertwining and weakly intertwining

In this section, we suppose that G is a locally pro-finite group, and Z is the centre

of G. We identify a compact open subgroup K of G/Z to a open subgroup of G

containing Z. For any x ∈ G, we always denote x(K) to be xKx−1. For any field

R and R-representation ρ of K, we always denote x(ρ) as an R-representation of

x(K), such that x(ρ)(g) = ρ(x−1gx), for g ∈ x(K).

Definition 3.1.6. Let G be a locally profinite group, and R be an algebraically closed

field. Let Ki be an open compact subgroup of G for i = 1, 2, and ρi a R-representation

of Ki. Define iK1,K2x(ρ2) to be the induced R-representation

indK1

K1∩x(K2)res
x(K2)
K1∩x(K2)x(ρ2),

where x(ρ2) is the conjugation of ρ2 by x.

• We say an element x ∈ G weakly intertwines ρ1 with ρ2, if ρ1 is an irreducible

subquotient of iK1,K2x(ρ2). And ρ1 is weakly intertwined with ρ2 in G, if

ρ1 is isomorphic to a subquotient of indG
K2
ρ2. We denote IwG(ρ1, ρ2) the set

of elements in G, which weakly intertwines ρ1 with ρ2. When ρ1 = ρ2, we

abbreviate IwG(ρ1, ρ2) as IwG(ρ1).

• We say the element x ∈ G intertwines ρ1 with ρ2, if the Hom set

HomkK1(ρ1, iK1,K2x(ρ2)) 6= 0.

Representation ρ1 is intertwined with ρ2 in G, if the Hom set

HomkG(indG
K1
ρ1, indG

K2
ρ2) 6= 0.

We denote IG(ρ1, ρ2) the set of elements in G, which intertwine ρ1 with ρ2.

When ρ1 = ρ2, we abbreviate IG(ρ1, ρ2) as IG(ρ1).

When ρ1 is irreducible, we deduce directly from Mackey’s decomposition formulae

that ρ1 is (weakly) intertwined with ρ2 in G if and only if there exists an element

x ∈ G, such that x (weakly) intertwines ρ1 with ρ2.

Proposition 3.1.7 (Mackey’s criterions of irreducibility (§I, 8.3 in [V1])). Let K,K ′

be two compact open subgroups of G/Z, where Z denotes the centre of G, and σ and

σ′ are irreducible k-representations of K and K ′ respectively. We have

1. Endk[G](indG
Kσ) = k is equivalent to IG(σ) = K, where IG(σ) denotes the

intertwining set of σ in G.

2. If indG
Kσ is reducible, then σ is a subquotient of iK,g(K)g(σ) for at least one

g /∈ K.
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3. HomG(indG
Kσ, indG

K′σ
′) 6= 0 if and only if there exists g ∈ G, such that σ is a

sub-representation of iK,g(K′)g(σ′).

4. If the two k-representations indG
Kσ and indG′

K′σ
′ are isomorphic, there exists

g ∈ G, such that σ is a direct factor of iK,g(K′)g(σ′). The converse is true, if

the two k-representations indG
Kσ and indG

Kσ
′ are irreducible.

Remark 3.1.8. When k is of characteristic 0. Mackey’s criterions of irreducibility

above have a brief version: the induced k-representation indG
Kσ is irreducible, if and

only if the intertwining set IG(σ) = K. This is the criterion of justifying that the

induced k-representation ind
GLn(F )
E×J ΛQ` is irreducible, in the theory of Q`-types of

GLn(F ) in [BuKu].

3.1.4 Parabolic inductions and restrictions

Let G be a locally pro-finite group and H be a closed subgroup of G. We de-

note IndG
H and indG

H the functors of induction and compact induction respectively,

from Repk(H) to Repk(G). Denote resG
H the functor of restriction from Repk(G) to

Repk(H). Let δG denote the character of module of G.

Let P = MU be a parabolic subgroup of G, where M denotes the Levi subgroup

of P and U denotes the unipotent radical of P. We define iGM, r
G
M the normalised

parabolic induction and restriction:

• Let π ∈ Repk(M). Define iGMπ as indG
P (π ⊗ δ

1
2
P), where we view π as a repre-

sentation of P by acting U trivially on π.

• Let π ∈ Repk(G). Define rG
Mπ as resG

P (π(U) ⊗ δ−
1
2

P ), where π(U) denotes the

U-coinvariants of π.

Proposition 3.1.9. The quotient group G/P is compact. The unipotent radical U

of P has a increasing filtration of countably many pro-p open compact subgroups.

The first property above indicates that the two inductions indG
P and IndG

P from

Repk(P) to Repk(G) coincide. The second property is applied in Proposition 6.1.9.

Proposition 3.1.10. • The two functors iGM, r
G
M are transitive. Let M1 be a

Levi subgroup of G and M2 be a Levi subgroup of M1, we have:

iGM1
◦ iM1

M2
= iGM2

, rG
M1
◦ iM1

M2
= rG

M2
.

• The functor rG
M is a left adjoint of iGM.

• The two functors iGM, r
G
M are exact, and respect finite length.

Lemma 3.1.11. The two functors iGM, r
G
M respect direct limits.

Proof. The functor rG
M respects direct limits since it has a right adjoint. For the

functor iGM, this property is proved in Proposition A.0.3.
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3.1.5 (Super)cuspidal support

Let F be a finite field of characteristic p or a non-archimedean locally compact

field whose residue field is of characteristic p, and k an algebraically closed field of

characteristic ` where ` 6= p. Let G be a reductive connected algebraic group defined

over F , G be the group of F -points G(F ) of G, and Repk(G) the category of smooth

k-representations of G.

Let M be a Levi subgroup of G.

• iGM denotes the normalised parabolic induction from the category Repk(M) to

the category Repk(G);

• rG
M denotes the normalised parabolic restriction from the category Repk(G) to

the category Repk(M).

Definition 3.1.12. Let π be an irreducible k-representation of G.

• We say that π is cuspidal, if for any proper Levi subgroup M of G and any

irreducible k-representation ρ of M, π does not appear as a subrepresentation

or a quotient representation of iGMρ;

• We say that π is supercuspidal, if for any proper Levi subgroup M of G and

any irreducible k-representation ρ of M, π does not appear as a subquotient

representation of iGMρ.

Definition 3.1.13. Let π be an irreducible k-representation of G.

• Let (M, ρ) be a cuspidal pair of G, which means M is a Levi subgroup of G,

and ρ is an irreducible cuspidal k-representation of M. We say that (M, ρ)

belongs to the cuspidal support of π, if π is a subrepresentation or a quotient

representation of iGMρ;

• Let (M, ρ) be a supercuspidal pair of G, which means M is a Levi subgroup of

G, and ρ is an irreducible supercuspidal k-representation of M. We say that

(M, ρ) belongs to the supercuspidal support of π, if π is a subquotient of iGMρ.

Proposition 3.1.14 (Uniqueness of cuspidal support). Let π be an irreducible k-

representation of G, its cuspidal support is unique up to G-conjugation.

Proof. See [V1, 2.20].

When ` = 0, the cuspidal support of an irreducible k-representation π of G coin-

cide with the supercuspidal support of π. Hence, in this case, Proposition 3.1.14 is

equivalent to say that the supercuspidal support of π is unique up to G-conjugation.
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3.1.6 Reduction modulo `

In this section, we suppose that k = F` an algebraically closed field of characteristic

0 < l 6= p, and Z` the ring of integers of Q`. We introduce the Z`-integral structure

for an Q`-representation of G = GLn(F ).

First we consider the representations with abstract coefficients, that is, let R be

a field with valuation and A be its ring of integers. Let (π, V ) be an R-representation

of G. We define A[G]-lattice of V as following:

Definition 3.1.15. We say that an R-representation (π, V ) is admissible, if for

any open compact subgroup K of G, the K-invariant subspace V K of V has finite

dimension.

Definition 3.1.16. Let (π, V ) be an admissible R-representation of G, an A[G]-

lattice of V is a sub-A-module L of V , who verifies the two equivalent conditions

below:

• For any open compact subgroup K of G, the K-invariant sub-module LK is an

A-lattice of V K .

• L contains an R-basis of V , such that for any open compact subgroup K, LK

is contained in a finite type A-module.

We say that V is A-integral if it contains an A[G]-lattice.

Remark 3.1.17. When A is a principal ring. Let (π, V ) be an R-representation

of G. A free sub-A-module of V , which generates V and stable under the action

of G, has the property: for any open compact subgroup K, the A-module LK is a

free sub-A-module of V K which generates V K . Hence when (π, V ) is admissible,

any free sub-A-module of V , which generates V and stable under the action of G,

verifies the conditions in Definition 3.1.16, and is an A[G]-lattice of V in the sense

of Definition 3.1.16.

Now we come back to Q`-representations of G:

Definition 3.1.18. A Q-representation (π, V ) of G is said to be `-integral if it

contains a free sub-Z`-module L of V and L generates V , with L stable under the

action of G.

We will justify that when (π, V ) is irreducible (hence admissible, see §II, 2.8 in

[V1]), being `-integral as in Definition 3.1.18 is also being Z`-integral as in Definition

3.1.16. According to §I.9.3(vii), III.4.13, 4.14 in [V1], we conclude:

Proposition 3.1.19. Let (π, V ) be an irreducible Q`-representation of G, and `-

integral as in Definition 3.1.18. Then there exits a Z`-lattice L, which is free over

Z`, stable under G and finite type as Z`[G]-module. In addition, the lattice L is

defined over OE , where E/Q` is a finite field extension, and OE is the ring of integers

of E. This is to say, there exists an OE [G]-lattice LE of V , which is free over OE
and finite type as OE [G]-module, such that L ∼= LE ⊗OE Z`.
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Let (π, V ), L a Z`-lattice as in Proposition 3.1.19, and (πE , VE) be a E-representation

of G, such that VE ∼= LE ⊗ Q`. The ring of integers OE of E is principal. Hence

by Remark 3.1.17, the lattice LE is actually an OE [G]-lattice of VE as in Definition

3.1.16. Furthermore, the subspace LK = eKL for any open compact subgroup K in

G, where eK denotes the idempotent in the Hecke algebra HQ`(G) according to K

(§I, 3.2 in [V1]), which also belongs to the Hecke algebra HE(G). Hence

LK = eKLE ⊗ Z` = LKE ⊗ Z`,

and by the same reason, we have

V K = V K
E ⊗Q`,

which means that we can deduce from the fact that LKE is an OE -lattice of V K
E that

LK is a Z`-lattice of V K . Hence L is a Z`[G]-lattice as defined in Definition 3.1.18.

Proposition 3.1.20 (Principe of Brauer-Nesbitt). Let (π, V ) be an `-integral irre-

ducible Q`-representation of G, and L be a Z`[G]-lattice of V which is free over Z`
and finite type as Z`[G]-module, defined over a finite field extension of Q`. Then

the quotient L/`L has finite length and its semi-simplification is independent of the

choice of L, where `Z` is the maximal ideal of the ring of integers Z`.

Definition 3.1.21 (Reduction modulo ` and lift to Q`). • Let (π, V ), L be as

in Proposition 3.1.20. The reduction modulo ` of (π, V ) is the semi-simplification

of the k-representation L⊗ F `.

• Let (τ,W ) be a k-representation of G, we say it can be lift to a Q`-representation

of G, if there is an `-integral Q`-representation of G, whose reduction modulo

` is equivalent with (τ,W ).

3.1.7 Derivatives of k-representations of GLn(F )

In this section, let k be an algebraically closed field of characteristic l 6= p. Let

Gn be the group of F -points of reductive groups GLn defined over F , where F is a

non-archimedean locally compact field whose residue field is of characteristic p. Let

Pn denote the mirabolic subgroup of Gn, which is the group consisting of matrices

whose last row is (0, . . . , 0, 1) when n > 1, and is the trivial group when n = 1.

When n > 1, the unipotent radical Vn−1 of Pn is the group consisting of matrices

upper-triangular by blocks, where the first block on the diagonal is the identity

matrix of size n − 1 × n − 1, and the second bloc on the diagonal is the identity

matrix of size 1× 1. The group Vn−1 is isomorphic to the additive group Fn−1.

We fix ψ a k-quasicharacter of F . When F is finite of characteristic p, we assume

that ψ is non-trivial. When F is non-archimedean locally compact, we assume that

ψ is trivial on the normalizer πF of F but is non-trivial on the integer ring OF of F .

Let Un be the strictly upper-triangular subgroup of Gn. Any k-character θ of Un
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can be written as θ(uij) = ψ(
∑n−1

i=1 aiui,i+1), where (uij)i,j ∈ Un and (ai)i ∈ Fn−1.

Wa say ψ is non-degenerate, if ai 6= 0 for any i ∈ {1, . . . , n−1}. The non-degenerate

characters of Un are Pn-conjugate.

Let θ be a non-degenerate k-character of Un. For any k-character ψ of U and

any k-representation (π, V ) of Gn, where V is the k-space of representation, we use

V (U, ψ) to denote the subrepresentation generated by g(v) − ψ(g)v for any v ∈ V ,

and πU,θ to denote the quotient-representation on VU,ψ = V/V (U, ψ), named as

(U, ψ)-coinvariants of π.

Let Gn denote GLn(F ). Define functors:

• Ψ− : Repk(Pn)→ Repk(Gn−1). Let (π, V ) ∈ Repk(Pn), then Ψ− maps (π, V )

to (πVn−1,1, VVn−1,1).

• Ψ+ : Repk(Gn−1) → Repk(Pn). Let (π, V ) ∈ Repk(Gn−1), then Ψ+ extends

(π, V ) trivially to Vn−1;

• Φ− : Repk(Pn) → Repk(Pn−1). Let (π, V ) ∈ Pn, then Φ− maps (π, V ) to

(πVn−1,θ, VVn−1,θ).

• Φ+ : Repk(Pn−1) → Repk(Pn). We extend (π, V ) to the unipotent radical

Vn−1 of Pn as g(v) = θ(g)v for any g ∈ Vn−1, v ∈ V , and denote this extended

k-representation of Pn−1Vn−1 as π0, then Φ+π = indPnPn−1Vn−1
π0.

The definition of functors Φ+,Φ− is independent of the choice of θ, since any

two non-degenerate k-characters of U are Gn-conjugate. This is not true for general

reductive groups. For G′ = SLn(F ), non-degenerate k-characters of U are not always

G′-conjugate, for which we indicate the non-degenerate k-character θ we choose when

defining Φ−,Φ+ as in Section 6.1.1.

Proposition 3.1.22. • Ψ+,Ψ−,Φ+,Φ− are exact.

• Ψ− is the left adjoint of Ψ+, and Φ− is the left adjoint of Φ+.

Definition 3.1.23. Let π be a k-representation of Gn. For any k ∈ {1, ..., n}, the

k-th derivative π(k) is defined as the k-representation Ψ−(Φ−)(k−1)π of Gn−k.

When k = n, the n-th derivative is a k-representation of the trivial group, hence

can be seen as a k-vector space. Let (π, V ) ∈ Repk(Gn), we denote the k-vector

space of representation π(n) as V (n), then V (n) ∼= VU,θ.

3.1.8 Whittaker models of irreducible k-representations of GLn(F )

Let Gn, Un and k be as in Section 3.1.7, and θ be a non-degenerate k-character of

Un.
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Definition 3.1.24. Let τ denote indGn
Un
θ, and π be an irreducible k-representation

of Gn. We say that π has a Whittaker model if HomkGn(τ, π) 6= 0. Hence π has a

Whittaker model if its n-th derivative π(n) 6= 0. Furthermore, we say that π has a

unique Whittaker model if the k-dimension of π(n) equals 1.

Theorem 3.1.25 (§III, 5.10 [V1]). Every irreducible cuspidal k-representation π of

Gn has a unique Whittaker model.

Proposition 3.1.26. Let π be an `-integral irreducible cuspidal Q`-representation

of Gn. Then it is `-irreducible, which means its reduction modulo ` is irreducible

Proof. A proof is given in §III,1.9 of [V1].

3.2 Maximal cuspidal simple Q`-types of GLn(F )

In this section, F denotes a non-archimedean local field, and G denotes the group

GLn(F ). We introduce basic notations and properties of maximal cuspidal distin-

guished Q`-types ([BuKu]) and maximal cuspidal distinguished k-types of GLn(F )

([V1]).

3.2.1 Hereditary orders

Let oF denote the ring of integers of F , and pF denote the maximal ideal of oF . Let

X be a finite-dimensional F -vector space. An oF -lattice in X is a finitely generated

oF -module which contains a basis of X. If X is also an F -algebra which is associative

with 1, then an oF -order in X is an oF -lattice which is also a subring with the same

1 of X. Let V denote a n-dimensional F -vector space, and A denote EndF (V ), or

equivalently Mn(F ) the F -algebra of F -matrices of size n×n, and A an oF -order of

A. We say A is hereditary, if A is an oF -order of A and any A-lattice in any finitely

generated A-module is A-projective.

As in §1.1 [BuKu], we can express hereditary oF -orders in A in terms of oF -

lattice chains in Fn. An oF -lattice chain in an F -vector space V is a non-empty set

L = {Li : i ∈ Z} of oF -lattices in V such that:

1. Li ' Li+1 for all i ∈ Z;

2. there exists an integer e ∈ Z, such that pFLi = Li+e for any i ∈ Z.

We could define

EndmoF (L) = {x ∈ A : xLi ⊂ Li+m, i ∈ Z}

for each m ∈ Z. In particular End0
oF

is an hereditary oF -order in A, denoted as

A(L). Conversely, any hereditary oF -order is of this form, for some lattice chain L.

In additional, if (Li : Li+1) = (Lj : Lj+1), for all i, j ∈ Z, the hereditary oF -order

A(L) is called principal.
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Let A be a hereditary oF -order in A, and L a lattice chain associated, which

means A = End0
oF

(L). We denote the Jacobson radical of A by

P = rad(A) = End1
oF

(L).

The ideal P is a fractional ideal and invertible. And we have

Pn = EndnoF (L), n ∈ Z.

We have

PnLi = Li+n,

pFA = Pe,

and we set

U0(A) = U(A) = A×,

Um(A) = 1 + Pm,m ≥ 1.

Since G ⊂ A, we use K(A) to denote the G-normaliser of L as

K(A) = {x ∈ G : xLi ∈ L, i ∈ Z}.

We define a “valuation” according to a fixed hereditary order A: For any x ∈ A, x 6= 0

νA(x) = max{n ∈ Z : x ∈ Pn},

and νA(0) =∞.

From now on we fix a continuous Q`-character ψF of the additive group F which

is null on the maximal ideal pF but non-null on the integer ring oF of F . Let m, r

be integers such that 0 ≤ [m2 ] ≤ r < m. There is an isomorphism

(Ur+1(A)/Um+1(A))∧ ∼= P−m/P−r,

where “∧” denotes the Pontrjagin dual, and the isomorphism is defined by

b+ P−r 7→ ψA,b = ψb, b ∈ P−m, where

ψb(1 + x) = ψF ◦ trA/F (bx), x ∈ Pr+1.

We suppose that E/F is a field extension contained in A = EndF (V ), where V

is a n-dimensional F -vector space, then V can be viewed as an E-vector space, via

the inclusion E → A. Now we consider hereditary orders relative to such subfield E

in A.

Proposition 3.2.1. Let A be a hereditary order in A, with A = End0
oF

(L), for

some oF -lattice chain L = {Li} in V . Let E/F be some subfield of A. The following

conditions are equivalent:

• E× ⊂ K(A) (i.e. E× normalises A);
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• each Li is an oE-lattice and there is an integer e′ such that pELi = Li+e′ for

all i (i.e. L is an oE-lattice chain in the E-vector space V ).

We suppose that the equivalent conditions of Proposition 3.2.1 hold. Define

B = EndE(V ) = the A-centraliser of E,

B = A ∩B, Q = P ∩B.

We could write E as F [β] for some element β ∈ A, and some times we also denote

B as Bβ.

Definition 3.2.2. Let E/F be a field extension of F , and A a hereditary order

contained in A. Assume that E× ⊂ K(A). Let β ∈ A such that E = F [β], and

k ∈ Z. Define

Nk = N(β,A) = {x ∈ A : (βx− xβ) ∈ Pk}

The subset Nk(β,A) is a lattice in A, and

Nk(β,A) ⊂ B + P,

for all sufficiently large k as proved in §(1.4.4) [BuKu]. While k ≤ νA(β), we always

have A = Nk(β,A).

Definition 3.2.3. Suppose that E 6= F . Define

k0 = k0(β,A) = max{k ∈ Z : Nk 6⊂ B + P}.

While E = F , we define k0(β,A) = −∞. Furthermore, we always have the inequality

νA(β) ≤ k0(β,A),

and we say β is minimal over F if νA(β) = k0(β,A).

3.2.2 Simple stratum and simple Q`-characters

Definition 3.2.4. Let A be a hereditary order, and n, r ∈ Z, b, β ∈ A.

• The 4-tuple [A, n, r, b] is called a stratum in A, if r < n and −n ≤ νA(b).

• Let [A, n, r, b] be a stratum in A. It is simple if

1. the algebra E = F [β] is a field,

2. E× ⊂ K(A),

3. νA(β) = −n,

4. r < −k0(β,A).
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Definition 3.2.5. Let [Ai, ni, ri, bi] be strata in A, i = 1, 2, and Pi = rad(Ai), we

say they are equivalent if

b1 + P−r11 = b2 + P−r22 ,

denoted as

[A1, n1, r1, b1] ∼ [A2, n2, r2, b2].

We now fix a simple stratum [A, n, 0, β], and set r = −k0(β,A). We will introduce

simple characters, and first we need to define a pair of oF -orders (not hereditary)

such that

H(β,A) ⊂ J(β,A) ⊂ A.

Definition 3.2.6. 1. Suppose that β is minimal over F , which means r = n or

∞. Put

H(β) = H(β,A) = Bβ + P[n
2

]+1.

2. Suppose that r < n, and let [A, n, r, γ] be a simple stratum equivalent to

[A, n, r, β]. Put

H(β,A) = H(β) = Bβ + H(γ) ∩P[ r
2

]+1.

Definition 3.2.7. 1. Suppose that β is minimal over F . Put

J(β) = Bβ + P[n+1
2

].

2. Suppose that β is not minimal over F , and let [A, n, r, γ] be a simple stratum

equivalent to [A, n, r, β]. Put

J(β) = Bβ + J(γ) ∩P[ r+1
2

].

The case 2 of the two definitions above are well defined. Under the assumption

of case 2, the stratum [A, n, r, β] is pure but not simple, and we will define H(β) and

J(β) by iteration relative to the defining sequence for [A, n, r, β] as below:

Lemma 3.2.8. For a given pure stratum [A, n, r, β]. There is a family [A, n, ri, γi], 0 ≤
i ≤ s, of simple strata, such that

• [A, n, r0, γ0] ∼ [A, n, r, β];

• r = r0 < r1 < ... < rs < n;

• ri+1 = −k0(γi,A), and [A, n, ri+1, γi+1] is equivalent to [A, n, ri+1, γi+1], 0 ≤
i ≤ s− 1;

• k0(γs,A) = −n or −∞;

• Let Bi be the A-centraliser of γi and si be a tame corestriction on A relative

to F [γi]/F . The derived stratum [Bi, ri, ri − 1, si(γi−1 − γi)] is equivalent ot a

simple stratum for 1 ≤ i ≤ s.
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We call such family the defining sequence for [A, n, r, β].

In the last condition of Lemma 3.2.8, a tame corestriction on A relative to the

field extension (F [β] =)E/F , is a (Bβ, Bβ)-bimodule homomorphism s : A → Bβ
such that s(A) = A∩Bβ for any hereditary oF -order A in A which is normalised by

E×.

Definition 3.2.9. We now define two families of open compact subgroups in G

according to H(β,A) and J(β,A) by{
Hm(β,A) = H(β,A) ∩Um(A)

Jm(β,A) = J(β,A) ∩Um(A)
,

for m ≥ 0. In particular, we always use H(β,A) and J(β,A) instead of H0(β,A)

and J0(β,A).

Let [A, n, 0, β] be a simple stratum, and r = −k0(β,A). We now define the set

of simple characters C(A,m, β) for m ≥ 0.

Definition 3.2.10. Suppose that β is minimal over F . For 0 ≤ m ≤ n − 1, let

CQ`(A,m, β) denote the set of Q`-characters θ of Hm+1(β) such that

1. θ|
Hm+1(β)∩U[n2 ]+1(A)

= ψβ;

2. θ|Hm+1(β)∩B×β
factors through detBβ : B×β → F [β]×.

Definition 3.2.11. Suppose that r = −k0(β,A), r < n. We take a simple stratum

[A, n, r, γ] equivalent to [A, n, r, β] (as in 3.2.8).

