Thèse soutenue

Parallèlisme des calculs numériques appliqué aux géosciences

FR  |  
EN
Auteur / Autrice : Gauthier Sornet
Direction : Sébastien Limet
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 10/10/2019
Etablissement(s) : Orléans
Ecole(s) doctorale(s) : École doctorale Mathématiques, Informatique, Physique Théorique et Ingénierie des Systèmes (Centre-Val de Loire)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique fondamentale d'Orléans (Orléans ; 1987-....)
Jury : Président / Présidente : Mírian Halfeld Ferrari Alves
Examinateurs / Examinatrices : Sébastien Limet, Mírian Halfeld Ferrari Alves, Denis Barthou, Jean-François Méhaut, Fabrice Dupros, Faiza Boulahya
Rapporteurs / Rapporteuses : Denis Barthou, Jean-François Méhaut

Résumé

FR  |  
EN

La résolution discrète de modèle par calcul numérique profite à un nombre vertigineux d’applications autant industrielles qued’intérêt général. Aussi, il est nécessaire que les évolutions hétérogènes des machines soient exploitées par les logiciels decalcul. Ainsi, cette thèse vise à explorer l’impact du parallélisme d’architecture moderne à destination des calculs géoscientifiques.Par conséquent, ces travaux de thèse s’intéressent tout particulièrement aux catégories de noyaux de résolution stencil etéléments finis spectraux. Des travaux déjà réalisés sur ces noyaux consistent à structurer, découper et attaquer le calcul de façonà exploiter en parallèle les ressources des machines. De plus, ils apportent également des méthodes, modèles et outils d’analyseexpérimentale. Notre approche consiste pour un noyau de calcul donné à y cumuler différentes capacités de parallélisme. Eneffet, les dernières évolutions de processeur Intel x86 disposent de multiples capacités de parallélisme superscalaire, vectoriel etmulti-coeurs. Les résultats de nos travaux concordent avec ceux de la littérature. Tout d’abord, on constate que les optimisationsvectorielles automatisées des compilateurs sont inefficaces. Par ailleurs, les travaux de cette thèse parviennent à affiner lesmodèles d’analyse. Ainsi, on observe une adéquation des modèles affinés avec les observations expérimentales. De plus,les performances atteintes dépassent des implémentations parallèles de références. Ces découvertes confortent la nécessitéd’intégrer ces optimisations à des solutions d’abstraction de calcul. En effet, ces solutions intègreraient davantage la finalité descalculs à optimiser et peuvent ainsi les coupler davantage au fonctionnement des architectures cibles.