Les plexus choroïdes : une entrée au niveau cérébral pour l'activateur tissulaire du plasminogène (tPA)
| Auteur / Autrice : | Vincent Zuba |
| Direction : | Carine Ali |
| Type : | Thèse de doctorat |
| Discipline(s) : | Aspects moléculaires et cellulaires de la biologie |
| Date : | Soutenance le 26/11/2019 |
| Etablissement(s) : | Normandie |
| Ecole(s) doctorale(s) : | École doctorale Normande de biologie intégrative, santé, environnement (Mont-Saint-Aignan, Seine-Maritime) |
| Partenaire(s) de recherche : | Laboratoire : Physiopathologie et imagerie des troubles neurologiques (Caen ; 2017-....) |
| établissement de préparation : Université de Caen Normandie (1971-....) | |
| Jury : | Président / Présidente : Denis Vivien |
| Examinateurs / Examinatrices : Carine Ali, Vincent Bérézowski, Jean-François Ghersi-Egea, Roxana Carare, Monica Fernandez-Monreal | |
| Rapporteurs / Rapporteuses : Vincent Bérézowski, Jean-François Ghersi-Egea |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
L’activateur tissulaire du plasminogène (tPA) est une protéase initialement découverte dans le sang pour son rôle fibrinolytique. C’est pour cette fonction que le tPA recombinant est utilisé pour traiter la phase aigüe de l’accident vasculaire cérébral (AVC) ischémique, même s’il présente quelques limites. Le tPA exogène peut passer du compartiment vasculaire au parenchyme cérébral où il peut influencer des processus physiologiques, et participer au devenir neuronal, notamment aggraver la mort neuronale lors d’un AVC ischémique. Le laboratoire a montré que le tPA peut traverser la barrière-hémato-encéphalique (BHE), par transcytose au travers des cellules endothéliales de la BHE et cela sous le contrôle des récepteurs LRP1 (Low density lipoprotein receptor-related protein 1). D’autres barrières existent au sein du système nerveux central notamment la barrière sang-liquide cérébrospinal (BSLCS), formée par les plexus choroïdes (PCs). Les PCs sont une route de migration pour les cellules inflammatoires et le LCS peut véhiculer des solutés, via les espaces péri-artériels, vers le parenchyme cérébral. Ainsi, dans notre première étude, nous avons testé l’hypothèse d’un passage du tPA vasculaire par les PCs. Pour cela, nous avons produit un tPA traçable in vivo et in vitro. Nous avons commencé par étudier la distribution du tPA suite à une injection intraveineuse (IV) avec comme focus les PCs et le LCS. Nos résultats montrent que le tPA exogène, suite à une injection IV, est retrouvé de manière séquentielle dans les PCs puis dans le LCS. Le tPA est donc capable de traverser les PCs. Nous avons alors développé un modèle de culture primaire de cellules épithéliales de PCs (CPECs) de souris pour disséquer le(s) mécanisme(s) sous-jacents à l’internalisation du tPA par les CPECs. Ce modèle nous a permis de montrer que l’internalisation du tPA par les CPECs est un phénomène actif, médié par un membre de la famille des récepteurs LRP, mais qui n’est ni LRP1, ni LRP2. Nous avons également mis en évidence la nécessité du domaine Finger du tPA pour son internalisation par les CPECs. Une étude préliminaire dans un modèle d’AVC suggère que l’ischémie modifie la cinétique de passage du tPA, puisqu’il y a plus de tPA dans les PCs des souris ischémiées que les souris non ischémiées.Dans une deuxième étude nous nous sommes intéressés à l’effet du tPA endogène sur les PCs. Nous montrons que l’absence de tPA endogène n’influence ni la morphologie des PCs, ni la diffusion du LCS. De plus, nous montrons que cette absence de tPA n’influence pas le nombre de macrophages et de lymphocytes T dans les PCs en conditions basales.