Thèse soutenue

Développement de méthodes de tests pour la qualification de composants et de systèmes électroniques adaptés aux environnements de rayonnement des accélérateurs à haute énergie
FR  |  
EN
Accès à la thèse
Version(s) validée(s) par le jury
Auteur / Autrice : Rudy Ferraro
Direction : Luigi Dilillo
Type : Thèse de doctorat
Discipline(s) : Systèmes automatiques et micro-électroniques
Date : Soutenance le 05/12/2019
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École Doctorale Information, Structures, Systèmes (Montpellier ; 2015)
Partenaire(s) de recherche : Equipe de recherche : Département Microélectronique
Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....)
Jury : Président / Présidente : Frédéric Saigné
Examinateurs / Examinatrices : Luigi Dilillo, Frédéric Saigné, Jean-Luc Autran, Lucas Sterpone, Lionel Torres, Alessandro Paccagnella
Rapporteurs / Rapporteuses : Jean-Luc Autran, Lucas Sterpone

Résumé

FR  |  
EN

Le Grand collisionneur de hadrons (LHC), le plus grand et le plus puissant au monde, a démarré en 2008 et constitue la dernière étape du complexe des accélérateurs du CERN. Le LHC consiste en un anneau de 27 kilomètres d'aimants supraconducteurs permettant d'accélérer deux faisceaux jusqu'à 7 TeV avant de les faire entrer en collision à 14 TeV dans l'une des cinq expériences de contrôle du résultat de la collision. Le LHC a notamment permis la découverte du boson de Higgs et d'autres particules baryoniques prédites par le modèle standard. L'environnement de rayonnement du LHC et de ses lignes d'injection est composé de différentes particules sur un large spectre d'énergies, du niveau GeV jusqu'au niveau meV (par exemple le neutron thermique). L'équipement électronique fonctionnant dans un environnement de rayonnement aussi rude, principalement basé sur des composants commerciaux prêts à l'emploi (COTS), peut subir des défaillances induites par des effets de rayonnement. La criticité de l'équipement peut être très élevée, dans le meilleur des cas, la défaillance d'un système de contrôle peut conduire à une chute du faisceau, ce qui peut drastiquement rendre le faisceau disponible pour la science et dans le pire des cas, la défaillance d'un système de sécurité peut conduire à la destruction d'une partie de la machine. La nouvelle mise à niveau du LHC prévue pour 2025, le LHC à haute luminosité (HL-LHC) atteindra une luminosité annuelle cinq fois supérieure à celle de la version actuelle du LHC. Par conséquent, les niveaux de rayonnement générés par le fonctionnement de la machine vont également augmenter considérablement. Avec des niveaux de rayonnement aussi élevés, un nombre important de systèmes commerciaux seront exposés à des niveaux de rayonnement auxquels ils ne peuvent résister. Cela impliquera soit de concevoir des systèmes plus robustes et tolérants à base de COTS, soit de remplacer préventivement les systèmes avant leur fin de vie utile. Ainsi, alors qu'au cours des années précédentes, les effets singuliers (EEI) étaient la principale cause de défaillance, à l'avenir, l'effet cumulatif du rayonnement deviendra également une préoccupation majeure. Bien qu'un effort considérable ait été fait dans le passé sur le processus de qualification contre les défaillances induites par les SEE, le processus de qualification pour les effets cumulatifs du rayonnement est resté pratiquement inchangé. L'objectif de ces travaux était donc d'étudier comment la Radiation Hardness Assurance (RHA) du CERN pourrait être améliorée pour répondre à ce nouveau défi et s'assurer qu'aucune défaillance de système n'aura d'impact sur les opérations du LHC. Plusieurs activités ont été menées à cet effet : (i) l'étude des particularités de l'environnement radiatif du LHC et de son impact sur les composants et les systèmes qui y sont exposés, (ii) l'étude de l'adéquation des méthodes de qualification actuelles et le développement d'approches adaptées aux besoins du CERN et (iii) l'étude des méthodes fiables pour estimer la durée de vie des systèmes.