Thèse soutenue

Localisation des méthodes d'assimilation de donnée d'ensemble

FR  |  
EN
Auteur / Autrice : Alban Farchi
Direction : Marc Bocquet
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 21/11/2019
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement
Partenaire(s) de recherche : Laboratoire : Centre d'Enseignement et de Recherche en Environnement Atmosphérique (Champs-sur-Marne, Seine-et-Marne)
Jury : Président / Présidente : Étienne Mémin
Examinateurs / Examinatrices : Marc Bocquet, Alberto Carrassi, Emmanuel Cosme, Olivier Talagrand, Valérie Monbet, Massimo Bonavita
Rapporteurs / Rapporteuses : Alberto Carrassi, Emmanuel Cosme

Résumé

FR  |  
EN

L’assimilation de données est la discipline permettant de combiner des observations d’un système dynamique avec un modèle numérique simulant ce système, l'objectif étant d'améliorer la connaissance de l'état du système. Le principal domaine d'application de l'assimilation de données est la prévision numérique du temps. Les techniques d'assimilation sont implémentées dans les centres opérationnels depuis plusieurs décennies et elles ont largement contribué à améliorer la qualité des prédictions. Une manière efficace de réduire la dimension des systèmes d'assimilation de données est d'utiliser des méthodes ensemblistes. La plupart de ces méthodes peuvent être regroupées en deux classes~: le filtre de Kalman d'ensemble (EnKF) et le filtre particulaire (PF). Le succès de l'EnKF pour des problèmes géophysiques de grande dimension est largement dû à la localisation. La localisation repose sur l'hypothèse que les corrélations entre variables d'un système dynamique décroissent très rapidement avec la distance. Dans cette thèse, nous avons étudié et amélioré les méthodes de localisation pour l'assimilation de données ensembliste. La première partie est dédiée à l'implémentation de la localisation dans le PF. Nous passons en revue les récents développements concernant la localisation dans le PF et nous proposons une classification théorique des algorithmes de type PF local. Nous insistons sur les avantages et les inconvénients de chaque catégorie puis nous proposons des solutions pratiques aux problèmes que posent les PF localisés. Les PF locaux sont testés et comparés en utilisant des expériences jumelles avec des modèles de petite et moyenne dimension. Finalement, nous considérons le cas de la prédiction de l'ozone troposphérique en utilisant des mesures de concentration. Plusieurs algorithmes, dont des PF locaux, sont implémentés et appliqués à ce problème et leurs performances sont comparées.La deuxième partie est dédiée à l'implémentation de la localisation des covariances dans l'EnKF. Nous montrons comment la localisation des covariances peut être efficacement implémentée dans l'EnKF déterministe en utilisant un ensemble augmenté. L'algorithme obtenu est testé au moyen d'expériences jumelles avec un modèle de moyenne dimension et des observations satellitaires. Finalement, nous étudions en détail la cohérence de l'EnKF déterministe avec localisation des covariances. Une nouvelle méthode est proposée puis comparée à la méthode traditionnelle en utilisant des simulation jumelles avec des modèles de petite dimension