• For 0 ≤ m ≤ r− 1, let CQ`(A,m, β) be the set of Q`-characters θ of Hm+1(β)

such that

1. θ|Hm+1(β)∩B×β
factors through detBβ : B×β → F [β]×;

2. θ is normalised by K(Bβ);

3. if m′ = max{m, [ r2 ]}, the restriction θ|Hm′+1(β) is of the form θ0ψc, for

some θ0 ∈ CQ`(A,m
′, γ), where c = β − γ.

• For m ≥ r, we define CQ`(A,m, β) = CQ`(A,m, γ).

In (3) of Definition 3.2.11, we have the identity of two groups Hm′+1(β) =

Hm′+1(γ) as in the last paragraph of §3.1.9 [BuKu]. As defined in Definition 3.2.5,

the element c = β − γ belongs to Pr and ψc is a character of U[ r
2

]+1/Ur+1, hence is

trivial on Hr+1(β). It therefore defines a character of Hm′+1(β)/Hr+1(β).



32 CHAPTER 3. BACKGROUND

3.2.3 Simple Q`-types of GLn(F )

Now we introduce simple Q`-types. Let [A, n, 0, β] be a simple stratum of A, E the

field F [β], B the A-centraliser of E, H1(β,A) and J1(β,A) as defined in Definition

3.2.9.

Proposition 3.2.12. Let [A, n, 0, β] be a simple stratum in A, and θ ∈ C(A, 0, β).

There exists a unique irreducible Q`-representation η(θ) of the group J1(β,A) such

that η(θ)|H1(β,A) contains θ up to isomorphism. Moreover, η(θ)|H1(β,A) is a

multiple of θ, and

dim(η(θ)) = (J1(β,A) : H1(β,A))
1
2 .

The G-intertwining of η(θ) is J1(β,A)B×J1(β,A).

Definition 3.2.13. A β-extension of η (as defined in Proposition 3.2.12) is a Q`-
representation κ of J(β,A) such that

1. κ|J1(β,A) = η, and

2. κ is intertwined by the whole of B×,

where B denotes the A-centraliser of β.

Definition 3.2.14. A simple Q`-type in G is one of the following (1) or (2):

1. An irreducible Q`-representation λ = κ⊗ σ of J = J(β,A) where:

(a) A is a principal oF -order in A and [A, n, 0, β] is a simple stratum;

(b) for some θ ∈ CC(A, 0, β), κ is a β-extension of the unique irreducible Q`-
representation η of J1(β,A) which contains θ as in Proposition 3.2.12;

(c) if we write E = F [β],B = A ∩B, where B = EndE(V ). So that

J(β,A)/J1(β,A) ∼= U(B)/U1(B) ∼= GLf (kE)e,

for certain integers e, f , and σ is the inflation of a Q`-representation

σ0 ⊗ ... ⊗ σ0 of the group J(β,A)/J1(β,A), where σ0 is an irreducible

cuspidal Q`-representation of GLf (kE).

2. an irreducible Q`-representation σ of U(A), where

(a) A is a principal oF -order in A;

(b) if we write U(A)/U1(A) ∼= GLf (kE)e, for certain integers e, f , then σ

is the inflation of a Q`-representation of σ0 ⊗ ... ⊗ σ0, where σ0 is an

irreducible cuspidal Q`-representation of GLf (kF ).
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3.2.4 Intertwining and extension by a central character

Definition 3.2.15. Let Ki be open compact subgroups of G, and πi be irreducible

Q`-representations of Ki, for i = 1, 2, we say that g ∈ G intertwines π1 with π2, if

HomQ`[K1∩g(K2)](π1, g(π2)) is non-trivial.

Theorem 3.2.16. Let (J1, λ1), (J2, λ2) be simple Q`-types in G, attached to prin-

cipal oF -orders A1,A2, respectively. Suppose that A1
∼= A2 as oF -orders, and that

the Q`-representations λ1, λ2 intertwine in G. Then there exists x ∈ G such that

J2 = x−1J1x and λ2 is equivalent to the x-conjugation x(λ1) of λ1.

Fixing a simple type (J, λ), we have J ∩ F× = o×F and the restriction λ|o×F is a

multiple of a Q`-quasicharacter ωλ of o×F . Since F ∼= o×F × Z, we can always extend

ωλ as a Q`-quasicharacter of F×. Let ω be some Q`-quasicharacter of F× such that

ω|o×F = ωλ. We can extend λ to a Q`-representation λω of F×J by

λω(zj) = w(z)λ(j), j ∈ J, z ∈ F×.

This is well defined since F× is the center of G. We now show properties of extension

of λ to E×J .

Proposition 3.2.17. Let Λ be an irreducible Q`-representation of E×J such that

Λ|J contains λ. Then

1. there is a unique Q`-quasicharacter ω of F× such that ω|o×F = ωλ and Λ|F×J =

λω;

2. given λω as above, there exists e(E|F ) distinct extensions Λ of λω to E×J ;

3. given w′ ∈ W̃(B) (see Definition 5.5.9 in [BuKu]) and an extension Λ of λω
to E×J , there is a unique extension Λ′ of λω such that w′ intertwines Λ with

Λ′.

In particular, if B is a maximal order in B, distinct extensions of λω to E×J do

not intertwine in G.

Proposition 3.2.18. Let (J, λ) be a simple Q`-type in G, and Λ be an extension of

λ to E×J as in Proposition 3.2.17. Assume that the oE-order B attached to (J, λ)

is maximal. Then the intertwining set IG(Λ) = E×J .

3.2.5 Maximal simple cuspidal Q`-types of GLn(F )

Theorem 3.2.19. Let (J, λ) be a simple type in G, and suppose that there exists an

irreducible supercuspidal Q`-representation π of G such that π|J contains λ. Then

the oE-order B attached to (J, λ) is maximal.
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Theorem 3.2.20. Suppose that the oE-order B attached to (J, λ) is maximal. Then

any irreducible Q`-representation π of G containing λ is supercuspidal. Moreover,

for any such Q`-representation π, there is a uniquely determined Q`-representation

Λ of E×J such that Λ|J = λ and

π ∼= indG
E×JΛ.

The two theorems above and Theorem 3.2.16 imply that there is a bijection

between the set of irreducible cuspidal Q`-representations of G and the set of G-

conjugacy class of simple types (J, λ), such that the oE-order B attached is maximal.

Hence we define maximal cuspidal simple Q`-types of G as below.

Definition 3.2.21. Let (J, λ) be a simple Q`-type of G, we call it maximal cuspidal

simple, if the oE-order B attached to (J, λ) is maximal.

3.3 Maximal simple cuspidal k-types of GLn(F )

In this section, we assume that G denotes GLn(F ). Let k be an algebraically closed

field of characteristic l 6= p. In §III, 4 of [V1], Vignéras gave a construction of

maximal simple cuspidal k-types of Gn, and a relation between maximal simple

cuspidal k-types and maximal simple cuspidal k-types of G through the method of

reduction modulo ` (Definition 3.1.21).

3.3.1 Simple k-types of GLn(F )

As in §III, 4 of [V1], the construction of hereditary orders (§3.2.1), simple strata,

simple Q`-characters (§3.2.2) and simple Q`-types (§3.2.3) can be kept and gen-

eralised to the case where the coefficient field is k. In particular, when we fix a

simple stratum [A, n, 0, β], the oF -orders H(β,A), J(β,A) are independent with the

coefficient fields k or Q`. And let C`(A,m, β) be the set of simple k-characters on

Hm+1(β,A) for each m ≥ 0.

Definition 3.3.1. A simple k-type in G is one of the following two cases 1 or 2:

1. An irreducible k-representation λ = κ⊗ σ of J = J(β,A) where:

(a) A is a principal oF -order in A and [A, n, 0, β] is a simple stratum;

(b) for some θ ∈ C`(A, 0, β), κ is a β-extension of the unique irreducible

k-representation η of J1(β,A) which contains θ as in Proposition 3.2.12;

(c) if we write E = F [β],B = A ∩B, where B = EndE(V ). So that

J(β,A)/J1(β,A) ∼= U(B)/U1(B) ∼= GLf (kE)e,

for certain integers e, f , and σ is the inflation of a k-representation σ0⊗
...⊗ σ0, where σ0 is an irreducible cuspidal k-representation of GLf (kE).
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2. an irreducible k-representation σ of U(A), where

(a) A is a principal oF -order in A;

(b) if we write U(A)/U1(A) ∼= GLf (kE)e, for certain integers e, f , then σ is

the inflation of a k-representation of σ0⊗...⊗σ0, where σ0 is an irreducible

cuspidal k-representation of GLf (kF ).

When k = F`, we consider the operator of reduction modulo ` from simple Q`-
types to simple k-types of G. Otherwise, let W (k) denote the ring of Witt vectors, K
denote the fractional field Frac(W (k)), and K an algebraic closure of K. We consider

the operator of reduction modulo ` from simple K types to k-simple types of G.

Proposition 3.3.2 (§III, 4.25 in [V1]). The reduction modulo ` of an `-integral

simple Q`-type (J, λQ`) of G is a simple k-type (J, λ`) of G; conversely, each simple

k-type (J, λ`) of G can be lifted to a simple Q`-type (J, λQ`) of G, which means that

(J, λQ`) is `-integral, and its reduction modulo ` is equivalent with (J, λ`).

Let (J, λ`) be a simple k-type of G, and [A, n, 0, β] be a simple stratum, E = F [β]

be the field extension contained in A attached to (J, λ`). The representation λ` can

always be extended to the group E×J as explained in §III, 4.27.1 of [V1]. Let Λ` be

one of such extension.

Proposition 3.3.3 (§III, 4.29 in [V1]). Let (J, λQ`) be a simple Q`-type of G, and

ΛQ` be an extension of λQ` to E×J , then its reduction modulo ` is an extension of a

simple k-type (J, λ`) of G. Conversely, let (J, λ`) be a simple k-type of G, and Λ` be

an extension of λ` to E×J , then Λ` can be lift to an extension of a simple Q`-type

of G.

3.3.2 Maximal simple cuspidal k-types of GLn(F )

In this section, let G denote GLn(F ), and k = F`. We will give a construction of

irreducible cuspidal k-representations of G through maximal simple cuspidal k-types,

and give a relation between irreducible cuspidal k-representations and irreducible

cuspidal Q`-representations.

Definition 3.3.4. Let (J, λ`) be a simple k-type of G, we say it is maximal simple

cuspidal if the oE-order B attached to (J, λ`) is maximal.

Theorem 3.3.5 (§III, 1.1d), 5.2, 5.3, 5.8 in [V1]). Let (J, λ`) be a maximal simple

cuspidal k-type of G and Λ` be an extension of λ to E×J . The induction

indG
E×JΛ`

is irreducible and cuspidal.

Conversely, let π be an irreducible cuspidal k-representation of G. There exists

a maximal simple cuspidal k-type (J, λ`) and an extension Λ` of λ` to E×J , such

that π ∼= indG
E×JΛ`.
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Furthermore, for each irreducible cuspidal k-representation π, in which the max-

imal simple cuspidal k-types contained are unique up to G-conjugation.

Applying Proposition 3.1.26, 3.3.2, and 3.3.3, we conclude that:

Theorem 3.3.6. Each irreducible cuspidal k-representation can be lifted to an ir-

reducible cuspidal Q`-representation of G.

3.4 Supercuspidal support of irreducible k-representations

of GLn(F )

Let Gn denote GLn(F ), where F is a finite field of characteristic p 6= l or a non-

archimedean locally compact field whose residue field is of characteristic p 6= l.

Let k be an algebraically closed field of characteristic l. Vignéras gave a proof of

uniqueness of supercuspidal support of irreducible k-representations of G in §V4 in

[V2]:

Theorem 3.4.1 (Uniqueness of supercuspidal support). Let ρ1, ..., ρr, ρ
′
1, ..., ρ

′
t be

irreducible supercuspidal k-representations of Gn1 , ...,Gnr ,Gm1 , ...Gmt, where n =

n1 + ...+ nr = m1 + ...+mt. Then the Jordan-Holder seuquences of

i
Gn1+···+nr
Gn1×···×Gnr

ρ1 ⊗ · · · ⊗ ρr

and

i
Gm1+···+mt
Gm1×···×Gmt

ρ′1 ⊗ · · · ⊗ ρ′t
are equal, if and only if r = t,mi = ni, and the multisets {ρ1, . . . ρr} and {ρ′1, . . . , ρ′r}
are equal. Otherwise, they are disjoint.

In [V2], Vignéras also defined the supercuspidal support of k-simple types of Gn,

and give a proof of uniqueness of supercuspidal support of simple k-types of G in

§IV, 2.3 of [V2].

3.5 Bernstein center

Let k denote an algebraically closed field of strictly positive characteristic l 6= p,

and W (k) be its ring of Witt vectors. Let K be the fractional field of W (k), and K
denote an algebraic closure of K.

3.5.1 Bernstein decomposition of Repk(GLn(F )) and RepK(GLn(F ))

Let G denote GLn(F ), and M denote a Levi subgroup of G. Let τ be an irreducible

cuspidal k-representation of G, and (J, λ ∼= κ ⊗ σ) be the maximal simple cuspidal

k-type associated. Then κ can be lift to a W (k)[G]-module, noted as κ̃. Let Pσ
denote the projective W (k)-cover of σ in the category of RepW (k)(J/J

1). Define



3.5. BERNSTEIN CENTER 37

PJ,λ as indG
J (κ̃⊗Pσ). Let δ ∼= δ1⊗ ...δm be an irreducible cuspidal k-representation

of M, and (Ji, λi) the maximal simple cuspidal k-types of δi. Then define P(M,δ)

as iGMPJ1,λ1 ⊗ ... ⊗ PJm,λm . Let δ∨ be the dual of δ, define I(M,δ) as P∨(M,δ∨). Now

we fix a supercuspidal k-pair (M, π) in G. For any simple W (k)[G]-module, whose

mod ` supercuspidal support is defined by (M, π), its mod ` cuspidal support falls

into finitely many possible inertially equivalence classes (Definition 3.5.1) defined by

cuspidal pairs (Mj , πj) of G. We define I[M,π] as ⊕jI(Mj ,πj).

Definition 3.5.1. Let M1,M2 be two Levi subgroups of G, and π1,π2 be two k-

representations of M1,M2 respectively. We say that (M1, π1) and (M2, π2) belong to

one inertially equivalence class if and only if there exists an unramified k-character

χ of M1 such that M1 is G conjugate to M2, and π1 ⊗ χ is G conjugate to π2.

Theorem 3.5.2 (Theorem 11.8 in [Helm]). Let [M, π] be an inertially equivalence

class of a supercuspidal pair (M, π) (see Definition 3.1.13). The full subcategory

RepW (k)(G)[M,π] of RepW (k)(G) consisting of smooth W (k)[G]-modules Π such that

every simple subquotient of Π has mod ` inertial supercuspidal support given by

(M, π) is a block of RepW (k)(G). Moreover, every element of RepW (k)(G)[M,π] has a

resolution by direct sums of copies of I[M,π].

3.5.2 Bernstein center of Repk(GLn(F )) and RepK(GLn(F ))

In [Helm], Helm gave a relation between the Bernstein centre of RepW (k)(GLn(F ))

and the Bernstein centre of RepK(GLn(F )).

Definition 3.5.3. Let A be an abelian category. The centre of A is the endomor-

phisms of the identity functor Id : A → A.

Now we come back to the category RepW (k)(G), which is equivalent to the di-

rect product of full subcategories RepW (k)(G)[M,π], where [M, π] runs through the

inertially equivalence classes of supercuspidal k-pairs of G, as in Theorem 3.5.2.

Proposition 3.5.4 (Proposition 12.1 in [Helm]). Let A[L,π] be the centre of the

category RepW (k)(G)[L,π]. There is a natural isomorphism:

A[L,π] ⊗K ∼=
∏

(M̃,π̃)

AM̃,π̃,

where (M̃, π̃) runs over inertial equivalence classes of pairs in which M̃ is a Levi

subgroup of G and π̃ is a cuspidal representation of M over K whose mod ` inertial

supercuspidal support equals (L, π). This isomorphism is uniquely characterised by

the property that for any Π in RepK(G), and any x in A[L,π], the action of x on Π

coincides with that of its image in
∏

(M̃,π̃)AM̃,π̃.

In the proposition above, AM̃,π̃ denotes the centre of the subcategory

RepK(GLn(F ))M̃,π̃
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of RepK(GLn(F )), defined by the inertially equivalence class of the cuspidal K-pair

(M̃, π̃).



Chapter 4

k-representations of finite

groups SLn(F )

4.1 Representation theory of finite groups

Let G′ and G be the connected reductive group defined over Fq with type SLn and

type GLn respectively, where q is a power of a prime number p. Note G′ = G′(Fq)

and G = G(Fq). We have two main purposes in this section:

- Prove Theorem 4.1.11.

- For any irreducible cuspidal k-representation of G′, construct its W (k)-projective

cover.

Notice that the center of G′ is disconnected but the center of G is connected, so

we want to follow the method of [DeLu] (page 132), which is also applied in [Bon]:

consider the regular inclusion i : G′ → G, then we want to use functor ResG
G′ to

induce properties from G-representations to G′-representations.

4.1.1 Preliminary

Regular inclusion i

We summarize the context we will need in section 2 of [Bon]:

The canonical inclusion i commutes with F and maps F -stable maximal torus

to F -stable maximal torus. If we fix one F -stable maximal torus T of G and note

T′ = i−1(T), then i induces a bijection between the root systems of G and G′ relative

to T and T′. Furthermore, i gives a bijection between standard F -stable parabolic

subgroups of G and G′ with inverse ∩G′, which respects subsets of simple roots

contained by parabolic subgroups. Besides, restrict i to any F -stable Levi subgroup

L of any F -stable parabolic subgroup of G, it is the canonical inclusion from L′ to

L.

39



40 CHAPTER 4. K-REPRESENTATIONS OF FINITE GROUPS SLN (F )

From now on, we fix a F -stable maximal torus T0 of G, whence fix one of G′

as well, noted as T′0. For any F -stable standard Levi subgroup L, we always use L′

to denote the F -stable Levi subgroup of G′ under i, and use L and L′ to denote the

corresponding split Levi subgroups LF and L′F respectively.

Now we consider the dual groups. Let (G∗,T∗0, F
∗) and (G′∗,T′∗, F ∗) be triples

dual to (G,T0, F ) and (G′,T′, F ) respectively. We can induce from i a surjective

morphism i∗ : G∗ → G′∗, which commutes with F ∗ and maps T∗0 to T
′∗
0 . For any

F -stable standard parabolic subgroup P and its F -stable Levi soubgroup L, let us

use P′ and L′ to denote the F -stable standard parabolic subgroups P∩G′ and Levi

subgroups L ∩G′, then we have:

i∗(L∗) = L′∗,

whence, if we note L′∗
F∗

= L′∗ and L∗
F∗

= L∗, then:

i∗(L∗) = L′∗.

Lusztig series and `-blocks

From now on, if we consider a semisimple element s̃ ∈ L∗ for any split Levi subgroup

L∗ of G∗, we always use s to denote i∗(s̃) and [s̃] (resp. [s]) to denote its L∗(resp.

L′∗)-conjugacy class. Notice that the order of s̃ is divisible by the order of s, whence

s is `-regular when s̃ is `-regular, where ` denotes a prime number different from p.

Let G(Fq) be any finite group of Lie type, where G is a connected reductive

group defined over Fq. For any irreducible representation χ of G(Fq), let eχ denote

the central idempotent of K̄(G(Fq)) associated to χ (see definition in the beginning

of section 2 of [BrMi]). Fixing some semisimple element s ∈ G∗(Fq), where G∗

denotes the dual group of G, then E(G(Fq), (s)) denotes the Lusztig serie of G(Fq)

corresponding to the G∗(Fq)-conjugacy class [s] of s. If s is `-regular (i.e. its order

is prime to p), define

E`(G(Fq), s) :=
⋃

t∈(CG∗ (s)F∗ )`

E(G(Fq), (ts)).

Here (CG∗(s)
F ∗)` denotes the group consisting with all `-elements of CG∗(s)

F ∗ , so

ts is still semisimple. Now define:

bs =
∑

χ∈E`(G(Fq),s)

eχ,

which obviously belongs to K̄(G(Fq)).

Theorem 4.1.1 (Broué, Michel). Let s ∈ G∗(Fq) be any semisimple `-regular ele-

ment, and L′ be the set of prime numbers without `. Define Z̄` = Z̄[1/r]r∈L′, where

Z̄ denotes the ring of algebraic integers, then bs ∈ Z̄`(G(Fq)).
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Remark 4.1.2. The theorem above tells us that E`(G(Fq), s) is an union of `-blocks.

Let K be a finite field extension of K which is sufficiently large for G, with

valuation ring O, which containsW (k) as a subring. We haveK is complete, implying

K is complete. Notice that K is also sufficiently large for any split Levi subgroup

L of G, which means all the irreducible K̄-representations of L is defined over K,

whence there is a natural bijection:

IrrK̄(L)←→ IrrK(L),

so we define Lusztig series for IrrK(L) through this bijection. Since K is also suffi-

ciently large for any split Levi L′ of G′, we have the same bijection for IrrK(L′) and

bs ∈ O[L′].

Proposition 4.1.3. For any split Levi subgroup L (resp. L′) and any semisimple

`-regular element s̃ ∈ L∗ (resp. s ∈ L′∗), we have: bs̃ ∈ O[L] (resp. bs ∈ O[L′]).

Proof. We deduce from the analysis above and the definition that eχ ∈ K(L). Com-

bining this with theorem 4.1.1, we conclude that bs̃ ∈ O[L]. The same for bs’s.

Gelfand-Graev lattices and its projective direct summands

For any split Levi subgroup L′ of G′, fix one rational maximal torus T′ and let B′L′

be a standard split Borel subgroup with unipotent radical U′L′ , then OU(L′) denotes

the set of non-degenerated characters of U′L′ . Consider any µ ∈ OU(L′), of which the

representation space is 1-dimensional, so it obviously has an O[U′L′ ]-lattice , noted as

Oµ. Define YL′,µ = IndL′

U′
L′

Oµ, the Gelfand-Graev lattice associated to µ. In fact,

we have that YL′,µ is defined up to the T′-conjugacy class of µ. Take any `-regular

semisimple element s ∈ L′∗, define:

YL′,µ,s = bs ·YL′,µ.

Meanwhile, from definition we have directly that
∑

[s] bs = 1, where the sum runs

over all the `-regular semisimple L′∗-conjugacy class [s]. So:

YL′,µ =
⊕
[s]

YL′,µ,s.

Since Oµ is projective (free and rank 1) and induction respect projectivity, we see

that YL′,µ is a projective O[L′]-module. Proposition 4.1.3 implies that YL′,µ,s are

O[L′]-modules and direct components of projective O[L′]-module YL′,µ, so we con-

clude that YL′,µ,s are projective O[L′]-modules.

Let G be the group of Fq points of an algebraic group defined over Fq, and

(K,O, k) be a splitting `-modular system. We define

E`′(G) :=
⋃

z semi-simple, `−regular

E(G, z)
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Definition 4.1.4 (Gruber, Hiss). Let G be the group of Fq points of an algebraic

group defined over Fq, and (K,O, k) be a splitting `-modular system. Let Y be an

O[G]-lattice with ordinary character ψ. Write ψ = ψ`′+ψ`, such that all constituents

of ψ`′ and non of ψ` belong to E`′(G). Then there exists a unique pure sublattice

V ≤ Y , such that Y/V is an O[G]-lattice whose character is equal to ψ`′. The

quotient Y/V is called the `-regular quotient of Y and noted by π`′(Y ).

Corollary 4.1.5. Let L′ be a split Levi subgroup of G′, and s be an `-regular

semisimple element in L′∗. For any µ ∈ OU(L′), the module YL′,µ,s is indecom-

posable.

Proof. Since YL′,µ,s is a projective O[L′]-module, the section §4.1 of [GrHi] or Lemma

5.11(Hiss) in [Geck] tells us that it is indecomposable if and only if its `-regular

quotient πl′(YL′,µ,s) (see §3.3 in [GrHi]) is indecomposable. Inspired by section 5.13.

of [Geck], we consider K ⊗ πl′(YL′,µ,s), which is the irreducible sub-representation

of K⊗YL′,µ lying in Lusztig serie E(L′, (s)). The module π`′(YL′,µ,s) is torsion-free,

so we deduce that πl′(YL′,µ,s) is indecomposable.

Proposition 4.1.6. Let L′ be split Levi subgroup of G′, and µ ∈ OU(L′). All the

projective indecomposable direct summands YL′,µ,s of Gelfand-Graev lattice YL′,µ are

defined over W (k), which means there exist projective W (k)[L′]-modules YL′,µ,s such

that YL′,µ,s ⊗O = YL′,µ,s. In particular, YL′,µ,s are indecomposable.

