Synthèse par électrodépôt en milieu liquide ionique de nanostructures de Si/TiO2, Al/TiO2 et Si-Al/TiO2 nanotubes pour électrode négative de batterie Li-ion.
Auteur / Autrice : | Abirdu woreka Nemaga |
Direction : | Michaël Molinari, Claude Guéry |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 29/01/2019 |
Etablissement(s) : | Reims |
Ecole(s) doctorale(s) : | École doctorale Biologie, Chimie, Santé (Reims ; 2018-) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de recherche en nanosciences (LRN) - EA 4682 (Reims, Marne) |
Jury : | Président / Présidente : Thierry Djenizian |
Examinateurs / Examinatrices : Jérémy Mallet, Mathieu Morcrette, Stéphane Biscaglia | |
Rapporteur / Rapporteuse : Marisol Martin-Gonzalez |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Parmi les différents systèmes de stockage d’énergie électrique étudiés depuis plus de 2 siècles, le stockage électrochimique de type batterie Li-Ion est vraisemblablement le plus pertinent et le plus efficace. Des verrous demeurent cependant pour avoir des batteries Li-Ion répondants aux besoins actuels, et une des limitations provient des matériaux d’électrodes. Le silicium est un candidat de choix pour répondre aux problématiques batteries posées, cependant sa tenue au cyclage est courte et les méthodes de synthèse sont souvent très contraignantes. Associant deux laboratoires de recherche acteurs majeurs dans le domaines des nanosciences (le LRN à l’URCA) et des matériaux et batteries (le LRCS à l’UPJV) le projet pluridisciplinaire NanoSiBL d’une durée de 36 mois se fixe pour objectif d’apporter des solutions aux deux points précédents par : 1, la réalisation d’électrodes négatives en Silicium par une voie de synthèse bas coût originale et innovante développée au LRN (l’électrodépôt en milieu liquide ionique), 2 un accroissement de la durée de vie de l’électrode grâce à deux types de structuration (soit une électrode constituée de nanofils/nanotubes de Si monolithique soit une électrode nanostructurée composite de Si/TiO2). L’expertise dans le domaine des batteries du LRCS devrait permettre sur ce deuxième point de déterminer la géométrie et configuration idéale de l’électrode en termes de performance. Basé des méthodes d’élaboration par électrochimie bas coût et originale, NanoSiBL a pour objectif, grâce au partage de compétences et de technologie entre physiciens et chimistes impliqués, d’initier une nouvelle thématique inter-établissement axée sur la valorisation de nanostructures de silicium et silicium composite nanostructuré. L’intérêt scientifique de ce projet réside dans la mise en œuvre et le contrôle des propriétés intrinsèques de ces nanostructures à base de silicium pour la réalisation d’électrodes négatives performantes de batterie Li-Ion. Dans la littérature, les électrodes négatives à base silicium ou silicium composite (type Si/TiO2) ont déjà démontré une amélioration par rapport aux électrodes de silicium massif. Néanmoins, le passage à des dispositifs opérationnels reste peu fréquent car les voies permettant de contenir l’expansion en volume du silicium restent à éprouver et car les méthodes utilisées pour élaborer ces nanofils de silicium (Chemical Vapor Deposition, évaporation réactive…) restent très contraignantes, tant au niveau des conditions de croissance (nécessité d’utiliser des précurseurs métalliques et des gaz très toxiques) que des coûts de fabrication (travail sous ultra-vide, nombreuses étapes pour la réalisation des dispositifs avec la nécessité de réaliser des contacts post-croissance…). NanoSiBL propose donc une alternative en réelle rupture technologique avec les méthodes de synthèse actuelles. Les techniques de croissance (électrodépôt en liquide ionique) et de nanostructuration (au sein de membranes polycarbonates ou nanotubes de TiO2) utilisées dans le projet permettront la mise au point d’électrodes à bas coût performantes pour l’application batterie Li-Ion visée. En outre la variété conséquente de géométries possibles proposées par les membranes nanoporeuses qui seront utilisées dans le projet (polycarbonate ou nanotubes de TiO2) permettra d’établir un comparatif essentiel de l’impact de la nanostructuration ou encore de la composition des électrodes pour contenir l’expansion en volume du silicium lors du cyclage et ainsi améliorer la durée de vie de telles électrodes (batterie).