Thèse soutenue

Modélisation multi-échelles d’un système de stockage thermique de vapeur par Matériau à Changement de Phase (MCP)

FR  |  
EN
Auteur / Autrice : Clément Beust
Direction : Jean-Pierre BedecarratsErwin Franquet
Type : Thèse de doctorat
Discipline(s) : Énergétique
Date : Soutenance le 24/10/2019
Etablissement(s) : Pau
Ecole(s) doctorale(s) : École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-)
Partenaire(s) de recherche : Laboratoire : Laboratoire de thermique, énergétique et procédés (Pau) - LABORATOIRE DE THERMIQUE ENERGETIQUE ET PROCEDES (EA1932) / LATEP

Résumé

FR  |  
EN

Dans un procédé industriel dans lequel de la vapeur intervient, l’intégration d’une solution de stockage de vapeur permet de découpler sa production de son utilisation ; cela permet de réaliser des économies d’énergie, ou bien de valoriser l’énergie thermique d’un effluent de vapeur autrement perdu. Le stockage de vapeur est par ailleurs crucial pour les centrales solaires thermiques à génération directe de vapeur. Ce travail porte sur la modélisation d’un système de stockage de vapeur par Matériau à Changement de Phase (MCP) de type tubes-calandre. Ces systèmes stockent l’énergie thermique de la vapeur via la chaleur latente de changement de phase solide-liquide d’un matériau dit MCP. Les transferts de chaleur dans un module de stockage sont souvent influencés par les mouvements de convection naturelle du MCP liquide pendant la fusion ou la solidification. La prédiction des performances thermiques d’un module requiert de simuler ces mouvements à l’aide d’un modèle de mécanique des fluides numériques (Computational Fluid Dynamics ou CFD) à maille fine, dont les temps de calculs sont incompatibles avec les besoins du dimensionnement. L’objectif de ce travail est de développer un modèle de dimensionnement et de prédiction des performances d’un module de stockage, qui tienne compte des phénomènes physiques d’échelle fine tout en permettant des temps de calcul raisonnables. L’approche de modélisation est multi-échelles : deux modèles de finesses différentes sont utilisés, à savoir un modèle CFD fin du MCP, et un modèle système d’un module.Le modèle CFD se fonde sur l’approche enthalpie-porosité de Voller, qui permet de simuler en 3D le changement de phase solide-liquide, en tenant compte des mouvements du MCP en phase liquide. La sensibilité du modèle à plusieurs de ses paramètres caractéristiques du changement de phase est étudiée, sur deux cas d’étude pour lesquels les mouvements de convection naturelle sont d’intensités différentes. Les effets d’influence croisée des paramètres sont mis en évidence. La comparaison à des résultats expérimentaux permet de dégager des préconisations pour l’utilisation du modèle. Les valeurs de la chaleur latente et de la plage de température du changement de phase du MCP s’avèrent fondamentales pour les deux cas étudiés, ce qui souligne l’importance de caractériser précisément le MCP pour la simulation numérique du changement de phase solide-liquide. La constante de zone pâteuse, qui détermine le taux de freinage de l’écoulement de liquide au niveau du front de fusion ou de solidification, a une influence différente selon le cas d’étude, aussi bien du point de vue de la tendance suivie par les résultats que de la valeur optimale à adopter. Il est ainsi préconisé de caler ce paramètre sur des résultats expérimentaux, lorsque cela est possible.Le modèle système représente l’écoulement 1D d’eau liquide / de vapeur dans les tubes d’un module, et les transferts de chaleur et le changement de phase dans le MCP à l’extérieur des tubes. Le MCP y est représenté par un modèle de conduction pure avec conductivité équivalente. Le modèle CFD est utilisé pour simuler un module de stockage prototype, installé au CEA Grenoble, avec tubes à ailettes segmentées ; le MCP est du nitrate de sodium (point de fusion : 305°C). Les résultats CFD permettent d’obtenir une loi d’échange thermique 1D entre le tube et le MCP, qui tient compte des échanges convectifs, et de l’intensification des transferts par les ailettes et les inserts conducteurs disposés dans le MCP. Cette loi est utilisée pour calculer une conductivité équivalente du MCP pour le modèle système. La méthodologie de modélisation est validée sur des essais de charge du module prototype (fusion du MCP et condensation de vapeur). Le modèle système reproduit correctement le taux de charge transitoire prédit par le modèle CFD, ainsi que celui mesuré expérimentalement, pour un temps de calcul 10 à 90 fois plus faible.