Proof. Notice that U′L′ are p-groups, whence µ is defined over K, and there is a

W (k)[U′L′ ]-moduleOµ such that Oµ = Oµ⊗W (k)[U′
L′ ]

O. Define a projective W (k)[L′]-

module YL′,µ = IndL′

U′
L′

(Oµ). Since k is algebraically closed, then ȲL′,µ, the reduction

modulo ` of YL′,µ, coincides with ȲL′,µ, the reduction modulo ` of YL′,µ. Proposition

42 (b) and Lemma 21 (b) in [Ser] imply that the decomposition of YL′,µ gives an

decomposition:

ȲL′,µ =
∑
[s]

ȲL′,µ,s.

By the same reason, this gives an decomposition by indecomposable projective mod-

ules:

YL′,µ = YL′,µ,s

such that the reduction modulo ` of YL′,µ,s equals to ȲL′,µ,s. In particular, we can

check directly through Proposition 42 (b) of [Ser] that YL′,µ,s ⊗O = YL′,µ,s.

Remark 4.1.7. Since U′L′ is also the unipotent radical of BL, where B′L′ is the

inverse image of the regular inclusion i of BL. We can repeat the proof for YL,s̃ and

see that they are also defined over W (k) in the same manner.

For split Levi subgroup L of G, we know from [DiMi] that if we fix one rational

maximal torus and define OU(L), this set of non-degenerate characters consists with

only one orbit under conjugation of the fixed torus. So the Gelfand-Graev lattice
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is unique, and we note it as YL. All the analysis above still work for YL, and take

some `-regular semisimple element s̃ ∈ L∗. In particular, we use YL,s̃ to denote the

indecomposable projective direct summand bs̃ ·YL.

Corollary 4.1.8. Let s̃ ∈ L∗ be a semisimple `-regular element, then:

ResL
L′(bs̃ ·YL) ↪→ bs · ResL

L′YL.

Proof. We know directly from definition that, for any semisimple `-regular s′ ∈ G′∗:

bs′ · ResL
L′(bs̃ ·YL) ↪→ bs′ · ResL

L′YL,

Meanwhile bs′ ·ResL
L′(bs̃·YL) is a projective O[G′]-module, so it is free when considered

as O-module. And Proposition 11.7 in [Bon] told us that bs′ ·ResL
L′(bs̃ ·YL)⊗ K̄ = 0

if [s′] 6= [s] with s = i∗(s̃), which means bs′ · ResL
L′(bs̃ ·YL) = 0. Combine this with⊕

[s′]

bs′ · ResL
L′(bs̃ ·YL) = ResL

L′(bs̃ ·YL),

we obtain the result.

Proposition 4.1.9. For any split Levi subgroup L of G, let L′ denote the split Levi

subgroup L ∩ G′ of G′, and Z(L), Z(L′) denote the center of L and L′ respectively,

then we have the equation:

ResL
L′YL = |Z(L) : Z(L′)|

⊕
[µ]∈OU(L′)

YL′,µ,

where [µ] denote the T′-orbit of µ.

Proof. Let B be a split Borel subgroup of L and B′ = B∩L′ the corresponding split

Borel of L′, and U′ denotes the unipotent radical of B′, observing that U′ is also the

unipotent radical of B. Fixing one non-degenerate character µ of U′, let Oµ be its

O[U′]-lattice. By the transitivity of induction, we have:

YL = IndL
L′ ◦ IndL′

U′Oµ = IndL
L′YL′,µ.

Since [T : T′] = [L : L′], by using Mackey formula we have:

ResL
L′YL =

⊕
αi∈[T:T′]

ad(αi)(YL′,µ).

Furthermore, ad(αi)(IndL′
U′Oµ) = IndL′

U′(ad(αi)(Oµ)). Notice that after fixing one

character of U′, all its O[U′]-lattices are equivalent, so ad(αi)(YL′,µ) = YL′,ad(αi)(µ).

Whence, let [µ] denote the T′-orbit of µ in OU(L′), we have

StabT([µ]) ⊂ StabT(YL′,µ) ⊂ StabT(YL′,µ ⊗ K̄).
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On the other hand, the proof of lemma 2.3 a) in [DiFl] tells that

StabT(YL′,µ ⊗ K̄) ⊂ StabT([µ]).

So the inclusion above is in fact a bijection. Combine this with the statement of

lemma 2.3 a) in [DiFl], we finish our proof.

Lemma 4.1.10. Fix a semisimple `-regular s ∈ G′∗, define S[s] to be the set of

semisimple `-regular G̃∗-conjugacy classes [s̃] ⊂ G̃∗ such that i∗[s̃] = [s]. Then⊕
[s̃]∈S[s]

ResL
L′YL,s̃ = |Z(L) : Z(L′)|

⊕
µ∈OU′ (L

′)

YL′,µ,s

Proof. By definition, YL,s̃ = bs̃ · YL. Multiplying bs on both sides of the equa-

tion in Proposition 4.1.9 and considering Corollary 4.1.8, we conclude that for any

`-regular semisimple G′∗-conjugacy class [s],
⊕

[s̃]∈S[s] ResL
L′YL,s̃ is a projective di-

rect summand of |Z(L) : Z(L′)|
⊕

µ∈OU(L′) YL′,µ,s. Meanwhile, let S = {S[s]| s ∈
G
′∗, s semisimlpe `-regular}, then Proposition 4.1.9 can be written as:⊕

S

⊕
[s̃]∈S[s]

ResL
L′YL,s̃ = |Z(L) : Z(L′)|

⊕
[s]

⊕
µ∈OU(L′)

YL′,µ,s

So they equal to each other.

4.1.2 Uniqueness of supercuspidal support

In this part, we will proof the main theorem 4.1.11 for this section. First we recall

the notions of cuspidal, supercuspidal and supercuspidal support.

We always use i and r to denote the functors of parabolic induction and parabolic

restriction. Let π be an irreducible k-representation of a finite group of Lie type or

a p-adic group G. We say π is cuspidal, if for any proper Levi subgroup L of G,

the representation rG
L π is 0. Let τ be any irreducible k-representation of L, if π is

not isomorphic to any irreducible subquotient of iGL τ for any pair (L, τ), we say π

is supercuspidal. It is clear that a supercuspidal representation is cuspidal. We say

(L, τ) is a (super)cuspidal pair, if τ is a (super)cuspidal k-representation of L

The cuspidal (resp. supercuspidal) support of π consists of the cuspidal (resp.

supercuspidal) pairs (L, τ), such that π is an irreducible subrepresentation (resp.

subquotient) of iGL τ .

Theorem 4.1.11. Let L′ be any standard split Levi subgroup of G′ and ν be any

cuspidal k-representation of L′.Then the supercuspidal support of ν is unique up to

L′-conjugation.

Let Pν denote the O[L′]-projective cover of ν. To prove the theorem above, we

will follow the strategy below:
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1. For any standard Levi subgroup M′ of L′, prove that rL′
M′Pν is either equal to

0 or indecomposable.

2. Prove that there is only one unique standard split Levi subgroup M′ of L′,

such that rL′
M′Pν is cuspidal.

Let (M′, θ) be a supercuspidal k-pair of L′. From the proof of Proposition 3.2 of

[Hiss], we know that (M′, θ) belongs to the supercuspidal support of (L′, ν), if and

only if Hom(rL′
M′Pν , θ) 6= 0. Combining this fact with (1), we find that rL′

M′Pν is

the projective cover of θ. Proposition 2.3 of [Hiss] states that an irreducible k-

representation of M′ is supercuspidal if and only if its projective cover is cuspidal,

whence Theorem 4.1.11 is equivalent to (2).

Remark 4.1.12. - If we consider standard Levi subgroups L of G, the analysis above

is true as well.

- Proposition 3.2 of [Hiss] concerns k[L′]-projective cover, but from Proposition

42 of [Ser] we know that there is a surjective morphism of k[L′]-modules from the

W (k)[L′]-projective cover to the k[L′]-projective cover, and hence obtain the same

result for W (k)[L′]-projective cover.

Proposition 4.1.13. Let ν be an irreducible cuspidal k-representation of L′. There

exists a simple kL-module ν̃, and a surjective morphism ResL
L′ ν̃ � ν. Furthermore,

let YL,s̃ be the projective cover of ν̃, where s̃ ∈ G∗ is an `-regular semisimple element,

then there exists µ ∈ OU′(L
′) such that the composed morphism:

YL′,µ,s ↪→ ResL
L′YL,s̃ � ResL

L′ ν̃ � ν (4.1)

is surjective, which means YL′,µ,s is the O[L′]-projective cover of ν.

Proof. By the property of Mackey formula, we can find such ν̃.

For the second part of this proposition, since Res respect projectivity, we know

the fact that ResL
L′YL,s̃ is a projective direct summand of ResL

L′YL, and contained in

|Z(L) : Z(L′)|
⊕

µ∈OU′ (L
′) YL′,µ,s as lemma 4.1.10 proved, whence all the projective

indecomposable direct summands belong to {YL′,µ,s}OU′ (L
′). Then there must exists

µ ∈ OU′(L
′) such that the composed morphism: YL′,µ,s → ν is non trivial hence a

surjection.

Remark 4.1.14. We induce from Proposition 4.1.6 that YL′,µ,s is the W (k)[L′]-

projective cover of ν, noted as Pν .

Let M′ be any standard split Levi subgroup of L′. It is clear that µ ↓M′ belongs

to OU′(M
′). Now consider the intersection [s] ∩ M′∗. As in the paragraph above

Proposition 5.10 of [Helm], [s̃] ∩M∗ consists of one M∗-conjugacy class or is empty,

so does [s]∩M′∗. For the first case, notation YM′,µ↓M′ ,[s]∩M′∗ is well defined, and for

the second case, we define it to be 0. From now on, we will always use YM′,µ,s to

simplify YM′,µ↓M′ ,[s]∩M′∗ . We use the same manner to define YM,s̃.
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Proposition 4.1.15. Let ν be an irreducible cuspidal kL′-representation, and ν̃,

YL′,µ,s, YL,s̃ be as in Proposition 4.1.13. Then rL
M′YL′,µ,s is equal to 0 or indecom-

posable and isomorphic to YM′,µ,s as O[M′]-module.

Proof. In the proof of lemma 4.1.10 we know that YL′,µ,s is a direct summand

of ResL
L′(YL,s̃). Observing that the unipotent radical of M′ is also the unipo-

tent radical of M, we deduce directly from the definition that rL′
M′(ResL

L′(YL,s̃)) =

ResM
M′(r

L
M(YL,s̃)), and Proposition 5.10 in [Helm] states that rL

M(YL,s̃) = YM,s̃.

The statements above, combining with the fact that parabolic restriction is exact

and respects projectivity, derive that rL′
M′YL′,µ,s is a projective direct summand of

ResM
M′YM,s̃. As what we have mentioned, [s̃] ∩M∗ is empty or consists of one M∗-

conjugacy class, so does [s]∩M′∗. In the first case YM,s̃ = 0, whence rL
M′YL′,µ,s = 0,

so the result.

Now considering the second case: let s̃′ ∈ M∗ and [s̃′] denote the M∗-conjugacy

class equals to [s̃]∩M∗. Let µ′ denote the character Res
U′

M′
U′

L′
µ, where U′L′ and of U′M′

denote the unipotent radical of L′ and M′ respectively, which is non-degenerate by

definition. Corollary 15.15 in [Bon] gives an equation:

rL′
M′YL′,µ,s ⊗ K̄ = YM′,µ′,s′ ⊗ K̄.

which means the `-regular quotient of rL′
M′YL′,µ,s is indecomposable, and by using

the criterion of [Geck, lemma 5.11 ] we conclude that rL′
M′YL′,µ,s is indecomposable.

Note that Corollary 15.11 in [Bon] tells that the sub-representation of ResM
M′YM,s̃⊗K̄

corresponding to [s′] is without multiplicity, and the equation above says that the

irreducible sub-representations corresponding to [s′] of rL′
M′YL′,µ,s⊗K̄ and YM′,µ′,s′⊗K̄

coincide, whence these two projective direct summands of ResM
M′YM,s̃ coincide each

other.

We have finished the first step to prove Theorem 4.1.11. Remark 4.1.12 tells that

the statement of step 2 is true for L, whence there only left the proposition below

to finish our proof:

Proposition 4.1.16. Let YL′,µ,s, YL,s̃, ν̃ be as in Proposition 4.1.13, then for any

standard split Levi M′ of L′, we have rL′
M′YL′,µ,s = YM′,µ,s is cuspidal if and only if

rL
M̃

YL,s̃ = YM,s̃ is cuspidal.

Proof. Since L′ ↪→ L is a bijection preserving partial order between standard Levi

subgroups of G and G′, the statement in the proposition is equivalent to say that

for any split Levi M′ of L′,

rL′
M′YL′,µ,s = 0 ⇐⇒ rL

MYL,s̃ = 0.

The proof of Proposition 4.1.15 tells us

rL′
M′YL′,µ,s ↪→ ResM

M′YM,s̃,
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whence ”⇒” is clear.

Now consider the other direction. Notice that rL′
M′YL′,µ,s is an O[M′]-lattice, and

definition 5.9 in [Geck] tells us that rL′
M′YL′,µ,s = 0 if and only if its `-regular quotient

πl′(r
L′
M′YL′,µ,s) = 0. By definition (πl′(r

L′
M′YL′,µ,s))⊗K̄ is the sum of all simple K̄[M′]-

submodules of rL′
M′(YL′,µ,s ⊗ K̄) which lie in the Lusztig series corresponding to `-

regular semisimple M′∗-conjugacy classes. [Bon, Corollary 15.15] states that, in fact

K̄[M′]-module (πl′(r
L′
M′YL′,µ,s))⊗ K̄ is the sum of all irreducible K̄[M′]-submodules of

Gelfand-Graev representation IndM′

U′
M′
µ lying in the Lusztig series corresponding to

[s]∩M′∗, where [s] denotes the L′∗-conjugacy class. We have now (πl′(r
L′
M′YL′,µ,s))⊗

K̄ = 0 implies [s] ∩M′∗ = 0, which means [s̃] ∩M∗ = 0, whence YM,s̃ = 0.
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Chapter 5

Maximal simple cuspidal k-types

5.1 Construction of cuspidal k-representations of G′

From this section until the end of this manuscript, we assume that the field F is

non-archimedean locally compact, whose residue field is of characteristic p( 6= l).

Let G′ denote SLn(F) and G denote GLn(F). Let Repk(G
′) denote the category of

smooth k-representations of G′.

In this section, we want to prove that for any k-irreducible cuspidal represen-

tation π′ of G′, there exists an open compact subgroup J̃ ′ of G′ and an irreducible

representation λ̃′ of J̃ ′ such that π′ is isomorphic to indG′

J̃ ′
λ̃′ (5.1.30, 5.1.34 and 5.2.7).

5.1.1 Types (J, λ⊗ χ ◦ det)

Let (J, λ) be a maximal simple cuspidal k-type of G, and we need to check that the

type (J, λ⊗χ◦det) is also a maximal simple cuspidal k-type of G, which will be used

in the proof of Proposition 5.1.12. This has been proved in appendix of [BuKuII] in

the case of characteristic 0, and by using the following two lemmas, we observe the

same results for the case of characteristic ` by reduction modulo `.

Definition 5.1.1. Let [A, n, 0, β] be a simple stratum, and θ be a simple k-character

or a simple Q` character of H1, and η the unique irreducible k-representation of J1

which contains θ, and κ an β-extension of η to J . Let (J, λ) be a simple k-type or a

simple Q`-type of G. And also all the notations used: H(β,A), J(β,A) are defined

in Section 3.2 and Section 3.3, as in [BuKu].

Proposition 5.1.2 (Vignéras, IV.1.5 in [V2]). The reduction modulo ` of any max-

imal simple cuspidal Q̄`-type of G is a maximal simple cuspidal k-type. And con-

versely, any maximal simple cuspidal k-type is the reduction modulo ` of a maximal

simple cuspidal Q̄`-type of G.

Lemma 5.1.3. Let K be a compact subgroup of a p-adic reductive group. Any Q`-
character of K is `-integral, and reduction modulo ` gives a surjection from the set

of Q`-characters of K to the set of F̄`-characters of K

49
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Proof. Fix an isomorphism from C to Q̄` of fields and until the end of this proof, we

identify the two fields through this isomorphism. Let χC be any C-character of K.

The smoothness implies that there exists a finite field extension E/Q` such that χC is

defined over E and we can find an OE[K]-lattice of χ. Hence we can define reduction

modulo ` for χC and denote is as χ̄C. On the other hand, let χ` be any F̄`-character

of K. It is clear that χ` is defined over a finite field extension Ē/F`. Notice that the

quotient group K/Ker(χ`) is a finite abelian group with order prime to `. Lemma 10

of section 14.4 in [Ser] implies that χ` is projective as Ē[K/Ker(χ`)]-module. Then

Proposition 42 of [Ser] states that χ` can be lift to OĒ, where the fractional field

frac(OĒ) is a finite field extension of Q` and its residual field is isomorphic to Ē.

Hence we finish the proof.

Corollary 5.1.4. Let χ̄ be any k×-character of F×, then it can be always lifted to

a Q̄`-character χ of F×.

Proof. We could write F× ∼= Z × O×F and χ̄ is uniquely defined by χ̄|Z and χ̄|O×F .

The part χ̄|O×F can be lift to a Q̄`-character by lemma 5.1.3. It is left to consider

the restriction χ̄|Z, of which the image is a finite group of order prime to `. Thus

we could find a finite field extension K of Q` such that there is an embedding from

χ̄(Z) to the quotient ring OK/pK , where pK is the uniformizer of OK .

Recall the equivalence

(U[ 1
2
n]+1(A)/Un+1(A))∧ ∼= P−n/P−([ 1

2
n]+1),

where (U[ 1
2
n]+1(A)/Un+1(A))∧ denote the Pontrjagin dual. Let β ∈ P−n/P−([ 1

2
n]+1),

we use ψβ to denote the character on U[ 1
2
n]+1(A)/Un+1(A) induced through the

equivalence above (or consult Section 3.2.1). Recall that in Section 3.2.1 we fixed

an additive character ψF from F to C×, let ψ̄β to denote the reduction modulo ` of

ψβ according to the choice of ψF .

Lemma 5.1.5. Let (J, λ) be a maximal simple cuspidal k-type of G, if (J, λ) is of

level zero or β ∈ F , then (J, λ⊗χ ◦ det) is also a maximal simple cuspidal k-type of

G, where χ is any k-quasicharacter of F×. In particular, while χ is not trivial on

U1(A). Let n0 ≥ 1 is the least integer such that χ ◦ det is trivial on Un0+1(A), and

c ∈ P−n0 such that χ ◦ det coincides with ψ̄c on U[ 1
2
n0]+1(A). Then

H(β + c,A) = H(β,A) = J(β + c,A) = J(β,A) = A

Proof. While (J, λ) is of level zero, we only need to prove χ◦det is a simple character

on U1(A). While β ∈ F , we only need to prove the character θ = ψ̄β ⊗ χ ◦ det is a

simple character on U1(A). This is directly induced by the results in the appendix

in [BuKuII] for the complex case, because the definition of simple stratum in the

case of characteristic ` is the same as the case of characteristic 0. And the definition

2.2.2 of [MS] implies that simple k-characters are reduction modulo ` of simple

C-characters.
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Lemma 5.1.6. Let [A, n, 0, β] be a simple stratum in A with β /∈ F, n ≥ 1. Let

c ∈ F, and n0 = −vA(c), n1 = −vA(β + c),

1. The stratum [A, n, 0, β+c] is a simple stratum in A, and we have H(β+c,A) =

H(β,A) and J(β + c,A) = J(β,A).

2. Let χC be a C-quasicharacter of F× such that χC ◦ det agrees with ψc on

U
[ 1
n0

]+1
(A). Then we have an equivalence of simple C-characters:

CC(A, 0, β + c) = CC(A, 0, β)⊗ χC ◦ det.

3. Let χ` be any k-quasicharacter of F× such that χ` ◦ det agrees with ψ̄c on

U
[ 1
n0

]+1
(A). Then we have an equivalence of simple k-characters:

C`(A, 0, β + c) = C`(A, 0, β)⊗ χ` ◦ det.

Proof. The first two assertions are the lemma in appendix of [BuKuII], so we only

need to proof the last assertion. Recall that we fixed an additive character ψF
from F to C× in Section 3.2.1. Lemma 5.1.3 implies that every simple C-character

in CC(A, 0, β + c) is `-integral and has a reduction modulo `. According to the

definition 2.2.2 of [MS], the reduction modulo ` gives a bijection between simple C-

characters CC(A, 0, β + c) to C`(A, 0, β + c). Notice that this bijection is dependent

with the choice of ψF . Apparently,

C`(A, 0, β + c) = CC(A, 0, β)⊗ χ̄C ◦ det,

where χ̄C denote the reduction modulo ` of χC, and CC(A, 0, β) denote the set of k-

characters, which are reduction modulo ` of characters in CC(A, 0, β). By definition

CC(A, 0, β) = Cl(A, 0, β), and hence

C`(A, 0, β + c) = C`(A, 0, β)⊗ χ̄C ◦ det.

Applying Corollary 5.1.4 to χ`, there exists a Q̄`-quasicharacter τC of F×, such that

χ` ◦ det is isomorphic to the reduction modulo ` of τC ◦ det. Notice that simple

characters in CC(A, 0, β + c) are defined on H1 = H(β,A)∩U1(A), which is a pro-p-

subgroup of G. The reduction modulo ` of τC ◦ det is isomorphic to ψ̄c on H1(β) ∩
U[ 1

2
n0]+1(A), which implies that τC ◦det is isomorphic to ψc on H1(β)∩U[ 1

2
n0]+1(A).

The assertion (1) and (2) tell that

CC(A, 0, β + c) = CC(A, 0, β + c)⊗ χ−1
C ⊗ τC ◦ det.

We deduce directly that

Cl(A, 0, β + c) = CC(A, 0, β + c) = Cl(A, 0, β + c)⊗ χ` ◦ det,

as required.
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Corollary 5.1.7. Let (J, λ) be a maximal simple cuspidal k-type of G, and χ a

k-quasicharacter of F×. Then the k-type (J, λ ⊗ χ ◦ det) is also a maximal simple

cuspidal k-type.

Proof. Let (J, λC) be an `-integral maximal simple cuspidal C-type of G, whose

reduction modulo ` is isomorphic to (J, λ). Let χC be a C-quasicharacter of F×

whose reduction modulo ` is isomorphic to χ (by 5.1.4). Then by the appendix of

[BuKuII], the `-integral type (J, λC⊗χC◦det) is also maximal cuspidal simple. Thus

its reduction modulo ` is maximal simple cuspidal k-type by Proposition 5.1.2. Let

c ∈ F be the element corresponding to a C-lifting of χ, and β corresponding to a

simple character θ (this is well-defined, because H1(β) is pro-p) contained in (J, λC)

(as in lemma 5.1.5 or 5.1.6), then the two lemmas above imply that the reduction

modulo ` of θC ⊗ χ ◦ det is a simple character contained in (J, λ ⊗ χ ◦ det). And

H1(β + c) = H1(β), where H1 = H(β + c,A) ∩U1(A).

Remark 5.1.8. Let (JM, λM) be a maximal simple cuspidal k-type of M, where M

is a Levi subgroup of G. Then λM
∼= λ1 ⊗ · · · ⊗ λr for some r ∈ N∗, where (Ji, λi)

are maximal simple cuspidal k-types of GLni(F ). Hence for any k-quasicharacter χ

of F×, then new k-type (JM, λM ⊗ χ ◦ det) is also maximal simple cuspidal of M.

5.1.2 Intertwining and weakly intertwining

In this section, for any closed subgroup H of G, we always use H ′ to denote its

intersection with G′. Let M denote any Levi subgroup of G.

Proposition 5.1.9. Let K be a compact subgroup of M, and ρ be an irreducible

k-representation of K. The restriction resKK′ρ is semisimple.

Proof. Let O denote the kernel of ρ, which is a normal subgroup of K. The subgroup

O ·K ′ is also a compact open normal subgroup of K, hence with finite index in K.

We deduce that the restriction resKO·K′ρ is semisimple by Clifford theory, furthermore

the restriction resKK′ρ is semisimple.

Proposition 5.1.10. Let K be a compact open subgroup of M, ρ an irreducible

smooth representation of K, and ρ′ an irreducible component of the restriction

resKK′ρ. Let ρ̄ be an irreducible representation of K such that resKK′ ρ̄ also contains

ρ′. Then there exists a k-quasicharacter χ of F× such that ρ ∼= ρ̄⊗ χ ◦ det.

