Processus Weyl presque périodique et équations différentielles stochastiques

par Youcef Ibaouene

Thèse de doctorat en Mathematiques

Sous la direction de Paul Raynaud de Fitte et de Fazia Bedouhene.

Le président du jury était Mohamed Morsli.

Le jury était composé de Denis Pennequin.

Les rapporteurs étaient Azzedine Benchettah, Joël Blot.


  • Résumé

    La thèse est dédiée à l'étude de certaines équations différentielles à coefficients Weyl presque périodiques. Elle contient deux parties essentielles : La première partie est consacrée à des problèmes déterministes. On y étudie l'existence et l'unicité d'une solution mild bornée Weyl presque périodique pour l'équation différentielle linéaire abstraite u’ (t) = Au(t) + f(t); t ∈ R; dans un espace de Banach X, où A : D(A) ⊂ X → X est un opérateur linéaire (non borné) qui génère un C0-semi-groupe exponentiellement stable et f : R → X est une fonction Weyl presque périodique. Finalement, toujours dans la première partie, nous étudions l'existence et l'unicité d'une solution mild bornée Weyl presque périodique pour l'équation différentielle semi-linéaire abstraite u’ (t) = Au(t) + f(t; u(t)); t ∈ R; où f : R x X, R → X est une fonction Weyl presque périodique en t ∈ R uniformément par rapport aux compacts de X. Dans la deuxième partie, nous généralisons ces études au cas stochastique. Précisément, nous étudions l'existence et l'unicité de solution Weyl presque périodique en loi pour une classe d'équations différentielles stochastiques semi-linéaires, dans un espace de Hilbert séparable

  • Titre traduit

    Weyl almost periodic and stochastic differential equations


  • Résumé

    The thesis deals essentialy with a class of abstract dfferential equations with Weyl almost periodic coefficients, and comprises two part. The first part is devoted to the deterministic problems, in a first step, we study the existence and uniqueness of bounded Weyl almost periodic solution to the linear abstract differential equation u’ (t) = Au(t) + f(t); t ∈ R; in a Banach space X, where A : D(A) ⊂ X → X is a linear (unbounded) operator which generates an exponentially stable C0-semigroup on X and f : R → X is a Weyl almost periodic function. Finally, in a second step, always in the same frame, we consider the semi-linear differential equation u’ (t) = Au(t) + f(t; u(t)); t ∈ R ; where f(t; u) is a Weyl almost periodic in t ∈ R; uniformly with respect compact subsets of X. The second part, is concerned with the stochastic case. Precisely, we examine the existence and uniqueness of Weyl almost periodic solution in law to the abstract semilinear stochastic evolution equation on a Hilbert separable space.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Rouen. BU Lettres, Sciences humaines. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.