Proof. Let U be any pro-p normal subgroup of K contained in the kernel of ρ, hence

with finite index. Let’s consider IndUU ′(1), which is semisimple, thus by lemma of

Schur it is a direct sum of characters in the form of χ ◦ det|U . Since χ can be

extended to a quasicharacter of F×, and we note the extended quasicharacter as χ

as well, then we write χ ◦ det|U as (χ ◦ det)|U . The fact that resKU ′ρ contains the

trivial character induces the same property for resKU ′ ρ̄. By Frobenius reciprocity, we

know that resKU ρ̄ contains a character in the form of (χ◦det)|U , and the irreducibility
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implies that it is in fact a multiple of this character. We can hence assume that ρ̄ is

trivial on U .

By the Clifford theory, the restriction of ρ (resp. ρ̄) to K ′U is semisimple. Hence

HomK′U (ρ, ρ̄) 6= 0. Applying Frobenius reciprocity, we see that ρ is a subrepresen-

tation of indKK′U resKK′U ρ̄, which is equivalent to ρ̄ ⊗ indKK′U (1) by 5.2 d, chapitre I,

[V1]. In fact, the Jordan-Hölder factors are ρ̄⊗ χ ◦ det: Any irreducible factor τ of

indKK′U (1) can be view an irreducible k-representation of the quotient group K/K ′U ,

which is isomorphic to a subgroup of the finite abelian group O×F /detU , where OF
indicates the ring of integers of F . Hence τ must be a k-character of K/K ′U and

can be extended to F×, since we can first extend τ to O×F /detU (hence to O×F ) and

F× ∼= O×F × Z. We denote this extension by τ̃ . It is clear that τ ∼= τ̃ ◦ det|K .

Group M is the group of F -points of a reductive group defined over F . Let Ki

be open compact subgroups of M for i = 1, 2, and ρi a representation of Ki. Recall

that iK1,K2x(ρ2) to be the induced representation indK1

K1∩x(K2)res
x(K2)
K1∩x(K2)x(ρ2) (see

Definition 3.1.6), where x(ρ2) is the conjugation of ρ2 by x. For any element x ∈ M,

we say x intertwines (weakly intertwines) ρ1 with ρ2 as defined in Definition 3.1.6.

Proposition 5.1.11. For i = 1, 2, let Ki be a compact open subgroup of M, and ρi
an irreducible representation of Ki and ρ′i be an irreducible component of resKi

K′i
ρi.

Let x ∈ M that weakly intertwines ρ′1 with ρ′2. Then there exists a k-quasicharacter

χ of F× such that x weakly intertwines ρ1 with ρ2 ⊗ χ ◦ det.

Proof. By Mackey’s decomposition formula, iK′1,K′2x(ρ′2) is a subrepresentation of

iK1,K2x(ρ2). Since iK1,K2x(ρ2) has finite length, the uniqueness of Jordan-Hölder

factors implies that there exists an irreducible subquotient of iK1,K2x(ρ2), whose

restriction to K ′1 contains ρ′1 as a direct components. By 5.1.10, this irreducible

subquotient is isomorphic to ρ1⊗χ◦det, where χ is a quasicharacter. By definition,

this means ρ1 is weakly intertwined with ρ2 ⊗ χ−1 ◦ det by x.

Now we begin to consider the maximal simple cuspidal k-types of G = GLn(F ).

Proposition 5.1.12. Let (J, λ) be a maximal simple cuspidal k-type of G, and χ

a k-quasicharacter of F×. If (J, λ⊗ χ ◦ det) is weakly intertwined with (J, λ), then

they are intertwined. And there exists an element x ∈ U(A) such that x(J) = J and

x(λ) ∼= λ⊗ χ ◦ det.

Proof. There is a surjection from resJH1λ to θ1. By Frobenius reciprocity, there is an

injection from λ to indJH1θ1, and exactness of the functors ensure that there exists an

injection: resGH1 indGJ λ ↪→ resGH1 indGH1θ1. Whence, by hypothesis, resJH1λ⊗ χ ◦ det is

a subquotient of resGH1 indGH1θ1. After Corollary 5.1.7, the groups H1(β+c) = H1(β).

Hence resG
H1(λ ⊗ χ ◦ det) is a multiple of θ2, from which we deduce that θ2 is a

subquotient of resG
H1 indG

H1θ1.
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Notice that H1 is a prop-p group, and any smooth representation of H1 is semisim-

ple. It follows that θ2 is a sub-representation of resG
H1 indG

H1θ1, which is equivalent to

say that θ2 is intertwined with θ1 in G. Let i = 1, 2 and θiC be C-simple characters

whose reduction modulo ` is isomorphic to θi, then θ1C is intertwined with θ2C in

G cause H1 is pro-p. It follows that the nonsplit fundamental strata [A, n, n− 1, β]

and the nonsplit fundamental strata [A,m,m− 1, β+ c] are intertwined. We deduce

that n = m by 2.3.4 and 2.6.3 of [BuKu]. Then we apply Theorem 3.5.11 of [BuKu]:

there exists x ∈ U(A) such that x(H1) = H1, C(A, 0, β) = C(A, 0, x(β + c)) and

x(θ2C) = θ1C , hence x(θ2) = θ1. In particular, x(J) is a subset of IU(A)(θ1). Mean-

while, the 2.3.3 of [MS] and 3.1.15 of [BuKu] implies that IG(θ1) ∩ U(A) = J , then

x(J) = J . Proposition 2.2 of [MS] shows the uniqueness of η1, hence x(η2) ∼= η1.

From [V3, Corollary 8.4] we know that the η1-isotypic part of resG
J indG

J (λ) can be

viewed as a representation of J , which is a direct factor of resG
J indG

J (λ) and is multiple

of λ when (J, λ) is maximal simple. Since x(λ⊗χ◦det) could only be a subquotient

of the η1-isotypic part of resG
J indG

J (λ) and indG
J λ
∼= indG

J x(λ), we deduce from above

that HomkJ(λ⊗ χ ◦ det, resG
J indG

J λ) 6= 0.

Corollary 5.1.13. For any g ∈ G, if g weakly intertwines (J, λ⊗χ◦det) and (J, λ),

then g intertwines (J, λ⊗ χ ◦ det) and (J, λ).

Proof. By Mackey’s decomposition formula iJ,g(J)g(λ) is a direct factor of resG
J indG

J (λ).

On the other hand, we notice that the indG
J λ is isomorphic to x(indG

J λ) as G-

representation, so they are equivalent after restricting to J . Hence the x(η1)-isotypic

part (resG
J indG

J λ)x(η1) is isomorphic to x(resG
J indG

J λ)x(η1) as J representation. The

later one is isomorphic to x((resG
J indG

J λ)η1), which is a multiple of x(λ). In the

proof of 5.1.12, there exists x ∈ U(A) such that x(η1) ∼= η2, x(λ) ∼= λ ⊗ χ ◦ det.

By hypothesis λ ⊗ χ ◦ detx(η1) is a subquotient of iJ,g(J)g(λ), hence a subquotient

of (iJ,g(J)g(λ))x(η). And (iJ,g(J)g(λ))x(η) is a sub-representation of (resG
J indG

J λ)x(η),

whence a multiple of x(λ) as well. So λ ⊗ χ ◦ detx(η1) is a sub-representation of

(iJ,g(J)g(λ))x(η). We finish the proof.

5.1.3 Decomposition of resG
J ind

G
J λ

In this subsection, we need to do some computation to obtain the decomposition in

5.1.14, which plays a key role in the proof of Proposition 5.1.25. And this consists

half of the proof of Theorem 5.1.30.

Theorem 5.1.14. Let (J, λ) be a maximal simple cuspidal k-type of G. There exists

an integer m and a decomposition:

resG
J indG

J λ
∼= (⊕mi=1 xi(Λ(λ)))⊕W

where xi ∈ U(A), and x1 = 1. The representation Λ(λ) is semisimple, and a multiple

of λ. For each xi, the representation xi(Λ(λ)) is the xi-conjugation of Λ(λ). The
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elements xi’s satisfy that xi(η) � xj(η) if i 6= j (see Definition 5.1.1 for η), and let

λ′ be any irreducible sub-representation of resJJ ′λ, then λ′ is not equivalent to any

irreducible subquotient of resJJ ′W .

Remark 5.1.15. From now on, let (J, λ) be any maximal simple cuspidal k-type

of G. We always use Λλ to denote ⊕mi=1 xi(Λ(λ)), where Λ(λ) has been defined in

Theorem 5.1.14, and we could write the decomposition in Theorem 5.1.14 as:

resG
J indG

J λ
∼= Λλ ⊕W.

To prove Theorem 5.1.14, we need the following lemmas:

Lemma 5.1.16. Let K1,K2 be two compact open subgroups of G such that K1 ⊂ K2.

Then the compact induction indK2
K1

respect infinite direct sum.

Proof. Let I be an index set, and (Vi, πi) be k-representations of K1. Define π =

⊕i∈Iπi. By definition of compact induction, the representation space of indK2
K1
π are

the smooth vectors of the k-vector space consisting with function f : K2 → V such

that f(hg) = π(h)f(g), where h ∈ K1, g ∈ K2, and K2 acts as right transition.

Notice first that every function satisfied the condition above is smooth. In fact, the

quotient group K1/K2 is finite, of which let a1, . . . , am be a set of representatives

in K2. Then there is an bijection from the vector space, consisting of the functions

on K2 verified the condition above, to V m, which is sending f to f(a1), . . . , f(am).

Now let f be any such function on K2. For any j ∈ {1, . . . ,m}, there exists an open

subgroup Hj ⊂ K1 which stabilizes vj . Let g ∈ K2, the value (a−1
j (g)(f))(aj) =

f(aj). Hence the open compact subgroup H = ∩mj=1a
−1
j (Hj) stablizes f , so f is

smooth. Notice that ⊕mj=1(⊕i∈IVi) ∼= ⊕i∈I(⊕mj=1Vi) as vector spaces, which the

result follows.

Lemma 5.1.17. Let K be a compact open subgroup of M, where M is a Levi subgroup

of G, and K ′ = K ∩ G′. Let π be a k-representation of K. If τ ′ is an irreducible

subquotient of the restricted representation resKK′π, then there exists an irreducible

subquotient τ of π, such that τ ′ is an irreducible direct component of resKK′τ .

Proof. Let H be a pro-p open compact subgroup of K. The representation resKHπ

is semisimple, which can be written as ⊕i∈Iπi, where I is an index set. There is

an injection from π to indKHresKHπ, and the lemma 5.1.16 implies that indKHresKHπ
∼=

⊕i∈I indKHπi. Notice that for each i ∈ I, the representation indKHπi has finite length.

Let W ′, V ′ be two sub-representations of π′ = resKK′π, such that τ ′ ∼= W ′/V ′.

When τ ′ is non-trivial, there exists x ∈ W ′ such that x /∈ V ′. Since indKHresKHπ is

isomorphic to a direct sum of indKHπi, there exists a finite index set {i1, . . . , im} ⊂ I,

where m ∈ N∗, such that x ∈ ⊕i1,...,im indKHπi. We have:

0 6= (W ′ ∩ ⊕i1,...,im indKHπi)/(V
′ ∩ ⊕i1,...,im indKHπi) ↪→W ′/V ′,
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Since W ′/V ′ is irreducible, the injection above is an isomorphism, and we conclude

that

(W ′ ∩ ⊕i1,...,im indKHπi)/(V
′ ∩ ⊕i1,...,im indKHπi)

∼= W ′/V ′ ∼= τ ′.

Since the restricted representation resKK′ ⊕i1,...,im indKHπi has finite dimension hence

finite length, by the uniqueness of Jordan-Hölder factors, there exists an irreducible

subquotient of ⊕i1,...,im indKHπi, whose restriction to K ′ is semisimple (by Proposition

5.1.9) and containing τ ′ as a subrepresentation.

Now we look back Theorem 5.1.14.

Proof. of 5.1.14:

By [V3, Corollary 8.4], we can decompose resG
J indG

J λ
∼= Λ(λ) ⊕W1, where any

irreducible subquotient of W1 is not isomorphic to λ. Let λ′ be an irreducible

subrepresentation of the semisimple k-representation resJJ ′λ. If λ′ is an irreducible

subquotient of resJJ ′W1, by Lemma 5.1.17 and Propositon 5.1.10, there exists a k-

quasicharacter χ of F× such that λ ⊗ χ ◦ det is an irreducible subquotient of W1.

This follows that λ ⊗ χ ◦ det is weakly intertwined with λ. By Proposition 5.1.12,

they are intertwined and there exists x ∈ U(A) such that λ ⊗ χ ◦ det ∼= x(λ). The

fact that λ⊗ χ ◦ det is a subquotient of W1 implies that x(η) � η. As in the proof

of Corollary 5.1.13, we have:

(Λ(λ))x(η) ⊕W x(η)
1
∼= (resG

J indG
J λ)x(η) ∼= x((resG

J indG
J λ)η),

and the later one is isomorphic to x(Λ(λ)), which is a direct sum of x(λ). Since

x(η) � η, we have (Λ(λ))x(η) = 0. As for W1, thus we can decompose W1 as

W
x(η)
1 ⊕W2. Hence W

x(η)
1
∼= x(Λ(λ)). Now we obtain an isomorphism:

resG
J indG

J λ
∼= Λ(λ)⊕ x(Λ(λ))⊕W2,

where W
x(η)
2 = 0 and W η

2 = 0. This implies any irreducible subquotient of W2

is not isomorphic to λ neither x(λ). If λ′ is an irreducible subquotient of W2, we

can repeat the steps above, then find a k-quasicharacter χ2, an element x2 ∈ U(A),

and decompose W2 as x2(Λ(λ)) ⊕W3, where any W
x2(η)
3 = 0. Furthermore, any

irreducible representation of J , whose restriction to J ′ contains λ′ as a subrepresen-

tation, is U(A)-conjugate to λ. The quotient group U(A)/J is finite, hence the set

of irreducible representations {x(λ)}x∈U(A) is finite, which means after repeat the

steps above for finite times, we could obtain the decomposition as required.

5.1.4 Projective normalizer J̃ and its subgroups

Now we will recall one definition and some propositions given by Bushnell and

Kutzko in [BuKuII] when they consider the Q`-representations of G′.
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Definition 5.1.18 (Bushnell,Kutzko). We define the projective normalizer J̃ =

J̃(λ) of (J, λ). Let A be the principal order attached to (J, λ). Then define J̃ to be

the group of all x ∈ U(A) such that:

• xJx−1 = J , and

• there exists a k-quasicharacter χ of F ∗ such that x(λ) ∼= λ⊗ χ ◦ det.

Proposition 5.1.19. Let (J, λ) be a simple type in G as in definition 5.1.18, and

χ be a k-quasicharacter of F ∗. The following are equivalent:

1. λ ∼= λ⊗ χ ◦ det,

2. χ ◦ det|J1 is trivial and σ ⊗ χ ◦ det|U(B)
∼= σ,

3. χ ◦ det|J1 is trivial, and λ, λ⊗ χ ◦ det are intertwined in G.

Proof. The proof in Proposition 2.3 [BuKuII] still works in our case, and we write

it here to ensure it in the modulo ` case. We prove this proposition in the order of

(2)→ (1)→ (3)→ (2).

Since J/J ′ ∼= U(B/U1(B)), the implication (2) → (1) is trivial. Now let us

assume λ is equivalent to λ ⊗ χ ◦ det. Restricting to H1, we see that the simple

character θ ∼= θ ⊗ χ ◦ det|H1 , which implies χ ◦ det|H1 is trivial. Now assume (3)

holds. Proposition 5.1.12 gives an element x ∈ U(A) such that x(J) = J and

x(λ) = λ ⊗ χ ◦ det. We have χ ◦ det is trivial on J1. Combining this fact with the

uniqueness of η corresponding to any fixed simple character of H1 (see Proposition

2.2 of [?]), we have x(η) ∼= η. In particular, x ∈ IG(θ) = J1B×J1, by IV.1.1 in [V2],

hence x ∈ J1B∗J1 ∩U(A) = J . Whence λ ∼= x(λ) ∼= λ⊗ χ ◦ det. We therefore have

κ⊗ σ ∼= κ⊗ σ ⊗ χ ◦ det, where κ is a β-extension of η to J .

As indicate in the proof of Bushnell and Kutzko, from now on, we use the

technique in Proposition 5.3.2 of [BuKu]: Let X denote the representation space of

κ and Y the representation space of σ, which can be identified with the representation

space of σ⊗χ◦det. Let φ be the isomorphism between κ⊗σ and κ⊗σ⊗χ◦det. We

may write φ as
∑

j Sj ⊗Tj where Sj ∈ Endk(X) and Tj ∈ Endk(Y ), and where {Tj}
are linearly independent. Let g ∈ J1, we have κ⊗σ(g) ◦φ = φ ◦ (κ⊗σ⊗χ ◦det)(g).

Since J1 ⊂ ker(σ) = ker(σ ⊗ χ ◦ det), this relation reads:

(η(g)⊗ 1) ◦
∑
j

Sj ⊗ Tj = (
∑
j

Sj ⊗ Tj) ◦ (η(g)⊗ 1),

which is equivalent to say that:∑
j

(η(g) ◦ Sj − Sj ◦ η(g))⊗ Tj = 0.

The linearly independence of Tj implies that Sj ∈ EndkJ1(η) = k∗, by the lemma

of Schur. Hence φ = 1 ⊗
∑

j Sj · Tj . Now note T =
∑

j Sj · Tj and take g ∈ J , the



58 CHAPTER 5. MAXIMAL SIMPLE CUSPIDAL K-TYPES

morphism relation reads:

(κ(g)⊗ σ(g)) ◦ (1⊗ T ) = κ(g)⊗ (σ(g) ◦ T ) = κ(g)⊗ (T ◦ σ ⊗ χ ◦ det(g))

= (1⊗ T ) ◦ (κ(g)⊗ σ ⊗ χ ◦ det(g)),

which says T ∈ HomkJ(σ, σ ⊗ χ ◦ det) 6= 0. We finish the proof.

Corollary 5.1.20 (Bushnell,Kutzko). Let x ∈ J̃(λ), and let χ be a quasicharacter

of F ∗ such that x(λ) ∼= λ⊗ χ ◦ det. Then:

1. the map x 7→ χ◦det|J1 is an injective homomorphism J̃/J → (det(J1))∧. The

later one denotes the dual group of the subgroup det(J1) of F×;

2. J̃/J is a finite abelian p-group, where p is the residual characteristic of F .

Proof. For (1). Let x ∈ J̃ . Suppose there exist two k-quasicharacter χ1, χ2 of F ∗,

such that x(λ) ∼= λ⊗ χ1 ◦ det and λ⊗ χ1 ◦ det ∼= λ⊗ χ2 ◦ det. This is equivalent to

say that

λ ∼= λ⊗ (χ1 ◦ det)⊗ (χ−1
2 ◦ det) ∼= λ⊗ (χ1 ⊗ χ−1

2 ) ◦ det.

The equivalence between (1) and (2) of Proposition 5.1.19 implies that (χ1⊗χ−1
2 ) ◦

det|J1 is trivial. Hence χ1 ◦ det|J1
∼= χ2 ◦ det|J1 . So the map is well defined, and

is clearly a morphism between groups. Now suppose that x ∈ J̃ and χ is a k-

quasicharacter of F× which is trivial on det(J1), such that x(λ) ∼= λ ⊗ χ ◦ det. As

in the Proposition 5.1.19, the equivalence of conditions means that λ ∼= λ⊗ χ ◦ det.

Thus x intertwined λ to itself. Whence the element x belongs to JB×J ∩U(A) = J .

For (2). Since J1 is a pro-p group, this is induced directly from (1).

5.1.5 Two conditions for irreducibility

In this section, let (J, λ) be any maximal simple cuspidal k-type of G. We will con-

struct a compact subgroup Mλ of G′ and a family of irreducible representations λ′Mλ

of Mλ, such that the induced representation indG′
Mλ
λ′Mλ

is irreducible and cuspidal

(Theorem 5.1.30). And in the next section, we will see that any irreducible cuspidal

k-representation π′ of G′ can be constructed in this manner.

To check the irreducibility of this induced representation, we only need to cal-

culate its intertwining set in G′, when considering representations in characteristic

0, but this is not sufficient in the case of modulo `. As noted in lemma 4.2 in article

[V3], Vignéras presents a criterium of irreducibility in modulo ` cases:

Lemma 5.1.21 (criterium of irreducibility by Vignéras). Let K be an open com-

pact subgroup of G′, and π′ be a k-irreducible representation of K. The induced

representation indG′
K π
′ is irreducible, when

1. EndkG′(indG′
K π
′) = k,
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2. for any k-irreducible representation ν of G′, if π′ is contained in resG′
K ν then

there is a surjection which maps resG′
K ν to π′.

As in 8.3 chapter I of [V1], the first criterion of irreducibility is equivalent to say

that the intertwining set IG′(π
′) = K.

Corollary 5.1.22. Let (J, λ) be a maximal simple cuspidal k-type in G. The induced

k-representation indJ̃Jλ is irreducible.

Proof. Lemma 5.1.21 can be applied in this case after changing G′ to any locally

pro-finite group. First, we calculate EndkJ̃(indJ̃Jλ), which equals to k since the

intertwining group IJ̃(λ) = J . Now we consider the second condition. Let ν be an

irreducible k-representation of J̃ , such that

λ ↪→ resJ̃Jλ.

By Frobenius reciprocity and the exactness of functors ind and res, we have a sur-

jection:

resG
J indG

J λ→ resJ̃Jν.

The (J1, κ)-isotypic part νκ of resJ̃Jν is a direct component as J representation, and

νκ is a quotient of the (J1, κ)-isotypic part λκ of λ as J representation. The later

one is a multiple of λ by Corollary 8.4 of [V3]. Hence the surjection required in the

second condition of Lemma 5.1.21 exists.

Theorem 5.1.23. Let λ′ be a subrepresentation of resJJ ′λ. Then λ′ verifies the

second condition of irreducibility. This is to say that for any irreducible represen-

tation π′ of G′, if there is an injection: λ′ ↪→ resG′
J ′ π
′, then there is a surjection:

resG′
J ′ π
′ � λ′.

Proof. Since J is open, every double coset G′gJ is open and closed, hence we could

apply Mackey’s decomposition formula:

resG
G′ indG

J λ
∼= ⊕a∈J\G/G′ indG′

G′∩a(J)res
a(J)
G′∩a(J)a(λ).

We take a = 1, then indG′
J ′ resJJ ′λ is a direct factor of resG

G′ indG
J λ. The hypothesis

λ′ ↪→ resG′
J ′ π
′ implies a surjection from indG′

J ′ λ
′ to π′ by Frobenius reciprocity. Since

resJJ ′λ is semisimple with finite length by Proposition 5.1.9 and the functor indG′
J ′

respects finite direct sum, we have an surjection:

indG′
J ′ resJJ ′λ� π′,

hence we obtain a surjection:

resG
G′ indG

J λ� π′.
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Now consider the surjection:

ι : resG
J ′ indG

J λ� resG′
J ′ π
′.

Meanwhile, by Theorem 5.1.14, we could decompose resG
J indG

J λ
∼= Λλ ⊕ W . We

have Λλ ⊕W/kerι ∼= resG′
J ′ π
′. If the image of the injection λ′ ↪→ Λλ ⊕W/ker(ι) is

contained in W + ker(ι)/ker(ι), then λ′ is an irreducible subquotient of W , which is

contradicted with Theorem 5.1.14. Hence the image of the composed morphism:

λ′ ↪→ Λλ ⊕W/ker(ι)� Λλ ⊕W/(W + ker(ι)) ∼= Λλ/(Λλ ∩ (W + ker(ι)))

is non-trivial. Since Λλ/(Λλ∩(W +ker(ι))) is a quotient of Λλ, and the functor resJJ ′

maps any irreducible representation of J to a semisimple representation with finite

length of J ′, the representation resJJ ′Λλ is semisimple with finite length of J ′. So

does the quotient Λλ/(Λλ + ker(ι)), of which λ′ is an irreducible direct component.

This implies a surjection: resG′
J ′ π
′ � λ′.

In the theorem above, we proved that λ′ verifies the second condition of irre-

ducible criterium of irreducibility in lemma 5.1.21. Unfortunately, (J ′, λ′) does not

satisfies the first condition. This is also false for representations of characteristic 0.

A natural idea is to construct a open compact subgroup of G′, which is bigger than

J ′. In the case of characteristic 0, Bushnell and Kutzko calculated in [BuKuII]. This

group is J̃ ′C = J̃C ∩ G′, the intersection of projective normalizer of a Q`-maximal

cuspidal simple type and G′. We will see in Proposition 5.2.6 and definition 5.2.7

that this group is J̃ ′ = J̃ ∩G′ in the case of modulo `.

Proposition 5.1.24. Let L be any subgroup of J̃ ′ = J̃ ∩G′ such that J ′ ⊂ L ⊂ J̃ ′,
and λ′ an irreducible subrepresentation of λ|J ′. Then the induced representation

indLJ ′λ
′ is semisimple.

Proof. By Mackey’s decomposition formula, the induced representation indJ̃
′
J ′λ
′ is

a subrepresentation of resJ̃
J̃ ′

indJ̃Jλ. Applying Mackey’s decomposition formula, we

have

resJ̃
J̃ ′

indJ̃Jλ
∼= ⊕g∈J\J̃resJJ ′g(λ),

since J̃ normalises J and J ′. Hence resJ̃
J̃ ′

indJ̃Jλ is semisimple by Proposition 5.1.9

and the fact that indJ̃Jλ is irreducible. Since L is a normal open subgroup of J̃ ′,

the index of L in J̃ ′ is finite. Hence the restricted representation resJ̃
′
L indJ̃

′
J ′λ
′ is

semisimple by Clifford theory, of which indLJ ′λ
′ is a subrepresentation. Now we

obtain the result.

Proposition 5.1.25. Let λ′ be an irreducible subrepresentation of resJJ ′λ, and λ′L
an irreducible subrepresentation of indLJ ′λ

′. Then λ′L verifies the second condition of

irreducibility. This is to say that for any irreducible representation π′ of G′, if there

is an injection λ′L ↪→ resG′
L′ π
′, then there exists a surjection resG′

L′ π
′ � λ′L, where

L′ = L ∩G′.
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Proof. We have proved in Proposition 5.1.24 that indLJ ′λ
′ is semisimple. Hence the

injection from λ′L to resG′
L π
′ induces a non-trivial homomorphism indLJ ′λ

′ � resG′
L π
′.

By Frobenius reciprocity, we obtain an injection from λ′ to resG′
J ′ π
′. Thus there exists

a non-trivial homomorphism resJJ ′λ→ resG′
J ′ π
′. After applying Frobenius reciprocity

and the exactness of the functor resG′
J ′ , we obtain a surjection:

resG′
J ′ indG′

J ′ resJJ ′λ� resG′
J ′ π
′.

By Mackey’s decomposition formula, the k-representation indG′
J ′ resJJ ′λ is a direct

component of resG
G′ indG

J λ, and combining this fact with the exactness of functor

resG′
J ′ , the k-representation resG′

J ′ indG′
J ′ resJJ ′λ is a direct component of resG

J ′ indG
J λ.

Hence the surjection above implies a non-trivial homomorphism:

resG
J ′ indG

J λ� resG′
J ′ π
′.

By Proposition 5.1.14, the left hand side isomorphic to resJJ ′Λλ⊕ resJJ ′W , where any

irreducible subquotient of resJJ ′W is not isomorphic to any irreducible subrepresenta-

tion of resJJ ′λ. Now we obtain an equivalence of resG′
J ′ π
′ with (resJJ ′Λλ⊕ resJJ ′W )/K,

where K (a k-representation of J ′) is the kernel of the surjection above.

We have:

λ′L ↪→ resG′
L π
′ ↪→ indLJ ′resG′

J ′ π
′,

and the last factor is isomorphic to indLJ ′((resJJ ′Λλ ⊕ resJJ ′W )/K). We note this

composed homomorphism from λ′L to indLJ ′((resJJ ′Λλ ⊕ resJJ ′W )/K) as τ .

Since the functor indLJ ′ is exact, the right side is isomorphic to (indLJ ′resJJ ′Λλ ⊕
indLJ ′resJJ ′W )/indLJ ′K. And we consider the representation indLJ ′(resJJ ′W+K)/indLJ ′K,

which is isomorphic to indLJ ′((resJJ ′W + K)/K). We assume the image τ(λ′L) in

indLJ ′((resJJ ′Λλ ⊕ resJJ ′W )/K) is contained in indLJ ′((resJJ ′W + K)/K). Then τ is a

non-trivial morphism from λ′L to indLJ ′((resJJ ′W +K)/K). By Frobenius reciprocity,

we deduce a non-trivial morphism from resLJ ′λ
′
L to (resJJ ′W +K)/K. Notice that

resLJ ′λ
′
L ↪→ resJ̃J ′ indJ̃Jλ

∼= ⊕a∈J\J̃/J ′resJJ ′a(λ),

and by definition of J̃ , the representation a(λ) ∼= λ⊗χ◦det, for some k-quasicharacter

χ of F×. Hence

⊕a∈J\J̃/J ′resJJ ′a(λ) ∼= ⊕J\J̃/J ′resJJ ′λ.

Thus there exists an irreducible direct component λ′′ of resJJ ′λ, from which there is

an injective morphism to (resJJ ′W + K)/K ∼= resJJ ′W/(resJJ ′W ∩ K). Hence λ′′ is

isomorphic to a subquotient of resJJ ′W . This is contradicted to Theorem 5.1.14. So

the image τ(λ′L) is not contained in indLJ ′((resJJ ′W + K)/K). We deduce that the

composed map:

λ′L ↪→ resG′
L π
′ → indLJ ′(resJJ ′(Λλ ⊕W )/K)/indLJ ′((resJJ ′W +K)/K),
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is non-trivial. The right hand side factor:

indLJ ′(resJJ ′(Λλ ⊕W )/K)/indLJ ′((resJJ ′W +K)/K)

∼= indLJ ′(resJJ ′(Λλ ⊕W )/(resJJ ′W +K)).

Notice that resJJ ′(Λλ⊕W )/(resJJ ′W+K) is a quotient, hence isomorphic to a subrep-

resentation of resJJ ′Λλ. The representation resJJ ′Λλ is semisimple, with irreducible di-

rect components in the form of x(λ′), where x ∈ U(A). Furthermore, since indLJ ′x(λ′)

is a direct component of resJ̃
′
L indJ̃

′
J ′x(λ), as in the proof of Proposition 5.1.24, it is

semisimple. After lemma 5.1.16, we deduce that indLJ ′resJJ ′Λλ is semisimple, and

so is the subrepresentation indLJ ′(resJJ ′(Λλ ⊕W )/((resJJ ′W ) + K)), of which λ′L is a

direct factor. Hence we finish the proof.

Definition 5.1.26. Let (J, λ) be a maximal simple cuspidal k-type of G, and λ′

be any irreducible subrepresentation of resJJ ′λ. Define Mλ to be the subgroup of J̃ ′

consisting with all the elements x ∈ J̃ ′, such that x(λ′) ∼= λ′.

Remark 5.1.27. Since Mλ normalizes J and the intersection Mλ · J ∩G′ equals to

Mλ, we deduce that J normalizes Mλ. Notice that irreducible subrepresentations of

resJJ ′λ are J-conjugate. Hence the group Mλ depends only on λ.

We will prove at the end of this section, that the couple (Mλ, λ
′
Mλ

) verifies the two

criterium of irreducibility. The first criterion has been checked in Proposition 5.1.25.

And we will calculate its intertwining group in G′ in two steps. First is to prove

IG′(ind
U(A)′

J ′ λ′) ⊂ U(A)′ (Proposition 5.1.28), and then prove that IU(A)′λ
′
Mλ

= Mλ

(Theorem 5.1.30).

Proposition 5.1.28. Let λ′ be an irreducible subrepresentation of resJJ ′λ, then the

intertwining set IG′(ind
U(A)′

J ′ λ′) is contained in U(A)′.

Proof. Let τ denote the irreducible representation ind
U(A)
J λ. The induced represen-

tation ind
U(A)′

J ′ λ′ is a subrepresentation of res
U(A)
U(A)′τ , thus is semisimple with finite

direct components. We write ind
U(A)′

J ′ λ′ as ⊕i∈Iτ ′i , where τ ′i are irreducible direct

components and I is a finite index set. Let g ∈ G, we have an equality:

Ig(ind
U(A)′

J ′ λ′) =
⋃

i∈I,j∈I
Hom(τ ′i , iU(A)′,g(U(A)′)τ

′
j).

Hence we have:

IG′(ind
U(A)′

J ′ λ′) =
⋃

i∈I,j∈I
IG′(τ

′
i , τ
′
j).

Now we assume that g ∈ G′ intertwines τ ′i with τ ′j . Since τ ′i and τ ′j are direct

components of res
U(A)
U(A)′τ , by Proposition 5.1.11, there exists a k-quasicharacter χ

of F× such that g weakly intertwines τ with τ ⊗ χ ◦ det. This implies that τ is a
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subquotient of iU(A),g(U(A))τ ⊗χ◦det, hence the restriction res
U(A)
J τ is a subquotient

of res
U(A)
J iU(A),g(U(A))τ ⊗ χ ◦ det. Since λ is a subrepresentation of res

U(A)
J τ , it is

hence a subquotient of res
U(A)
J iU(A),g(U(A))τ ⊗ χ ◦ det. We have

res
U(A)
J iU(A),g(U(A))τ ⊗ χ ◦ det

= res
U(A)
J ind

U(A)
U(A)∩g(U(A))res

g(U(A))
U(A)∩g(U(A))ind

g(U(A))
g(J) g(λ)⊗ χ ◦ det

Applying Mackey’s decomposition formula two times to the later factor, we

obtain that res
U(A)
J iU(A),g(U(A))(τ ⊗ χ ◦ det) is isomorphic to a finite direct sum,

whose direct components are in the form of indJJ∩y(J)res
y(J)
J∩y(J)y(λ⊗ χ ◦ det), where

y ∈ U(A)gU(A). More precisely,

res
U(A)
J iU(A),g(U(A))(τ ⊗ χ ◦ det)

=
⊕

β∈U(A)∩αg(J)\U(A)/J

⊕
α∈g(J)\g(U(A))/U(A)∩g(U(A))

indJJ∩y(J)res
β(U(A))∩y(J)
J∩y(J) y(λ)⊗ χdet

where y = βαg.

After the uniqueness of Jordan-Hölder factors, the representation λ is weakly

intertwined with λ ⊗ χ ◦ det by some y ∈ U(A)gU(A). Hence y intertwines λ with

λ⊗χ◦det by Corollary 5.1.13, and there exists x ∈ U(A) such that x(λ⊗χ◦det) ∼= λ

by Proposition 5.1.12. The element yx−1 intertwines λ to itself, and hence lies in

E×J . Therefore g ∈ U(A)E×JU(A)∩G′. Furthermore, we have U(A)E×JU(A)∩G =

U(A)′, because E× normalises U(A) and for any e ∈ E×, det(e) ∈ o×F if and only

e ∈ o×E , where oF ,oE denote the ring of integers of F ,E respectively. Hence for any

a ∈ U(A), det(ea) = 1 if and only if ea ∈ U(A) ∩ G′. From which, we deduce that

IG′(ind
U(A)′

J ′ λ′) = U(A)′.

Lemma 5.1.29. Let λ′ be an irreducible component of resJJ ′λ, and let x ∈ U(A)′

intertwines λ′. Then x ∈ J̃ ′.

Proof. If x ∈ U(A)′ intertwines λ′, then by Proposition 5.1.11 the element x weakly

intertwines λ with λ ⊗ χ ◦ det for some quasicharacter χ of F×. Then Corollary

5.1.13 implies that x intertwines λ with λ⊗ χ ◦ det, and Proposition 5.1.12 implies

that there exists an element y ∈ U(A) such that y(J) = J and y(λ) ∼= λ⊗χ◦det. By

definition of J̃ , this element y is clearly contained in J̃ . The element xy−1 therefore

intertwines λ, §IV.1.1 in [V2] says that x ∈ E×Jy∩U(A)′. However, E×J∩U(A) = J

and y ∈ U(A). We deduce that x ∈ Jy ∩U(A)′ ⊂ J̃ ′.

Theorem 5.1.30. Let λ′Mλ
be an irreducible subrepresentation of indMλ

J ′ λ
′. Then

the induced representation indG′
Mλ
λ′Mλ

is irreducible and cuspidal.

Proof. We only need to verify that (Mλ, λ
′
Mλ

) satisfies the two conditions of irre-

ducibility. We have proved in Proposition 5.1.25 that (Mλ, λ
′
Mλ

) verifies the second
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condition. It is left only to prove the intertwining set of λ′Mλ
in G′ equals to Mλ,

i.e. IG′(λ
′
Mλ

) = Mλ. In Lemma 5.1.29, we have proved that IU(A)′λ
′ ⊂ J̃ ′. Since J̃ ′

normalizes J ′, then x ∈ IU(A)λ
′ verifying HomJ ′(λ

′, x(λ)′) 6= 0, which is equivalent

to say that x(λ′) ∼= λ. Hence IU(A)λ
′ ⊂ Mλ. By the Proposition 3 in 8.10, chapter

I of [V1], let g ∈ G′ and X a finite set of G′ such that MλgMλ = ∪x∈XJ ′xJ ′, then

there is an k-isomorphism:

Ig−1(indMλ
J ′ λ

′) ∼= ⊕j∈XI(gj−1)(λ
′). (5.1)

Furthermore, we have:

IU(A)′(indMλ
J ′ λ

′) = Mλ, (5.2)

Hence IU(A)′(λ
′
Mλ

) = Mλ follows by the inclusion:

IU(A)′(λ
′
Mλ

) ⊂ IU(A)′(indMλ
J ′ λ

′).

Whence, there left to prove that

IG′(λ
′
Mλ

) ⊂ U(A)′.

Notice that ind
U(A)′

Mλ
λ′Mλ

is a subrepresentation of res
U(A)
U(A)′τ , where τ = ind

U(A)
J λ (as

in the proof of Proposition 5.1.28). We have:

IG′(ind
U(A)
Mλ

λ′Mλ
) ⊂ IG′(res

U(A)
U(A)′τ),

since res
U(A)
U(A)′τ is semisimple. We obtain then

IG′(ind
U(A)
Mλ

λ′Mλ
) ⊂ U(A)′ (5.3)

by Proposition 5.1.28. Now use one more time Proposition 3 in 8.10, chapter I of

[V1] as equation (5.1) and equation (5.2): Let h ∈ G′ and Y a finite set of G′ such

that U(A)hU(A) = ∪y∈YMλyMλ, then there is an k-isomorphism:

Ih−1(ind
U(A)′

Mλ
λ′Mλ

) ∼= ⊕s∈Y I(hs−1)(λ
′
Mλ

).

Hence we have:

IG′(λ
′
Mλ

) ⊂ IG′(ind
U(A)′

Mλ
λ′Mλ

).

Combining with the equation 5.3, we deduce the result.

5.1.6 Cuspidal k-representations of G′

Let M denote a Levi subgroup of G, and M′ = M ∩G′. In this section, we consider

the restriction functor resM
M′ , which has been studied by Tadić in [Ta] for represen-

tations with characteristic 0. In his article, he proved that any irreducible complex

representation of M′ is contained in an irreducible complex representation of M, and

they are cuspidal simultaneously. His method can be adapted for the case of modulo

`.



5.1. CONSTRUCTION OF CUSPIDAL K-REPRESENTATIONS OF G′ 65

Proposition 5.1.31. Let K be a locally pro-finite group, and K ′ ⊂ K is a closed

normal subgroup of K with finite index. Let (π, V ) be an irreducible k-representation

of K, then the restricted representation resKK′π is semisimple with finite length.

Proof. The proof is the same as §6.12,II in [V1]. We repeat it again is to check that

we can drop the condition that [K : K ′] is inversible in k.

The restricted representation resKK′π is finitely generated, hence has an irre-

ducible quotient. Let V0 be the sub-representation such that V/V0 is irreducible.

Let {k1, ..., km},m ∈ N be a family of representatives of the quotient K/K ′. Now

we consider the kernel of the non-trivial projection from resKK′π to ⊕mi=1V/ki(V0),

which is K-stable, hence equals to 0 since π is irreducible. We deduce that resKK′π

is a sub-representation of ⊕mi=1V/ki(V0) hence is semisimple.

Proposition 5.1.32. Let π be any irreducible k-representation of M, then the re-

striction resM
M′π is semisimple with finite length, and the direct components are M-

conjugate. Conversely, let π′ be any irreducible k-representation of M′, then there

exists an irreducible representation π of M, such that π′ is a direct component of

resM
M′π.

Proof. For the first part of this proposition. The method of Silberger in [Si] when

` = 0 can be generalised to our case that ` is positive. We first assume that π is

cuspidal. Let Z denote the center of M, and the quotient M/ZM′ is compact. Since

for any vector v in the representation space of π the stabiliser StabM(v) is open,

the image of StabM(v) has finite index in the quotient group M/ZM′. Combining

with Schur’s lemma, the restricted k-representation resM
M′π is finitely generated. By

§2.7,II in [V1] the restricted representation is Z ′ = Z ∩M′-compact.

Let (v1, ..., vm),m ∈ N be a family of generators of the representation space of

resM
M′π. For any compact open subgroup K of M′, we want to prove the space V K is

finitely dimensional. We could always assume that K stabilises vi, i = 1, ...,m, and

consider the map

αi : g ↪→ eKgvi, i = 1, ...m,

where eK is the idempotent associated K in the Heck algebra of M′. Apparently, the

space V K is generated by L = {eKgvi, g ∈ M′, i = 1, ...,m}. If the dimension of V K is

infinite, we can choose a infinite subset L′ of L which forms a basis of V K , especially

there exists i0 ∈ {1, ...,m} such that M′i0 = {g ∈ M′, eKgvi0 ∈ L′} is an infinite set.

In particular, cosets gK, g ∈ M′i0 are disjoint since K stabilizes vi0 . Furthermore,

since the center Z ′ of M′ acts as a character on resM
M′π, which means Z ′ stabilises

each vi, the images of cosets gK, g ∈ M′i0 are disjoint in the quotient M′/Z ′. Let

v∗i0 be an k-linear form of V K which equals to 1 on the set L′. The above analysis

implies that the image of the support of coefficient 〈v∗i0eK , gvi0〉 = 〈v∗i0 , eKgvi0〉
in M′/Z ′ contains infinite disjoint cosets gK, g ∈ M′i0 , which contradicts with the

assumption that resM
M′π is Z ′-compact. We conclude that resM

M′π is finitely generated

and admissible, hence has finite length.
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Now we come back to the general case:π is irreducible representation of M. We

first prove that resM
M′π has finite length, then we prove it is semisimple. For the first

part, it is sufficient to prove the restricted representation resM
M′π is finitely generated

and admissible. Let (L, σ) be a cuspidal pair in M such that π is a sub-representation

of iML σ. Applying Theorem A.0.4, we have resM
M′i

M
L σ
∼= iM

′
L′=L∩M′resL

L′σ. We have

proved that resL
L′σ is admissible and finitely generated. Since normalised parabolic

induction iM
′

L′ respect admissibility and finite generality, the k-representation resL
L′σ

is also admissible and finitely generated, and hence has finite length. So does its

sub-representation resM
M′π. For the semi-simplicity, let W be an irreducible sub-

representation of resM
M′π, of which gW is also an irreducible sub-representation for

g ∈ M. Let W ′ =
∑

g∈M′ g(W ), which is a semisimple (by the equivalence condition

in §A.VII. of [Re]) sub-representation of resM
M′π. Obviously, M stabilises W ′, hence

W ′ = resM
M′π by the irreducibility of π.

Now we consider the second part of this proposition, and apply the proof of

Proposition §2.2 in [Ta] in our case. Let π′ be any irreducible k-representation of

M′, and S the subgroup of Z generated by the scalar matrix $F , where $F is the

uniformizer of the ring of integers of oF . It is clear that the intersection S∩M′ = {1}.
Hence we could let π̃ denote the extension of π to SM′, where S acts as identity.

The quotient group M/SM′ is compact, hence the induced representation indM
SM′ π̃

is admissible (see the formula in §I,5.6 of [V1]). For any M-subrepresentation τ of

indM
SM′ π̃, there is a surjective morphism from resM

SM′τ to π̃, defined as f 7→ f(1).

This induced a surjective morphism from resM
M′τ to π′.

Now let π1 be a finitely generated subrepresentation of indM
SM′ π̃. Since π1 is finite

type and admissible, it has finite length containing an irreducible subrepresentation

noted as π. And there is a surjective morphism from resM
M′π to π′. Combining this

with the first part above, the representation π is the one we want.

Corollary 5.1.33. Let π be an irreducible k-representation of M. If the restricted

representation resM
M′π contains an irreducible cuspidal k-representation of M′, then

π is cuspidal. This is to say that any cuspidal k-representation of M′ is a subrepre-

sentation of resM
M′π for some cuspidal k-representation π of M.

Proof. For the first part above, we know that the direct components of resM
M′π are

M-conjugate by Proposition 5.1.32. Let P′ = L′ ·U be any proper parabolic subgroup

of M′ and P = L ·U the proper parabolic subgroup of M such that P∩M′ = P′ and

L∩M′ = L′. Let π′0 be any direct component of resM
M′π
∼= ⊕i∈Iπ′i, where I is a finite

index set and π′i are irreducible representations of M′, and for each i ∈ I let ai ∈ M

such that π′i
∼= ai(π

′). In particular, we could assume that {ai}i∈I is a subset of L.

We have:

resL
L′r

M
L π
∼= ⊕i∈IrM′

L′ π
′
i.

Meanwhile, since the unipotent radical U is normal in L, we deduce that:

rM′
L′ π

′
i
∼= ai(r

G′
L′ π
′) ∼= 0.
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Hence π is cuspidal as required.

Corollary 5.1.34. For any irreducible cuspidal k-representation π′ of G′, there

exists a maximal simple cuspidal k-type (J, λ) of G, and Mλ as in definition 5.1.26.

There exists a direct component λ′Mλ
of indMλ

J ′ resJJ ′λ such that π′ is isomorphic to

the induced representation indG′
Mλ
λ′Mλ

.

Proof. Applying Corollary 5.1.33, let π be an irreducible cuspidal k-representation

of G′ which contains π′ as a sub-G′-representation. Let (J0, λ0) be the maximal

simple cuspidal k-type of G corresponding to π, and (Mλ0 , λ
′
Mλ0

) as in Theorem

5.1.30. We know that π is isomorphic to indG
E×J0

Λ0, where Λ0 is an extension of λ

to E×J0, and the intersection E×J0∩G′ = J ′0. Then after applying Mackey’s decom-

position formula to resG
G′π, we obatin that of which the representation indG′

J ′0
resJJ ′0

λ0

is a subrepresentation. Hence, indG′
Mλ0

λ′Mλ0
is isomorphic to some direct compo-

nent of resG
G′π, which is isomorphic to g(π′) for some g ∈ G by Proposition 5.1.32.

This implies that π′ contains g−1(λ′Mλ0
). Notice that g−1(Mλ0) = Mg−1(λ0) and

g−1(λ′Mλ0
) is a direct component of ind

Mg−1(λ0)

g−1(J ′)
g−1(λ′), so we could write is as

λ′Mg−1(λ0)
. Hence by Frobenius reciprocity and Theorem 5.1.30, this implies that

π′ ∼= indG′
Mg−1(λ0)

g−1(λ′Mg−1(λ0)
). And (g−1(J0), g−1(λ)) is the required maximal sim-

ple cuspidal k-type.

5.2 Whittaker models and maximal simple cuspidal k-

types of G′

5.2.1 Uniqueness of Whittaker models

In this section, we will see that the subgroup Mλ of J̃ ′ = J̃(λ)∩G′ in the definition

5.2.7 actually coincides with J̃ ′. In other words, we will prove that for any element

x ∈ U(A), if x normalises J and x(λ) ∼= λ ⊗ χ ◦ det for some k-quasicharacter χ of

F×, then x(λ′) ∼= λ′, for any irreducible direct component λ′ of λ|J ′ .
Let U = Un(F ) be the group consisting with those strictly upper triangular

matrices in G. A non-degenerate character ψ of U is a k-quasicharacter defined on

U. Let Pn = Pn(F ) be the mirabolic subgroup of GLn(F ), and P ′n = Pn ∩ SLn(F ).

We denote the unipotent radical of Pn as Vn−1, which is an abelian group isomorphic

to the additive group Fn−1. The unipotent radical of P ′n is also Vn−1.

Definition 5.2.1. 1. rid := rGn−1,Pn the functor of Vn−1-coinvariants of repre-

sentations of Pn, rid′ := rG′n1 ,P
′
n

the functor of Vn−1-coinvariants of represen-

tations of P ′n.

2. rψ := rψ,Pn−1,Pn the functor of (Vn−1, ψ)-coinvariants of representations of Pn,

r′ψ := rψ,P ′n−1,P
′
n

the functor of (Vn−1, ψ)-coinvariants of representations of P ′n.
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Definition 5.2.2. Let 1 ≤ k ≤ n and π ∈ ModkPn, π′ ∈ ModkP
′
n. We define the

k-th derivative of π to be the representation π(k) := ridr
k−1
ψ π, and the k-th derivative

of π′ relative to ψ to be the representation π′(ψ,k) := r′idr
′k−1
ψ π′.

Remark 5.2.3. The unipotent radical of Pn and P ′n coincide and U ⊂ G′, so

res
Gn−k
G′n−k

π(k) is equivalent to (resGn
G′n
π)(k), where π ∈ ModnGn.

Proposition 5.2.4. Let π be a cuspidal k-representation of G, then the restriction

resG
G′π is multiplicity free.

Proof. We have proved in Proposition 5.1.32, that the restriction resGn
G′n
π is semisim-

ple with finite direct components. Hence we could write it as ⊕mi=1πi, where m ∈
N and πi’s are irreducible k-cuspidal representations of G′n. Let ψ be any non-

degenerate character of U. As in 1.7 chapter III of [V1], we obtain that dimπ(n) = 1.

We apply Remark 5.2.3 above, then

dim(resGn
G′n
π)(n) = ⊕mi=1dim(πi)

(ψ,n) = 1.

So there exists one unique components πi0 , where 1 ≤ i0 ≤ m, such that π
(ψ,n)
i0

is

non-trivial. And we deduce the result.

Corollary 5.2.5. Let π′ be an irreducible cuspidal k-representation of G′. Then

there exists a non-degenerate character ψ of U, such that dimπ′(g(ψ),n) = 1.

Proof. This is deduced from Corollary 5.1.33. In fact the direct components of

resG
G′π is Corollary 5.1.33 are conjugated to each other by diagonal matrices, and

the conjugation of non-degenerate characters of U by any diagonal matrix is also a

non-degenerate character of U.

5.2.2 Distinguished cuspidal k-types of G′

Proposition 5.2.6. Let (J, λ) be a maximal simple cuspidal k-type of G, and J̃ the

projective normalizer of λ. Then the subgroup Mλ in definition 5.1.26 of J̃ ′ coincides

with J̃ ′.

Proof. Let Λ be an extension of λ to E×J . Then indG
E×JΛ is an irreducible cuspidal

representation of G, we denote it as π. The restricted representation resG
G′π is

semisimple and its direct components are cuspidal. By Theorem 5.1.30, there exists

a direct component π′ of resG
G′π, such that π′ is isomorphic to indG′

Mλ
λ′Mλ

, for some

λ′Mλ
. In the proof of Theorem 5.1.30, we have showed that the intertwining subgroup

IG′(λ
′
Mλ

) equals to Mλ. If J̃ ′ 6= Mλ, and let x be an element belonging to J̃ ′ but

not to Mλ. Then x(λ′Mλ
) is not isomorphic to λ′Mλ

. However x(π′) ∼= π′, so resG′
Mλ
π′

contains x(λMλ
), from which we deduce that

indG′
Mλ
x(λ′Mλ

) ∼= indG′
Mλ
λ′Mλ

∼= π′. (5.4)



5.3. MAXIMAL SIMPLE CUSPIDALK-TYPES FOR LEVI SUBGROUPS OF G′69

Meanwhile, by Mackey’s decomposition formula

resJ̃
′
Mλ

indJ̃
′
J ′resJJ ′λ

∼= ⊕J ′\J̃ ′/Mλ
indMλ

J ′ resJJ ′λ,

hence x(λ′Mλ
) is another direct component of indMλ

J ′ resJJ ′λ. Since we could change

order of the functor indG′
Mλ

and finite direct sum, and indG′
J ′ resJJ ′λ is a subrepresen-

tation of resG
G′π, the two representations indG′

Mλ
x(λ′Mλ

) and indG′
Mλ
λ′Mλ

∼= π′ are two

different direct components of resG
G′π. By Proposition 5.2.4, they are not isomorphic,

which is contradicted to the equivalence 5.4. Hence J̃ ′ = Mλ.

Definition 5.2.7. Let (J, λ) be a maximal simple cuspidal k-type of G and J̃ ′ =

J̃ ∩ G′ as in definition 5.1.18, and λ̃′ any direct component of indJ̃
′
J ′resJJ ′λ. We

define the couples (J̃ ′, λ̃′) to be maximal simple cuspidal k-types of G′. By Corollary

5.1.34 and Proposition 5.2.6, for any irreducible cuspidal k-representation of G′,

there exists a maximal simple cuspidal k-type (J̃ ′, λ̃′) of G′ such that π′ is isomorphic

to indG′

J̃ ′
λ̃′.

5.3 Maximal simple cuspidal k-types for Levi subgroups

of G′

5.3.1 Intertwining and weakly intertwining

In this section, let M denote any Levi subgroup of G and for any closed subgroup

H of G, we always use H ′ to denote its intersection with G′. We will consider the

maximal simple cuspidal k-types of M. Recall that Proposition 5.1.9, Proposition

5.1.10, Definition 3.1.6 and Proposition 5.1.11 will be used in this section.

Proposition 5.3.1. Let (JM, λM) be a maximal simple cuspidal k-type of M, and χ

a k-quasicharacter of F×. If (JM, λM⊗χ◦det) is weakly intertwined with (JM, λM),

then they are intertwined. There exists an element x ∈ U(AM) = U(A1) × · · · ×
U(Ar) such that x(JM) = JM and x(λM) ∼= λM ⊗ χ ◦ det, where Ai is a hereditary

order associated to (Ji, λi) (i = 1, ..., r). Furthermore, for any g ∈ G, if g weakly

intertwines (JM, λM ⊗ χ ◦ det) and (JM, λM), then g intertwines (JM, λM ⊗ χ ◦ det)

and (JM, λM).

Proof. By definition, write M as a product GLn1×· · ·×GLnr , then JM = J1×· · ·×Jr
and λM

∼= λ1 × · · · × λr, where (Ji, λi) are k-maximal cuspidal simple type of GLni
for i ∈ {1, . . . , r}. The group U(AM) = U(A1)× · · · ×U(Ar). Hence the two results

are directly deduced by 5.1.12 and 5.1.13.

Definition 5.3.2. Let (JM, λM) be a k-maximal cuspidal simple type of M. We

define the group of projective normalizer J̃M a subgroup of JM. An element x ∈
U(AM), where AM = A1 × · · · × Ar, belongs to J̃M, if x(JM) = JM, and there exists

a k-quasicharacter χ of F× such that x(λM) ∼= λM ⊗ χ ◦ det.
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The induced k-representation λ̃M = indJ̃MJMλM is irreducible by Corollary 5.1.22,

and according to 5.1.9, the restriction resJ̃M
J̃ ′M
λ̃M is semisimple. Let µM denote one of

its irreducible component.

Lemma 5.3.3. Let (JM, λM) be a k-maximal cuspidal simple type of M, and νM and

µM be two irreducible components of the restricted representation resJ̃M
J̃ ′M
λ̃M. Then :

IwM′(νM, µM) = {m ∈ M′ : m(νM) ∼= µM},

whence IwM′(νM , µM ) = IM′(νM , µM ). In particular, IM′(µM) is the normalizer group

of µM in M′. Moreover, this group is independent of the choice of µM.

Proof. Let m ∈ M′ weakly intertwines µM with νM. Then by 5.1.11, the element m

weakly intertwines λ̃M with λ̃M ⊗ χ ◦ det for some k-quasicharacter χ of F×. By

definition

λ̃M|JM ∼= ⊕x∈J̃M/JMx(λM) ∼= ⊕x∈J̃M/JMλM ⊗ ξx ◦ det.

Since the induced representation indJ̃MJMλM ⊗ ξx ◦ det ∼= λ̃M ⊗ ξx ◦ det, by Frobenius

reciprocity, we have λ̃M ⊗ ξx ◦ det ∼= λ̃M for every x ∈ J̃M/JM. It follows that for

some g ∈ J̃M, the element gm weakly intertwines λM with λM⊗ ξx ·χ ◦ det for some

x ∈ J̃M/JM. Applying 5.3.1, the element gm intertwines λM with λM ⊗ ξx · χ ◦ det,

and there exists an element y ∈ J̃M such that y(λM) ∼= λM ⊗ ξx · χ ◦ det. Inducing

this isomorphism to J̃M, we see tha λ̃M
∼= λ̃M ⊗ χ ◦ det, whence m intertwines λ̃M.

Furthermore, the intertwining set IM(λM) = NM(λM), the latter group is the

normalizer of λM, which also normalizes U(AM), hence normalizes J̃M. We deduce

that IM(λ̃M) = J̃MNM(λM). Then each element of IwM(µM, νM) normalizes λ̃M and

the group J̃ ′M. This gives the first two assertions.

To prove the third assertion, observe that the irreducible components of λ̃M|J̃ ′M
form a single J̃M-conjugacy class. We have to show therefore that J̃M normalizes

NM′(µM).

The quotient group NM(λ̃M)/J̃M is abelian. In fact, as we have proved above,

it is a subgroup of NM(λM)/JM. The latter group is abelian, since NM(λM) can be

written as E×1 J1 × · · · × E×r Jr, where E1, . . . , Er are field extensions of F . Now let

x ∈ J̃M and y ∈ NM′(µM), we have x−1yx = y ·m for some m ∈ J̃ ′M. Therefore:

x−1yx(µM) ∼= y(µM) ∼= µM,

as required.

Remark 5.3.4. To be more detailed, we proved that the intertwining group IM′(µM)

is the stabilizer group NM′(µM), which is a subgroup of E×1 J̃1 × · · · × E×r J̃r ∩M′,

hence a compact group modulo center.
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5.3.2 Maximal simple cuspidal k-types of M′

In this section, we construct maximal simple cuspidal k-types of M′ (5.3.10). This

means that for any irreducible cuspidal k-representation π′, there exists an ir-

reducible component µM of resJ̃M
J̃ ′M
λ̃M, and an irreducible k-representation τM′ of

NM′(µM) containing µM, such that π′ ∼= indM′

NM′ (µM)τM′ . We follow the same method

as in the case of G′, which is to calculate the intertwining group and verify the

second condition of irreducibility (5.1.21).

Lemma 5.3.5. As in the case when M = G, we have a decomposition:

resM
JM

indM
JM
λM
∼= ΛλM ⊕WM,

where ΛλM is semisimple, of which each irreducible component is isomorphic to λM⊗
χ ◦ det for some k-quasicharacter χ of F×. Non of irreducible subquotient of WM is

contained in ΛλM.

Proof. This is directly deduced from the decomposition in 5.1.14.

Proposition 5.3.6. Let µM be an irreducible k-subrepresentation of resJ̃M
J̃ ′M

indJ̃MJMλM.

Then µM verifies the second condition of irreducibility (5.1.21). This means that for

any irreducible representation π′ of M′, if there is an injection µM → resM′

J̃ ′M
π′, then

there exists a surjection from resM′

J̃ ′M
π′ to µM.

Proof. A same proof can be given as in the case while M′ = G′ (5.1.25).

Proposition 5.3.7. Let τM′ be an irreducible representation of NM′(µM) containing

µM. Then τM′ verifies the second condition of irreducibility.

Proof. Let NM′ denote NM′(µM), then we have:

resM′
NM′

indM′
NM′

τM′
∼= ⊕NM′\M′/NM′

ind
NM′
NM′∩a(NM′ )

res
a(NM′ )
NM′∩a(NM′ )

a(τM′).

Notice that NM′ has a unique maximal open compact subgroup J̃ ′M, hence J̃ ′M ∩
ba(NM′) = J̃ ′M∩ ba(J̃ ′M), for any b, a ∈ M′. Hence we have the following equivalence:

res
NM′

J̃ ′M
ind

NM′
NM′∩a(NM′ )

res
a(NM′ )
NM′∩a(NM′ )

a(τM′)

∼= ⊕b∈NM′∩a(NM′ )\NM′/J̃
′
M

ind
J̃ ′M
J̃ ′M∩ba(NM′ )

res
ba(NM′ )

J̃ ′M∩ba(NM′ )
ba(τM′)

∼= ⊕b∈NM′∩a(NM′ )\NM′/J̃
′
M

ind
J̃ ′M
J̃ ′M∩ba(J̃ ′M)

res
ba(J̃ ′M)

J̃ ′M∩ba(J̃ ′M)
(⊕µM),

where ⊕µM denotes a finite multiple of µM.

Let a /∈ NM′ , then ba is an element of NM′ · a, and NM′ · a ∩ NM′ = ∅. By

5.3.3, this means ba /∈ IwM′(µM). This implies that non of irreducible subquotient
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of ind
J̃ ′M
J̃ ′M∩ba(NM′ )

res
ba(NM′ )

J̃ ′M∩ba(NM′ )
ba(τM′) is isomorphic to µM. Now combining with the

first equivalence in this proof above, we obtain a decomposition:

resM′
NM′

indM′
NM′

τM′
∼= τM′ ⊕WNM′ ,

non of irreducible subquotient of WNM′ is isomorphic to τM′ .

Now we verify the second condition of τM′ . Let π′ be any irreducible k-representation

of M′. If there is an injection τM′ ↪→ resM′
NM′

π′, then resM′
NM′

π′ is isomorphic to a

quotient representation (resM′
NM′

indM′
NM′

τM′)/W0. And the image of the composed

morphism below:

τM′ ↪→ resM′
NM′

π′ ∼= (resM′
NM′

indM′
NM′

τM′)/W0

is not contained in (WNM′ + W0)/W0 by the analysis above. Then we have a non

trivial morphism:

resM′
NM′

π′ → (τM′ ⊕WNM′ )/(WNM′ +W0) ∼= τM′ .

Hence we finish the proof.

Lemma 5.3.8. Let G be a locally pro-finite group, and K1,K2 two open subgroups

of G, where K1 is the unique maximal open compact subgroup in K2. Let π be

an irreducible k-representation of K2, and τ an irreducible k-representation of K1.

Assume that π|K1 is a multiple of τ . If x ∈ G (weakly) intertwines π, then there

exists an element y ∈ K2 such that yx (weakly) intertwines τ .

Proof. Since π is isomorphic to a subquotient of indK2

K2∩x(K2)res
x(K2)
K2∩x(K2)x(π), the re-

striction resK2
K1
π is isomorphic to a subquotient of resK2

K1
indK2

K2∩x(K2)res
x(K2)
K2∩x(K2)x(π).

Applying Mackey’s decomposition formula, we have

resK2
K1

indK2

K2∩x(K2)res
x(K2)
K2∩x(K2)x(π) ∼=

⊕
a∈K2∩x(K2)/K2\K1

indK1

K1∩ax(K2)res
ax(K2)
K1∩ax(K2)ax(π).

Since K1 ∩ ax(K2) is open compact in ax(K2), by the uniqueness of open compact

subgroup in ax(K2), the intersection K1 ∩ ax(K2) ⊂ ax(K1), hence K1 ∩ ax(K2) =

K1∩ax(K1). Write resK2
K1
π ∼=

⊕
I τ , where I is an index set. We have an equivalence

res
ax(K1)
K1∩ax(K1)ax(π) ∼=

⊕
I

res
ax(K1)
K1∩ax(K1)ax(τ)

Since functors ind, res can change order with infinite direct sum, we reform the first

equivalence in this proof

resK2
K1

indK2

K2∩x(K2)res
x(K2)
K2∩x(K2)x(π)
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∼=
⊕
I

⊕
a∈K2∩x(K2)/K2\K1

indK1

K1∩ax(K1)res
ax(K1)
K1∩ax(K1)ax(τ).

As in the proof of Lemma 5.1.17, this implies that there exists at least one y ∈ K2

such that τ is an subquotient of indK1

K1∩yx(K1)res
yx(K1)
K1∩yx(K1)yx(τ).

Theorem 5.3.9. The induced k-representation indM′

NM′ (µM)τM′ is cuspidal and irre-

ducible. Conversely, any irreducible cuspidal representation π′ of M′ contains an

irreducible k-representation τM′ of NM′(µM), and π′ ∼= indM′

NM′ (µ
′
M)τM′, where τM′

and NM′(µM) are defined as in Proposition 5.3.7 of some maximal simple cuspidal

k-type (JM, λM) of M.

Proof. For the first assertion, we only need to verify the two condition of irreducibil-

ity. The second condition has been checked in 5.3.7. By 5.3.8 and 5.3.3, we obtain

that the induced k-representation indM′

NM′ (µM)τM′ is irreducible. Let π′ be the induced

k-representation, and π the k-irreducible representation as in 5.1.32. We deduce from

5.1.17 and the fact that π′ contains (J ′M, λ
′
M), that π contains (JM, λM ⊗ χ ◦ det).

Hence π is cuspidal (5.1.7) and this implies that π′ is cuspidal. Conversely, let π′ be

an irreducible cuspidal k-representation of M′, and π be the irreducible cuspidal k-

representation of M which contains π′. Then there exists a maximal simple cuspidal

k-type (JM, λM), and an extension ΛM of λM toNM(λM) such that π ∼= indM
NM(λM)ΛM.

Let µ = indJ̃MJMλM, and NM(µ) be the normalizer of µ in M. By the transitivity of

induction:

π ∼= indM
NM(µ) ◦ ind

NM(µ)
NM(λM)ΛM.

Denote ind
NM(µ)
NM(λM)ΛM as τM, which is an irreducible representation containing µ.

Till the end of this proof, we denote µM as a direct component of µ|J̃ ′M , N as

NM(µ), N ′ as N ∩M′, and NM′ as NM′(µM). Let K be an open compact subgroup

of J̃M contained in the kernel of τM, and Z be the center of M. Since the quotient

(Z · N ′)/N is compact and the image of K in this quotient is open, we deduce

that Z · N ′ ·K is a normal subgroup with finite index of N . Hence the restriction

resNZ·N ′·KτM is semisimple with finite length as in the first part of proof of 5.1.32,

from which we deduce that the restriction resNN ′τM is semisimple with finite length as

well. After conjugate by an element m in M, the cuspidal representation π′ contains

a direct component of this restricted representation. We can assume that m is

identity, and denote this direct component as τ ′. Applying Frobenius reciprocity,

the representation resN
J̃ ′M

indN
J̃M
µ is semisimple, consisting of resJ̃M

J̃ ′M
µ, hence τ ′ contains

a µM. Notice that NM′ is a normal subgroup with finite index in N ′. In fact, the

groupNM′ contains Z ·J̃ ′M. And as we have discussed after the proof of 5.3.3, we could

write N ′ as a subgroup of E×1 J̃1×· · ·×E×r J̃r∩M′ = (E×1 ×· · ·×E×r ∩M′)(J̃ ′M). Hence

resN
′

NM′
τ ′ is semisimple with finite length, and there must be one direct component

τM′ containing µM. Since π′ contains τM′ , we have:

π′ ∼= indM′
NM′

τM′ .
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This ends the proof.

Definition 5.3.10. Let (JM, λM) be a maximal simple cuspidal k-type of M, and

µM be an irreducible component of resJ̃M
J̃ ′M
λ̃M, where J̃M and λ̃M are defined as in

5.3.2. Let NM′(µM) be the normalizer group of µM in M′, and τM′ an irreducible

k-representation of NM′(µM) containing µM. We define the couples in forms of

(NM′(µM), τM′) are the maximal simple cuspidal k-types of M′.

5.3.3 The k-representations π

In this section π′ is an irreducible cuspidal k-representation of M′. We study the

irreducible cuspidal k-representations π of M, which contains π′ as a common com-

ponent, and we prove that any two of them are different by a k-character of M factor

through determinant (Lproposition 9). This is the key to give the first description

of supercuspidal support of π′ in the next section.

Lemma 5.3.11. Let (JM, λM) be a maximal simple cuspidal k-type of M, and µ =

indJ̃MJMλM. Let τ be any irreducible k-representation of N = NM(µ) containing µ,

then resNN ′τ is semisimple with finite length.

Proof. By the definition of N , we know the center Z of M is contained in N . Since

F×/detZ is compact, the quotient group detN/detZ is compact as well. Notice

that τ |J̃ is a multiple of µ, then any open subgroup contained in the kernel of µ

is also contained in the kernel ker(τ) of τ , which implies ker(τ) is open. Hence

Z · N ′ · ker(τ) is a normal subgroup with finite index in N . Applying Proposition

5.1.31, the restricted k-representation resNZ·N ′τ is semisimple with finite length, and

by Schur’s lemma we deduce that resNN ′τ is semisimple with finite length.

Lemma 5.3.12. If c1, c2 two characters of Z and they coincide on Z ∩M′, where Z

denotes the center of M. Then c1 ◦ c−1
2 can be extended to a character on M which

factor through det.

Proof. First, we extend c1 ◦ c−1
2 to Z ·M′: For any a ∈ Z, b ∈ M′, define c0(ab) =

c1 ◦ c−1
2 (a). This is well defines, since for any a′, b′ such that a′b′ = ab, then a−1a′ ∈

Z ∩M′. Hence c1 ◦ c−1
2 (a−1a′) = 1, which implies c0(ab) = c0(a′b′). Now consider

IndM
Z·M′c0, which has finite length. There is a surjection from resM

Z·M′IndM
Z·M′c0 to

c0, then of which there exists an irreducible k-subquotient c containing c0, by the

uniqueness of Jordan-Hölder factors. According to the fact that M′ is normal in

M and c0 is trivial on M′, the k-representation resM
M′IndM

Z·M′c0 is a trivial. Hence c

is trivial on M′ as well, and hence factor throught F× ∼= M/M′. Then by Schur’s

lemma, c is a character factor through det.

Lemma 5.3.13. Let τ1, τ2 be two irreducible k-representations of N (notion as in

5.3.11). Assume that resNN ′τ1 and resNN ′τ2 have one direct component in common,

then there exists a k-quasicharacter of F× such that τ1
∼= τ2 ⊗ χ ◦ det.
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Proof. The group N is compact modulo center, and J̃M is the unique maximal

open compact subgroup of N . Hence every irreducible k-representation of N is

finite dimensional, of which the kernel is always open. Let U be an open compact

subgroup contained in Kerτ1 ∩ Kerτ2 ∩ J̃M. Let c1, c2 be the central characters of

τ1 and τ2 respectively. According to 5.3.12, there exists a k-quasicharacter χ of F×

such that c1
∼= c2 ⊗ χ ◦ det. After tensoring χ ◦ det, we could assume that c1

∼= c2.

Hence:

HomZ·N ′·U (resNZ·N ′·Uτ1, resNZ·N ′·Uτ2) 6= 0.

Then:

HomN (τ1, indNZ·N ′·U resNZ·N ′·Uτ2) 6= 0.

Since |N : Z ·N ′ · U | is finite, the later factor above has finite length and

indNZ·N ′·U resNZ·N ′·Uτ2
∼= τ2 ⊗ indNZ·N ·U1.

Notice that any Jordan-Holder factor of indNZ·N ′·U1 is a character factor through

det|N , and |F× : det(N)| is finite. By the same reason as in the proof of 5.3.12,

we could extend each of them as a character of M factor through det. Hence there

exists a k-quasicharacter χ of F×, such that τ1
∼= τ2 ⊗ χ ◦ det.

Proposition 5.3.14. Let π′ be an irreducible cuspidal k-representation of M′. If

π1, π2 two irreducible cuspidal k-representations of M, such that π′ appears as a direct

component of resM
M′π1 and resM

M′π2 in common, then there exists a k-quasicharacter

of F× verifying that π1
∼= π2 ⊗ χ ◦ det.

Remark 5.3.15. We will apply the proposition 5.3.14 in the proof of the proposition

5.3.18, which is the first part of the uniqueness of supercuspidal support of SLn(F ).

We will state two proofs of the proposition 5.3.14 as below. The first proof is given

through type theory while the second proof does not concern about type theory, which

induce two parallel proofs of uniqueness of supercuspidal support of SLn(F ), with and

without type theory respectively. The second proof is similar to that of the proposition

in §VI.3.2. in [Re], and also the proposition 2.4 in [Ta].

proof version 1. Let (JM, λM) be a maximal simple cuspidal k-type of M contained

in π1, and µ = indJ̃MJMλM. Then there is an extension τ of µ to N = NM(µ) such that

π1
∼= indM

N τ . Let N ′ denote N ∩M′. As in the proof of 5.3.9, there exists a direct

component µM of resJ̃M
J̃ ′M
µ such that π′ ∼= indM′

N ′τ
′, where τ ′ is a direct component of

resNN ′τ and τ ′ ∼= indN
′

NM′ (µM)τ
′
M. Here τ ′M is an irreducible k-representation containing

µM. By 5.1.17 π2 contains (JM, λM ⊗ χ0 ◦ det) for some k-quasicharacter χ0 of F×.

Hence there is an extension ΛM of λM on NM(λM) such that π2
∼= indM

NM(λM)ΛM ⊗
χ0 ◦det. Let τ2 denote indNNM(λM)ΛM⊗χ0 ◦det, which is an extension of µ⊗χ0 ◦det.

After tensor χ−1
0 ◦ det, we could assume that τ2 is an extension of µ. Now we want

to study the relation between τ and τ2.
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First consider resM
Nπ2:

resM
N indM

N τ2
∼= ⊕N\M/N indNN∩a(N)res

a(N)
N∩a(N)a(τ2).

Since [N : N ∩ a(N)] is finite, the representation above is a direct sum of k-

representations with finite length, and of which τ ′ is a sub-representation. Hence

there exists an irreducible sub-quotient τ1 of resM
Nπ2 such that τ ′ is a direct com-

ponent of resNN ′τ1. By lemma 5.3.13, there is a k-quasicharacter χ of F× such that

τ1
∼= τ ⊗ χ ◦ det.

We will prove that τ1
∼= τ2. Assume that τ1 and τ2 are not isomorphic, then there

exists a /∈ N such that τ1 is an irreducible subquotient of indNN∩a(N)res
a(N)
N∩a(N)a(τ2),

which means a weakly intertwines τ1 with τ2. Hence there exists b ∈ N such that ba

weakly intertwines µ⊗χ◦det with µ and c ∈ J̃M, d ∈ cba(J̃M) such that dcba weakly

intertwines λM⊗χ◦det with λM. Hence there is g ∈ J̃M such that g(λM⊗χ◦det) ∼=
λM. This implies that µ ⊗ χ ◦ det ∼= µ. Then the element ba weakly intertwines µ

to itself. Then λM, as a subrepresentation of resJ̃MJMµ, is a subquotient of:

indJ̃M
J̃M∩ba(J̃M)

res
ba(J̃M)

J̃M∩ba(J̃M)
ind

ba(J̃M)
ba(JM)ba(λM)

∼= ⊕ba(JM)\ba(J̃/rM )/J̃M∩ba(J̃/rM )ind
cba(JM)

J̃M∩cba(JM)
cba(λM).

Hence there is c0 ∈ J̃M, such tha bac0 ∈ IwM(λM) = IM′(λM) ⊂ N , which is contra-

dicted to our assumption that a /∈ N . Hence τ1
∼= τ2. We conclude that:

π2
∼= indM

N τ1
∼= (indM

N τ)⊗ χ ◦ det ∼= π1 ⊗ χ ◦ det.

proof version 2. The assumption implies that the set HomM′(resM
M′π1, resM

M′π2) is

non-trivial. The group M acts on this Hom set by

g · f := π1(g) ◦ f ◦ π2(g)−1, f ∈ HomM′(resM
M′π1, resM

M′π2), g ∈ M.

This action factors through M′, hence induces an action of the abelian quotient

group M\M′ on this Hom set, which is a finitely dimensional k-vector space, since

resM
M′π1 and resM

M′π2 are semisimple with finite length. Then the elements of M\M′

forms a family of commutative linear operators on a finitely dimensional k-vector

space, hence they have one common eigenvector. This is to say that there is an

k-quasicharacter χ0 of M\M′ such that g · f = χ0(g)f for each element g ∈ M,

hence χ0 can be written as χ ◦ det for some k-quasicharacter χ of F×. Notice

f ∈ HomM′(π1⊗χ−1 ◦ det, π2), by irreducibility, the k-representation π1⊗χ−1 ◦ det

coincides with π2.
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5.3.4 First description of supercuspidal support

Let π and π′ be as in 5.1.32. The supercuspidal support of π is unique up to

M-conjugate ([V2]). We prove in this section, that the supercuspidal support of

π′ is also unique up to M-conjugation (5.3.18), which is the first description of

supercuspidal support. Eventually, we will prove that the supercuspidal support of

π′ is unique up to M′-conjugation in the next chapter.

Lemma 5.3.16. Let π be an irreducible k-representation. If π ⊗ χ ◦ det is super-

cuspidal for some k-quasicharacter χ of F×, then π is supercuspidal.

Proof. If π⊗χ ◦ det is supercuspidal, then it contains a maximal simple cuspidal k-

type (JM, λM). Hence π contains (JM, λM⊗χ−1◦det), which is also a maximal simple

cuspidal k-type. Hence π is cuspidal. Now assume that there is a supercuspidal

representation τ of some proper Levi L of M such that π is an irreducible subquotient

of iML τ . Then π ⊗ χ ◦ det is a subquotient of iML τ ⊗ χ ◦ det. In fact, we have

iML τ ⊗ χ ◦ det ∼= (iML τ)× χ ◦ det.

To obtain the equivalence above, we could apply [§I,5.2,d)][V1], by noticing that for

any parabolic subgroup containing L, its unipotent radical is a subset of the kernel

of det.

Lemma 5.3.17. Let π′ be an irreducible cuspidal k-representation of M′, and π an

irreducible k-representation of M containing π′. Then π′ is supercuspidal if and only

if π is supercuspidal.

A similar result has been proved when π′ is cuspidal in Corollary 5.1.33.

Proof. Applying 5.3.9, there exists a maximal simple cuspidal k-type (JM, λM) and

a direct component λ′M of λM|M′ , such that π′ contains λ′M. Hence by 5.1.17, the

irreducible representation π contains λM⊗χ◦det for some k-quasicharacter χ of F×.

Then by §IV1.2, 1.3 in [V2] and 5.1.7, this implies that π is an irreducible cuspidal

k-representation.

We assume that π is non-supercuspidal, which means there exists a supercup-

idal representation τ of a proper Levi subgroup L of M, the representation π is a

subquotient of the parabolic induction iML τ . Now by §5.2 [BeZe], we obtain:

resM
M′i

M
L τ
∼= iM

′
L′ resL

L′τ.

There must be a direct component τ ′ of resL
L′τ , and π′ be an irreducible subquotient

of iM
′

L′ τ
′. Hence π′ is not supercuspidal.

Proposition 5.3.18. Let π′ be an irreducible cuspidal k-representation of M′, and

π an irreducible cuspidal k-representation of M such that π contains π′. Let [L, τ ] be
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the supercuspidal support of π, where L is a Levi subgroup of M and τ an irreducible

supercuspidal k-representation of L. Let τ ′ be a direct component of resL
L′τ . Any

element in the supercuspidal support of π′ is contained in the M-conjugacy class of

(L′, τ ′).

Proof. Let L′0 be a Levi subgroup of M′ and τ ′0 an irreducible supercuspidal k-

representation of L′0. Let τ0 be an irreducible k-representation of L0 containing τ ′0,

hence τ0 is supercuspidal as in Lemma 5.3.17.

If π′ is an irreducible subquotient of iM
′

L′0
τ ′0. By the same reason as in the proof

of Lemma 5.3.17, we know that there must be an irreducible subquotient of iML0
τ0,

noted as π0, such that π′ is a direct component of resM
M′π0. From 5.3.14, there exists

a k-quasicharacter χ of F× such that π0
∼= π ⊗ χ ◦ det. On the other hand, the

supercuspidal support of π ⊗ χ ◦ det is the M-conjugacy class of (L, τ ⊗ χ ◦ det).

We assume that L0 = L and τ0
∼= τ ⊗ χ ◦ det. Then τ ′0 is a direct component of

resL
L′τ ⊗ χ ◦ det ∼= resL

L′τ .



Chapter 6

Supercuspidal support

6.1 Uniqueness of supercuspidal support

6.1.1 The n-th derivative and parabolic induction

Let n1, . . . , nm be a family of integers, and Mn1,...,nm denote the product GLn1 ×
· · · × GLnm , which can be canonically embedded into GLn1+···+nm . Let M′n1,...,nm

denote Mn1,...,nm ∩ SLn1+···+nm , and Pn1 the mirabolic subgroup of GLn1 .

Definition 6.1.1. Let n1, . . . , nm be a family of positive integers, and s ∈ {1, . . . ,m}.
We define:

• the mirabolic subgroup at place s of Mn1,...,nm, as P(n1,...,nm),s = GLn1 × · · · ×
GLns−1 × Pns ×GLns+1 × · · · ×GLnm;

• the mirabolic subgroup at place s of M′n1,...,nm, as P ′(n1,...,nm),s = GLn1 × · · · ×
GLns−1 × Pns ×GLns+1 × · · · ×GLnm ∩M′n1,...,nm.

For any i ∈ {1, . . . ,m}, let Uni be the subset of GLni , consisted with upper-

triangular matrix with 1 on the diagonal. We fix θi a non-degenerate character

of Uni . It is clear that Un1,...,nm = Un1 × · · · × Unm is a subgroup of P(n1,...,nm),s

and P ′(n1,...,nm),s for any s ∈ {1, . . . ,m}. Let Vns−1 denote the additive group of k-

vector space with dimension ns−1, which can be embedded canonically as a normal

subgroup in Un1 × · · · × Unm . The subgroup Vns−1 is normal both in P(n1,...,nm),s

and P ′(n1,...,nm),s, furthermore, we have P(n1,...,nm),s = Mn1,...,ns−1,...,nm · Vns−1 and

P ′(n1,...,nm),s = M′n1,...,ns−1,...,nm · Vns−1.

Note γ be any character of Un1 × · · · × Unm . For any k-representation (E, ρ) ∈
Repk(P

′
(n1,...,nm),s), let Es,γ denote the subspace of E generated by elements in form

of ρ(g)a − γ(h)a, where g ∈ Vns−1, a ∈ E. We define the coinvariants of (E, ρ) ac-

cording to θ as E/Es,γ , and note it as E(γ, s), and view E(γ, s) as a k-representation

of M′n1,...,ns−1,...,nm .

Definition 6.1.2. Fix a non-degenerate character θ of Un1 × · · · ×Unm.

79
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• Let (E, ρ) ∈ Repk(P
′
(n1,...,nm),s),

Ψ−s : Repk(P
′
(n1,...,nm),s)→ Repk(M

′
n1,...,ns−1,...,nm),

which maps E to E(1, s);

• Let (E, ρ) ∈ Repk(M
′
n1,...,ns−1,...,nm),

Ψ+
s : Repk(M

′
n1,...,ns−1,...,nm)→ Repk(P

′
(n1,...,nm),s).

Write P ′(n1,...,nm),s = M′n1,...,ns−1,...,nm · Vns−1. Define Ψ+
s (E, ρ) = (E,Ψ+,s(ρ))

by Ψ+
s (ρ)(mg)(a) = ρ(m)(a), for any m ∈ M′n1,...,ns−1,...,nm , g ∈ Vns−1 and

a ∈ E;

• Let (E, ρ) ∈ Repk(P
′
(n1,...,nm),s),

Φ−θ,s : Repk(P
′
(n1,...,nm),s)→ Repk(P

′
(n1,...,ns−1,...,nm),s),

which maps E to E(θ, s);

• Let (E, ρ) ∈ Repk(P
′
(n1,...,ns−1,...,nm),s),

Φ+
θ,s : Repk(P

′
(n1,...,ns−1,...,nm),s)→ Repk(P

′
(n1,...,nm),s),

by Φ+
θ,s(ρ) = ind

P ′
(n1,...,nm),s

P ′
(n1,...,ns−1,...,nm),s

·Vns−1
ρθ, where ρθ(pg)(a) = θ(g)ρ(p)(a), for

any p ∈ P ′(n1,...,ns−1,...,nm),s, g ∈ Vns−1 and a ∈ E.

Remark 6.1.3. By the reason that for any m ∈ Z the group Vm is a limite of pro-p

open compact subgroups, the four functors defined above are exact. In the definition

of Φ+
θ,s, we view P ′(n1,...,ns−1,...,nm),s as a subgroup of P ′(n1,...,nm),s.

The notion of derivatives is well defined for k-representations of G, now we

consider the parallel operator of derivatives for Levi subgroups of G′.

Definition 6.1.4. We fix a non-degenerate character θ of Un1 × · · · × Unm. Let

(E, ρ) ∈ Repk(P
′
(n1,...,nm,s)

), for any interger s ∈ {1, . . . ,m} and 1 ≤ d ≤ n1+. . .+ns,

we define the derivative ρ
(d)
θ,s:

• when 1 ≤ d ≤ ns, ρ(d)
θ,s = Ψ−s ◦ (Φ−θ,s)

d−1ρ;

• when ns+1 ≤ d = ns+. . .+ns−l+n
′, where 0 ≤ l ≤ s−1 and 1 ≤ n′ ≤ ns−l−1,

then ρ
(d)
θ,s = Ψ−s−l−1 ◦ (Φθ,s−l−1)n

′−1 ◦ (Φθ,s−l)
ns−l−1 ◦ . . . ◦ (Φ−θ,s)

ns−1ρ

Definition 6.1.5. To simplify our notations, we need to introduce indm−1
m : Repk(G1)→

Repk(G2) according to different cases:

• When G1 = M′n1,...,nm and G2 = M′n1,...,nm−1+nm, we embed G1 into G2 as in

the figure case I, and indm−1
m is defined as iU,1, and the later one is defined as

in §1.8 of [BeZe];
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nm−1

nm 0

U

Figure 6.1: Case I

nm−1

nm − 1

1

0

U

10

Figure 6.2: Case II

• When G1 = P ′(n1,...,nm),m and G2 = P ′(n1,...,nm−1+nm),m−1, we embed G1 into

G2 as in the figure case II, and indm−1
m is defined as iU,1;

• When G1 = P ′(n1,...,nm),m−1 and G2 = P ′(n1,...,nm−1+nm),m−1, we embed G1 into

G2 as in the figure case III, and indm−1
m is defined as iU,1 ◦ε. Here ε is a char-

acter of P ′(n1,...,nm),m−1. Write g ∈ P ′(n1,...,nm),m−1 ⊂ M′n1,...,nm as (g1, . . . , gm),

define ε(g) = |det(gm)|, the absolute value of det(gm). This k-character is well

defined since p 6= l.

Proposition 6.1.6. Assume that ρ1 ∈ Repk(M
′
n1,...,nm), ρ2 ∈ Repk(P

′
(n1,...,nm),m),

and ρ3 ∈ Repk(P
′
(n1,...,nm),m−1). The functor indm−1

m is defined as in 6.1.5 according

to different cases.

1. In Repk(P
′
(n1,...,nm−1+nm),m−1), there exists an exact sequence:

0→ indm−1
m (ρ1|P ′m,m−1

)→ (indm−1
m ρ1)|P ′m−1,m−1

→ indm−1
m (ρ1|P ′m,m)→ 0,

where P ′m,m−1 = P ′(n1,...,nm),m−1, P
′
m−1,m−1 = P ′(n1,...,nm−1+nm),m−1, and P ′m,m =

P ′(n1,...,nm),m.
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nm−1 − 1

nm

11

U
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0 0

0

Figure 6.3: Case III

2. When 2 ≤ m, let θ̇ be a non-degenerate character of Un1 × · · · × Unm−2 ×
Unm−1+nm, such that θ̇|Un1×···×Unm

∼= θ. We have equivalences:

• indm−1
m ◦Ψ−mρ2

∼= Ψ−m−1 ◦ indm−1
m ρ2;

• indm−1
m ◦ Φ−θ,mρ2

∼= Φ−
θ̇,m−1

◦ indm−1
m ρ2.

3. We have an equivalence:

Ψ−m−1 ◦ indm−1
m ρ3

∼= indm−1
m ◦Ψ−m−1ρ3,

and an exact sequence:

0→ indm−1
m ◦ Φ−θ,m−1ρ3 → Φ−

θ̇,m−1
◦ indm−1

m ρ3 → indm−1
m ((Ψ−m−1ρ3)|P ′)→ 0,

where P ′ = P ′(n1,...,nm−1−1,nm),m.

Proof. As proved in the Appendix, Theorem 5.2 in [BeZe] holds for k-representations

of M′. And let n = n1 + . . .+ nm
For (1): Let M′ = M′n1,...,nm be embedded into G′ = M′n1,...,nm−1+nm as in defi-

nition 6.1.5, figure I. Define functor F as F(ρ1) = ρ1|P ′
(n1,...,nm−1+nm),m−1

, where the

functor F is defined as in 5.1 [BeZe] in the following situation:

U = Unm−1 , ϑ = 1,N = P ′(n1,...,nm−1+nm),m−1,V = {e}.

To compute F, we apply theorem 5.2 [BeZe]. Condition (1), (2) and (∗) from 5.1

[BeZe] hold trivially. Let T be the group of diagonal matrix, the Q-orbits on X =

P\G is actually the T · N-orbits, and the group T · N is a parabolic subgroup. By

Bruhat decomposition T · N has two orbits: the closed orbit Z of point P · e ∈ X
and the open orbit Y of the point P · ω−1 ∈ X, where ω is the matrix of the cyclic

permutation sgn(σ)1nm · σ, where

σ = (N1 + · · ·+ nm−1 → n→ n− 1→ · · · → n1 + · · ·+ nm−1),
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and sgn(σ)1nm denote an element in M′n1,...,nm , which equals to identity on the first

m−1 blocs, and sgn(σ) times identity on the last bloc, and sgn(σ) denote the signal

of σ. Now we consider condition (4) from 5.1 [BeZe]:

• Since V = {e}, it is clear that ω(P), ω(M) and ω(U) are decomposable with

respect to (N,V);

• Let us consider ω−1(Q) = ω−1(N).

To study the intersection ω−1(N) ∩ (M · U), first we consider the Levi subgroup

M′n1,...,nm−1+nm−1,1 and the corresponding standard parabolic subgroup

P′ = M′n1,...,nm−1+nm−1,1 ·Vnm−1+nm−1,

where Vnm−1+nm−1 denotes the unipotent radical of P′. We have N ⊂ P′, hence

ω−1(N) ⊂ ω−1(P′). As in 6.1 of [BeZe], after fix a system Ω of roots, and denote

Ω+ the set of positive roots. Then by Proposition in 6.2 [BeZe], we could write

ω−1(P′) = G(S) and P = G(P),U = U(M) in the manner as in 6.1[BeZe], where

S,P and M are convex subset of Ω. So by Proposition in 6.1 [BeZe], we have:

ω−1(P′) ∩ P = G(S ∩ P);

ω−1(P′) ∩U = U(S ∩ P\M);

ω−1(P′) ∩M = G(S ∩M).

Hence

ω−1(P′) ∩ P = (ω−1(P′) ∩M) · (ω−1(P′) ∩U).

Notice that ω−1(P′) ∩U = ω−1(N) ∩U, we deduce that:

ω−1(N) ∩ P = (ω−1(N) ∩M) · (ω−1(N) ∩U).

In the formula of ΦZ in 5.2 [BeZe], since U∩ω−1(N) = U, the characters ε1 = ε2 = 1.

Hence we obtain the exact sequence desired.

For (2). In this part, the functor indm−1
m is always defined as the case II in 6.1.5.

First we consider the case Ψ−m. Define functor F as Ψ−m−1 ◦ indm−1
m . We write F as

in §5.1 [BeZe] in the situation:

G = P ′(n1,...,nm−1+nm),m−1,M = P ′(n1,...,nm),m,

N = M′n1,...,nm−1+nm−1,V = Vnm−1+nm−1,

and U are defined in the 6.1.5 case II. Condition (1) and (2) of §5.1 [BeZe] is clear.

Since Q = G, and there is only one Q-orbit on X = P\G, conditions (3), (4) hold

trivially. Thus we obtain the equivalence:

indm−1
m ◦Ψ−mρ2

∼= Ψ−m−1 ◦ indm−1
m ρ2.
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For the case Φ−
θ̇,m−1

: define functor F as Φ−
θ̇,m−1

◦ indm−1
m . We write F as in §5.1

[BeZe] in the situation:

G = P ′(n1,...,nm−1+nm),m−1,

N = P ′(n1,...,nm−1+nm−1),m−1,V = Vnm−1+nm−1,

and M,U are defined as the case II of 6.1.5. Conditions (1), (2) of §5.1 [BeZe] hold,

and

P\G/Q ∼= M′n1,...,nm−1,nm−1\M′n1,...,nm−1+nm−1/P
′
(n1,...,nm−1+nm−1),m−1.

Hence as proved in (1), the group Q has two orbits on X = P\G: the closed orbit

of P · e and the open orbit P · ω−1
0 , where ω0 is the matrix sgn(σ0)1nm−1 · σ0. The

matrix σ0 corresponding to the cyclic permutation:

(n1 + · · ·+ nm−1 → n→ n− 1→ · · · → n1 + · · ·+ nm−1).

Now we check the condition (4) of §5.1 [BeZe]. Since

P = M′n1,...,nm−1+nm ·V,

M = M′n1,...,nm−1 ·Vnm−1,

and ω0(V) = V, hence ω0(P) and ω0(M) are decomposable with respect to (N,V).

We deduce that ω0(U) is decomposable with respect to (N,V) by noticing that

ω0(U) = (ω0(U)∩N) · (ω0(U)∩V). Now consider ω−1
0 (Q), ω−0 (N) and ω−0 (V). Since

ω−1
0 (V) = V, which is decomposable with respect to (M,U) clearly. Notice that

ω−0 (V)∩P = ω−0 (V), and ω−0 (N) is decomposable with respect to (M,U) by (1). We

deduce that ω−0 (Q) is decomposable with respect to (M,U). And the condition (∗)
does not hold for the orbit P · σ0. Then by §5.2 [BeZe], we obtain the equivalence

indm−1
m ◦ Φ−θ,m

∼= Φ−
θ̇,m−1

◦ indm−1
m ,

for every ρ2 ∈ Repk(P
′
(n1,...,nm),m).

For part (3). In the case of F = Ψ−m−1 ◦ indm−1
m , we have (in the manner of §5.1

[BeZe]):

G = P ′(n1,...,nm),m,

N = M′n1,...,nm−1,V = Vnm−1,

and M,U as in 6.1.5 case II. There is only one Q-orbit on P\G, and condition

(1)− (4) and (∗) in §5.1 [BeZe] hold. Notice that ε ◦Ψ−m−1
∼= Ψ−m−1 (ε is defined in

6.1.5). After applying theorem 5.2 of [BeZe], we obtain the equivalence:

Ψ−m−1 ◦ indm−1
m ρ3

∼= indm−1
m ◦Ψ−m−1ρ3.

For the case F = Φ−
θ̇,m−1

◦ indm−1
m . We have (in the manner of §5.1 [BeZe]):

G = P ′(n1,...,nm),m,
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N = P ′(n1,...,nm−1+nm−1),m−1,V = Vnm−1+nm−1,

and M,U are defined as the case II of 6.1.5. As in the proof of part (2), the group Q

has two orbits on P\G: the closed one P ·e and the open one P−1 ·ω0. The condition

(4) can be justified as part (2), and condition (∗) is clear since ω0(U) ∩ V = 1.

Now we apply theorem 5.2 [BeZe]. The functor corresponds to the orbit P · e is

indm−1
m ◦ Φ−θ,m−1 by noticing ε ◦ Φ−θ,m−1

∼= Φθ,m−1 ◦ ε. Now we consider the functor

corresponds to the orbit P ·ω−1
0 . Following the notation as §5.1 [BeZe], the character

ψ′ = ω−1
0 (ψ)|M∩ω−1

0 (V) is trivial. The character ε1 is trivial, and ε2
∼= ε−1. Hence

the functor corresponded to the fixed orbit is

indm−1
m ◦ res

M′n1,...,nm−1,nm

P ′ ◦Ψ−m−1,

from which we deduce the exact sequence desired.

Corollary 6.1.7. 1. Let ρ ∈ Repk(P
′
(n1,...,nm),m). Assume that 1 ≤ i ≤ nm, then

(indm−1
m ρ)

(i)

θ̇,m−1
∼= indm−1

m ρ
(i)
θ,m;

2. Let ρ ∈ Repk(P
′
(n1,...,nm),m−1). Assume that 1 ≤ i ≤ nm−1 + nm, then

(indm−1
m ρ)

(i)

θ̇,m−1
is filtrated by indm−1

m ((ρ
(i−j)
θ,m )

(j)
θ,m−1), where i− nm ≤ j ≤ i;

3. Let ρ ∈ Repk(M
′
n1,...,nm). Assume that i ≥ 0, then (indm−1

m ρ)
(i)

θ̇,m−1
is filtrated

by indm−1
m ((ρ

(i−j)
θ,m )

(j)
θ,m−1), where i− nm ≤ j ≤ i;

4. Let ρ ∈ Repk(M
′
n1,...,nm), there is an equivalence:

(ind1
2 ◦ · · · ◦ indm−2

m−1 ◦ indm−1
m ρ)

(n1+···+nm)

θ̇,1
∼= (· · · ((ρ(nm)

θ,m )
(nm−1)
θ,m−1 ) · · · )(n1)

θ,1 .

Proof. Part (1) follows from the exactness of Φ−θ,m,Ψ
−
m and 6.1.6 (2); (2) from (1)

and 6.1.6 (3), (3) from (1), (2) and 6.1.6 (1). Part (4) follows from (3), by noticing

that

ind1
2 ◦ · · · ◦ indm−2

m−1 ◦ indm−1
m ρ ∼= i

GLn1+···+nm
Mn1,...,nm

ρ.

In fact, this is the transitivity of parabolic induction.

6.1.2 Uniqueness of supercuspidal support

Proposition 6.1.8. Let τ ∈ Repk(M
′
n1,...,nm), and θ a non-degenerate character of

Un1,...,nm. Then τ
(n1+...+nm)
θ,m 6= 0 is equivalent to say that Homk[Un1,...,nm ](τ, θ) 6= 0.

In particular, this is equivalent to say that (Un1,...,nm , θ)-coinvariants of τ is non-

trivial.

Proof. In this proof, we use U to denote Un1,...,nm . For the first equivalence, notice

that Φ−θ,m(τ) 6= 0 is equivalent to say that (Vnm−1, θ)-coinvariants of τ is non-trivial.

For 1 ≤ s ≤ nm − 1, let Vs denote the subgroup of U consisting with the matrices
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with non-zero coefficients only on the (s+1)-th line and the diagonal. Let W denote

the representation space of τ . The space of τ
(n1+···+nm)
θ,m is isomorphic to the quotient

of W by the subspace Wθ generated by gs(w) − θ(gs)w, for every s and gs ∈ Vs,

w ∈ W . Meanwhile, since the subgroups Vs’s generate U, and θ is determined by

θ|Vs while considering every s, the subspace Wθ of W is isomorphic to the subspace

generated by g(w)−θ(g)w, where g ∈ U. Hence τ
(n1+···+nm)
θ,m 6= 0 is equivalent to say

that (Un1,...,nm , θ)-coinvariants of τ is non-trivial. The second equivalence is clear,

since the (U, θ)-coinvariants of τ is the largest quotient of τ such that U acts as a

multiple of θ.

Proposition 6.1.9. Let τ ∈ Repk(M
′
n1,...,nm), and ρ be a subquotient of τ . Let

θ be a non-degenerate character of Un1,...,nm, and ρ
(n1+···+nm)
θ,m is non-trivial, then

τ
(n1+···+nm)
θ,m is non-trivial.

Proof. We consider the (n1 + ... + nm)-th derivative functor corresponding to the

non-degenerate character θ, from the category Repk(M
′
n1,...,nm) to the category of

k-vector spaces, which maps τ to τ
(n1+···+nm)
θ,m . By Definition 6.1.4 and Remark 6.1.3,

this functor is a composition of functors Ψ−· and Φ−θ,·, hence is exact. Let ρ0 be a

sub-representation of τ such that ρ is a quotient representation of ρ0. The exactness

of derivative functor implies first that ρn1+...+nm
0θ,m

6= 0, and apply again the exactness

we conclude that ρn1+...+nm
θ,m 6= 0.

Theorem 6.1.10. Let M′ be a Levi subgroup of G′, and ρ an irreducible k-representation

of M′. The supercuspidal support of ρ is a M′-conjugacy class of one unique super-

cuspidal pair.

Proof. Since the cuspidal support of irreducible k-representation is unique, to prove

the uniqueness of supercuspidal support, it is sufficient to assume that ρ is cus-

pidal. Let π be an irreducible cuspidal k-representation of M, such that ρ is a

sub-representation of resM
M′π. Let (L, τ) be a supercuspidal pair of M, and [L, τ ]

consists the supercuspidal support of π. By 5.1.32, we have resL
L′τ
∼= ⊕i∈Iτi, where

I is a finite index set. According to 5.3.18, the supercuspidal support of (M′, π′) is

contained in the union of M′-conjugacy class of (L′, τi), for every i ∈ I. To finish the

proof of our theorem, it remains to prove that there exists one unique i0 ∈ I such

that (L′, τi0) is contained in the supercuspidal support of (M′, ρ).

After conjugation by G′, we could assume that M′ = M′n1,...,nm and L′ = M′k1,...,kl
for a familly of integersm, l, n1, . . . , nm, k1, . . . , kl ∈ N∗. There exists a non-degenerate

character θ of U = Un1,...,nm , such that ρ
(n1+···+nm)
θ,m 6= 0. In fact, let θ be any non-

degenerate character of U and we write resM
M′π
∼= ⊕s∈Sπs, where S is a finite index

set. We have:

π(n1+...+nm) ∼= (π|M′)
(n1+...+nm)
θ,m

∼= ⊕s∈S(πs)
(n1+...+nm)
θ,m ,
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where π(n1+...+nm) indicates the (n1 + ...+nm)-th derivative of π. As in Section [§III,
5.10, 3)] of [V1], dim(π(n1+...+nm)) = 1, hence there exists one element s0 ∈ S such

that (πs0)
(n1+...+nm)
θ,m 6= 0. Notice that τ are isomorphic to some πs, hence there exists

a diagonal element t ∈ M, such that the t-conjugation t(πs0) ∼= τ . The character

t(θ) is also non-degenerate of U, and we have (t(πs0))
(n1+...+nm)
t(θ),m

∼= (πs0)
(n1+...+nm)
θ,m as

k-vector spaces. We conclude that dimτ
(n1+...+nm)
t(θ),m = 1. To simplify the notations,

we assume t = 1.

If ρ is a subquotient of iM
′

L′ τi for some i ∈ I. By (4) of 6.1.7 and 6.1.9, the

derivative τ
(k1+···+kl)
iθ,l

6= 0. Note U ∩ L′ as UL′ . By section [§III, 5.10, 3)] of [V1],

the derivative τ
(k1+···+kl)
θ,l = 1, which means the dimension of (UL′ , θ)-coinvariants

of τ is 1 (by 6.1.8). Notice that the (UL′ , θ)-coinvariants of τ is the direct sum of

(UL′ , θ)-coinvariants of τi for every i ∈ I. This implies that there exists one unique

i0 ∈ I whose (UL′ , θ)-coinvariants is non-zero with dimension 1. By 6.1.8 and 6.1.9,

this is equivalent to say that there exists one unique i0 ∈ I, such that the derivative

τ
(k1+···+kl)
iθ,l

6= 0.
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Appendix A

Theorem 5.2 of Bernstein and

Zelevinsky

We need the results of Theorem 5.2 of [BeZe] in the case of k-representations. In

fact, the proof in [BeZe] is in the language of `-sheaves, which can be translated to a

representation theoretical proof and be applied to our case. In the reason for being

self-contained, I rewrite the proof following the method in [BeZe].

Let G be a locally compact totally disconnected group, P, M, U, Q, N, V are

closed subgroups of G, and θ, ψ be k-characters of U and V respectively. Suppose

that they verify conditions (1) − (4) in §5.1 of [BeZe], and denote X = P\G. The

numbering we choose in condition (3) is Z1, ...,Zk of Q-orbits on X, and for any

orbit Z ⊂ X, we choose ω ∈ G and ω as in condition (3) of [BeZe].

We introduce condition (∗):
(∗) The characters ω(θ) and ψ coincide when restricted to the subgroups ω(U)∩V.

We define ΦZ equals 0 if (∗) does not hold, and define ΦZ as in §5.1 [BeZe] if (∗)
holds.

Definition A.0.1. Let M,U be closed subgroups of G, and M ∩ U = {e}, and the

subgroup P = MU is closed in G. Let θ be a k-character of U normalized by M.

• Define functor iU,θRepk(M)→ Repk(G). Let ρ ∈ Repk(M), then iU,θ(ρ) equals

indG
PρU,θ, where ρU,θ ∈ Repk(P), such that

ρU,θ(mu) = θ(u)mod
1
2
U(m)ρ(m)

.

• Define functor rU,θRepk(G) → Repk(M). Let π ∈ Repk(G), then rU,θ(π)

equals mod
− 1

2
U (resG

Pπ)/(resG
Pπ)(U, θ), where (resG

Pπ)(U, θ) ⊂ resG
Pπ, generated

by elements π(u)w − θ(u)w, for any w ∈ W , where W is the space of k-

representation π.

89
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Remark A.0.2. By replacing ind to Ind, we could define IU,θ. Notice that rU,θ is

left adjoint to IU,θ.

Proposition A.0.3. The functors iU,θ and rU,θ commute with inductive limits.

Proof. The functor rU,θ commutes with inductive limits since it has a right adjoint

as in A.0.2.

For iU,θ. Let (πα, α ∈ C) be a inductive system, where C is a directed pre-

ordered set. We want to prove that iU,θ(lim−→πα) ∼= lim−→(iU,θπα). The inductive limit

lim−→πα is defined as ⊕α∈Cπα/ ∼, where ∼ denotes an equivalent relation: When

α ≺ β, x ∈ Wα, y ∈ Wβ, x ∼ y if φα,β(x) = y, where Wα denotes the space of

k-representation πα, and φα,β denotes the morphism from πα to πβ defined in the

inductive system.

First, we prove that iU,θ commutes with direct sum. By definition, ⊕α∈CiU,θπα
is a subrepresentation of iU,θ ⊕α∈C πα, and the natural embedding is a morphism

of k-representations of G. We will prove that the natural embedding is actually

surjective. For any f ∈ π := iU,θ ⊕α∈C πα, there exists an open compact subgroup

K of G such that f is constant on each right K coset of MU\G. Furthermore, the

function f is non-trivial on finitely many right K cosets. Hence there exists a finite

index subset J ⊂ C, such that f(g) ∈ ⊕j∈JWj , which means f ∈ iU,θ ⊕j∈J πj . Since

iU,θ commutes with finite direct sum, we finish this case.

The functor iU,θ is exact, we have:

iU,θ(lim−→πα) ∼= iU,θ(⊕α∈Cπα)/iU,θ〈x− y〉x∼y.

Notice that lim−→iU,θπα
∼= ⊕iU,θπα/ ∼, where ∼ denotes the equivalent relation: When

α ≺ β, fα ∈ Vα, fβ ∈ Vβ, where Vα is the space of k-representation iU,θπα, then

fα ∼ fβ if iU,θ(φα,β)(fα) = fβ, which is equivalent to say that φα,β(fα(g)) = fβ(g)

for any g ∈ G. In left to prove that the natural isomorphism from ⊕α∈C(iU,θπα) to

iU,θ(⊕α∈Cπα), induces an isomorphism from 〈fα − fβ〉fα∼fβ to iU,θ〈x− y〉x∼y. This

can be checked directly through definition as in the case of direct sum above.

Theorem A.0.4 (Bernstein, Zelevinsky). Under the conditions above, the functor

F = rV,ψ ◦iU,θ : Repk(M)→ Repk(N) is glued from the functor Z runs through all Q-

orbits on X. More precisely, if orbits are numerated so that all sets Yi = Z1∪ ...∪Zi
(i = 1, ..., k) are open in X, then there exists a filtration 0 = F0 ⊂ F1 ⊂ ... ⊂ Fk = F

such that Fi/Fi−1
∼= ΦZi.

The quotient space X = P\G is locally compact totally disconnected. Let Y

be a Q-invariant open subset of X. We define the subfunctor FY ⊂ F. Let ρ

be a k-representation of M, and W be its representation space. We denote i(W )

the representation k-space of iU,θ(ρ). Let iY(W ) ⊂ i(W ) the subspace consisting of

functions which are equal to 0 outside the set PY, and τ , τY be the k-representations

of Q on i(W ) and iY(W ). Put FY(ρ) = rV,ψ(τY), which is a k-representation of N.

The functor FY is a subfunctor of F due to the exactness of rV,ψ.
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Proposition A.0.5. Let Y, Y′ be two Q-invariant open subset in X, we have:

FY∩Y′ = FY ∩ FY′ , FY∪Y′ = FY + FY′ , F∅ = 0, FX = F.

Proof. Since rV,ψ is exact, it is sufficient to prove similar formulae for τY. The only

non-trivial one is the equality τY∪Y′ = FY + FY′ . As in §1.3 [?], set K a compact

open subgroup of Y∪Y′, there exists ϕ and ϕ′, which are idempotent k-function on

Y and Y′, such that (ϕ+ ϕ′)|K = 1. We deduce the result from this fact.

Let Z be any Q-invariant locally closed set in X, we define the functor

ΦZ : Repk(M)→ Repk(N)

to be the functor FY∪Z/FY, where Y can be any Q-invariant open set in X such that

Y ∪ Z is open and Y ∩ Z = ∅. Let Z1, ...,Zk be the numeration of Q-orbits on X as

in A.0.4, and let Fi = FYi (i = 1, ..., k), which is a filtration of the functor F be the

definition. To prove Theorem A.0.4, it is sufficient to prove that FZi
∼= ΦZi .

By replace P to ω(P), we could assume that ω = 1. Now we consider the diagram

in figure BZ.

This is the same diagram as in §5.7 [BeZe], in which a group a point H means

Repk(H), an arrow
H
↗ means the functor iH,θ, an arrow ↘

H
means the functor iH,ψ,

and an arrow
ε
; means the functor ε (consult §5.1 [BeZe] for the definition of ε).

Notice that G 99K Q does not mean any functor, but the functor P → G 99K Q is

well-defined as explained above A.0.5. The composition functors along the highest

path is of this diagram is FZ, and if the condition (∗) holds, the composition functors

along the lowest path is ΦZ. We prove Theorem A.0.4 by showing that this diagram

is commutative if condition (∗) holds, and FZ equals 0 otherwise. Notice that parts

I, II, III, IV are four cases of A.0.4, and we prove the statements through verifying

them under the four cases respectively.

Let ρ be any k-representation of M, and W is its representation space. We use

π to denote FZ(ρ), and τ to denote ΦZ(ρ).
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Case I: P = G,V = {e}. The k-representations π and τ act on the same space

W , and the quotient group M\(P∩Q) is isomorphic to (M∩Q)\(P∩Q). We verify

directly by definition that π ∼= τ .

Case II: P = G = Q. The representation space of π is still W . We have the

equation:

rV,ψ(W ) ∼= rV∩M,ψ(rV∩U,ψ(W )).

If θ|U∩V 6= ψ|U∩V, then π = 0 since U ∩ V = U ∩ Q ∩ V ∩ P and rV∩U,ψ(W ) = 0.

This means that after proving the diagrams of cases I, III, IV are commutative, the

functor FZ equals 0 if condition (∗) does not hold.

Now we assume that (∗) holds. The k-representations π and τ act on the same

space W/W (V ∩M, ψ), because the fact rV∩U,ψ(iV∩U,θ(W )) = W and the equation

above. Notice that we have equations for k-character mod:

modU = modU∩M ·modU∩V, modV = modV∩N ·modV∩U,

from which we deduce that π ∼= τ when condition (∗) holds.

Case III: U = V = {e}. Let i(W ) be the representation space of iGPρ, then π

acts on a quotient space W1 of i(W ). Let:

E = {f ∈ i(W )|f(PQ\PQ) = 0},

E′ = {f ∈ i(W )|f(PQ) = 0},

then W1
∼= E/E′. The k-representation τ acts on i(W )′, which is the representation

space of iQP∩Qρ. By definition,

i(W )′ = {h : Q→W |h(pq) = ρ(p)h(q), p ∈ P ∩Q, q ∈ Q}.

We define a morphism γ from W1 to i(W )′, by sending f to f |Q, which respects Q-

actions and is actually a bijection. For injectivity, let f1, f2 ∈ W1 and f1|Q = f2|Q,

then f1 − f2 is trivial on PQ, hence f1 − f2 is trivial on PQ by the definition of

E. This means f1 − f2 = 0 in W1. Now we prove γ is surjective. Let h ∈ i(W )′,

there exists an open compact subgroup K ′ of (P ∩ Q)\Q such that h is constant

on the right K ′ cosets of (P ∩ Q)\Q, and denote S the compact support of h. Let

K be an open compact subgroup of P\G such that (P ∩ Q)\(Q ∩ K) ⊂ K ′, and

S ·K ∩ (PQ/PQ) = ∅. We define f such that f is constant on the right K cosets

of P\G, and f |(P∩Q)\Q = h. The function f is smooth with compact support on the

complement of PQ/PQ, hence belongs to E, and γ(f) = h as desired.

Case IV: U = {e},Q = G. We divide this case into two cases IV1 and IV2 as in

the diagram of figure CaseIV.

Case IV1: U = {e},Q = G,V ⊂ M = P. The k-representation π acts on

i(W )+ = i(W )/i(W )(V, ψ), where

i(W )V,ψ = 〈vf − ψ(v)f, ∀f ∈ i(W ), v ∈ V〉.
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The k-representations τ acts on i(W+), which is the smooth functions with compact

support on (M ∩N)\N defined as below:

{h : N→W/W (V, ψ)|f(mn) = ρ(m)f(n),∀m ∈ M ∩N, n ∈ N}.

There is a surjective projection from i(W ) to i(W+), which projects f(n) in W+ =

W/WV,ψ, for any f ∈ i(W ). In fact, let h ∈ i(W+), there exists an open compact

subgroup K of P\G ∼= (M∩N)\N, such that f =
∑m

i=1 hi, m ∈ N, where hi ∈ i(W+)

is nontrivial on one right K coset aiK of P\G. We have hi ≡ wi on aiK, where

wi ∈ W and wi ∈ W+. Define f =
∑m

i=1 fi, where fi ≡ wi on aiK, and equals 0

otherwise. The function f ∈ i(W ), and the projection image is h.

It is clear that this projection induces a morphism from i(W )+ to i(W+), and we

prove this morphism is injective. Let f, f ′ ∈ i(W )+, and f = f ′ in i(W+). As in the

proof above, there exists an open compact subgroup K0 of P\G, and fj ∈ i(W )+

such that fj is non-trivial on one right K0 coset of P\G and f − f ′ =
∑s

j=1 fj .

Furthermore, the supports of fj ’s are two-two disjoint. Hence the image of fj on its

support is contained in W+, since fj is constant on its support, it equals 0 in i(W )+,

whence f − f ′ equals 0 in i(W )+. We conclude that this morphism is bijection, and

the diagram case IV1 is commutative.

Case IV2: U = {e},G = Q,N ⊂ M. In this case:

X = NV′\NV ∼= V′V,

where V′ = V ∩ M. We choose one Haar measures µ of X (the existence see §I,
2.8, [V1]). Let W+ denote the quotient W/W (V′, ψ) and p the canonical projection

p : W →W+. Let i(W ) be the space of k−representation τ = i{e},1(ρ).

Define A a morphism of k-vector spaces from i(W ) to W+ by:

Af =

∫
V′\V

ψ−1(v)p(f(v))dµ(v).

This is well defined since the function ψ−1f is locally constant with compact support

of V′/V, and the integral is in fact a finite sum. Since µ is stable by right translation,

we have for any v ∈ V:

A(τ(v, f)) = ψ(v)(A)(f).
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i(W )′/i(W )′(V, ψ) W+

i(W )/i(W )(V, ψ) W+

∼= ∼=

A

A

Figure A.3: IV2

Hence A induces a morphism of k-vector spaces:

A : i(W )/i(W )(V, ψ)→W+.

Now we justify that A ∈ Homk[N](π, τ), where k-representations π = rV,ψ(τ) equals

F(ρ), and τ = ε2 · rV′,ψ(ρ) equals Φ(ρ). For any n ∈ N:

A(π(n)f) = mod
− 1

2
V (n)

∫
V′/V

ψ−1(v)p(f(vn))dµ(v) (A.1)

= mod
− 1

2
V (n)σ(n)mod

1
2
V′(n)ε−1

2 ·
∫

V′/V
ψ−1(v)p(f(n−1vn))dµ(v)(A.2)

By replacing v′ = n−1vn, the equation above equals to:

σ(n)

∫
V′/V

ψ−1(v′)p(f(v′))dµ(v′) = σ(n)A(f).

Therefore A belongs to Homk[N ](π, τ), and hence a morphism from functor F to Φ.

Now we prove that A is an isomorphism.

Let ρ′ be the trivial representations of {e} on W , then i(W )′ the space of k-

representation indV
V′ρ
′ is isomorphic to i(W ) the space of k-representation i{e},1ρ.

And the diagram A IV2 is commutative, where A indicates the morphism of k-

vector spaces associated to the functor A. Hence it is sufficient to suppose that

N = {e},M = V′. Replacing ρ by ψ−1ρ, we can suppose that ψ = 1.

First of all, we consider ρ = i{e},11 = indV′
e 1 the regular k-representation on

S(V′), which is the space of locally constant functions with compact support on V′.

Then τ = i{e},1ρ is the regular k-representation of V on S(V) by the transitivity

of induction functor. Any k-linear form on rV′,1(S(V′)) gives a Haar measure on

V′, and conversely any Haar measure gives a k-linear form on S(V′), whose kernel

is S(V′)(V′, 1), hence the two spaces is isomorphic, and the uniqueness of Haar

measures implies that the dimension of rV′,1(S(V′)) equals one. We obtain the same

result to rV,1(S(V′)). Since in this case the morphism A is non-trivial, then it is

an isomorphism. The functors i{e},1, rV,ψ, rV′,ψ commute with direct sum (as in

A.0.3), and the morphism A between k-vector spaces also commutes with direct

sum, hence A : π → τ is an isomorphism when ρ is free, which means ρ is a direct

sum of regular k-representations of V′. Notice that any ρ can be viewed as a module

over Heck algebra, then ρ is a quotient of some free k-representation. Hence ρ has

a free resolution. The exactness of F and Φ implies that A : F(ρ) → Φ(ρ) is an

isomorphism for any ρ.
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[BSS] P. Broussous; V. Sécherre; S. Stevens, Smooth representations of GLm(D) V:

Endo-classes. Doc. Math. 17 (2012), 23-77.

[Da] J.-F. Dat, Simple subquotients of big parabolically induced representations of

p-adic groups, J. Algebra 510 (2018), 499-507, with an Appendix: Non-

uniqueness of supercuspidal support for finite reductive groups by O. Dudas

[DaII] J.-F. Dat. A functoriality principle for blocks of linear p-adic groups. Con-

temporary Mathematics, 691:103-131, 2017.

95



96 BIBLIOGRAPHY

[DeLu] P. Deligne; G. Lusztig, Representations of reductive groups over finite fields.

Ann. of Math. (2) 103 (1976), no. 1, 103-161.

[DiFl] R. Dipper; P. Fleischmann, Modular Harish-Chandra theory. II Arch. Math.

(Basel) 62, 1994.

[DiMi] F. Digne; J. Michel, Representations of finite groups of Lie type. London

Mathematical Society Student Texts, 21. Cambridge University Press, Cam-

bridge, 1991.

[Geck] M. Geck, Modular Harish-Chandra series, Hecke algebras and (general-

ized) q-Schur algebras. Modular representation theory of finite groups (Char-

lottesville, VA, 1998), 1?66, de Gruyter, Berlin, 2001.

[GoRo] D. Goldberg; A. Roche, Types in SLn. Proc. London Math. Soc. (3) 85

(2002), no. 1, 119-138.

[GrHi] J. Gruber; G. Hiss, Decomposition numbers of finite classical groups for linear

primes. J. Reine Angew. Math. 485 (1997), 55-91.

[HT] M. Harris and R. Taylor. The geometry and cohomology of some simple

Shimura varieties. Number 151 in Ann. of Math. studies. Princeton Univ. Press,

2001.

[Helm] D. Helm, The Bernstein center of the category of smooth W (k)[GLn(F )]-

modules. Forum Math. Sigma 4, 2016.

[Hen] G. Henniart. Une preuve simple des conjectures de Langlands pour GL(n) sur

un corps p-adique. Invent. Math., 139:439-455, 2000.

[Hiss] G. Hiss, Supercuspidal representations of finite reductive groups. J. Algebra

184, 1996.

[KuMa] R. Kurinczuk; N. Matringe, The `-modular local Langlands correspondence

and local factors, arXiv:1805.05888, 2018.

[LRS] G. Laumon; M. Rapoport; U. Stuhler, D-elliptic sheaves and the Langlands

correspondence. Invent. math. 113 (1993) 217-238.
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Titre : Représentations modulo ¸ des groupes p-

adiques SLn(F )

Mot clés : représentations modulo ¸ ; groupes spéciaux linéaires p-adiques ;
support supercuspidal ; types de Bushnell-Kutzko.

Resumé : Fixons un nombre pre-
mier p. Soit k un corps algébrique-
ment clos de caractéristique ¸ ”= p.
Nous construisons les k-types maxi-
maux simples cuspidaux des sous-
groupes de Levi MÕ de SLn(F ), où
F est un corps local non archimé-
dien de caractéristique résiduelle p.

Nous montrons que le support super-
cuspidal des k-représentations lisses
irréductibles de MÕ est unique à MÕ-
conjugaison près, quand F est soit un
corps fini de caractéristique p soit un
corps local non-archimédien de carac-
téristique résiduelle p.

Title : Modulo ¸-representations of p-adic groups

SLn(F )

Keywords : modular ¸ representations ; p-adic special linear groups ; supercus-
pidal support ; Bushnell-Kutzko types

Abstract : Fix a prime number p. Let k
be an algebraically closed field of cha-
racteristic ¸ ”= p. We construct maximal
simple cuspidal k-types of Levi sub-
groups MÕ of SLn(F ), where F is a non-
archimedean locally compact field of
residual characteristic p. And we show

that the supercuspidal support of ir-
reducible smooth k-representations of
Levi subgroups MÕ of SLn(F ) is unique
up to MÕ-conjugation, when F is either
a finite field of characteristic p or a non-
archimedean locally compact field of
residual characteristic p.
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