Thèse soutenue

Imagerie ultrasonore pour la gestion durable et raisonnée des arbres sur pied en milieu urbain

FR  |  
EN
Auteur / Autrice : Luis Fernando Espinosa Moreno
Direction : Loïc Brancheriau
Type : Thèse de doctorat
Discipline(s) : Mécanique et génie civil
Date : Soutenance le 14/06/2019
Etablissement(s) : Montpellier en cotutelle avec Universidad nacional de Colombia
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : BioWooEB, Unité de Recherche , Cirad Institut de recherche à Montpellier
Jury : Président / Présidente : Emmanuel Le Clézio
Examinateurs / Examinatrices : Loïc Brancheriau, Emmanuel Le Clézio, Evelyne Toussaint, Hernan Dario Benitez Restrepo, Diego Alexander Garzon-Alvarado, Rémy Marchal
Rapporteurs / Rapporteuses : Evelyne Toussaint, Hernan Dario Benitez Restrepo

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les arbres urbains jouent un rôle écologique, sanitaire et esthétique majeur dans les villes modernes. L’évaluation des risques associés aux arbres dans les villes est essentiellement visuelle, alors que l'ampleur des dégâts internes et le danger associé ne peuvent pas être évalués avec précision par la seule observation. La tomographie par ultrasons pour la détection de la décomposition du bois dans les arbres vivants a été évaluée dans plusieurs études ; les auteurs ont indiqué que cette technique est appropriée pour l’évaluation de la qualité des arbres sur pied. Cependant, cette technique telle qu’utilisée actuellement présente quelques inconvénients : l'effet de l’anisotropie du bois dans la reconstruction de l’image n’est pas pris en compte (l’image obtenue est biaisée) ; la mesure de la vitesse de propagation est imprécise (nécessité de répéter les essais). Afin d’améliorer la tomographie par ultrasons, il est nécessaire de prendre en compte la complexité du matériau bois et de développer des techniques de traitement du signal et de reconstruction d'image adaptées à cette complexité.Une étude a été réalisée pour déterminer les paramètres du signal ultrasonore d'excitation, tels que la forme, la durée et la réponse en fréquence ; puis pour sélectionner une technique de détermination du TOF. Parmi toutes les configurations, celle qui présentait le moins de variations sur les mesures de TOF était la combinaison d’un signal « chirp » (signal modulé en fréquence autour d’une fréquence porteuse) avec la méthode de corrélation croisée.Un modèle numérique a ensuite été développé, avec l’équation de Christoffel, pour simuler la propagation des ondes dans le bois et déterminer le temps de propagation (TOF) de l’onde. La méthode de « raytracing » a été utilisée pour ce modèle. L'anisotropie dans le plan radial-tangentiel du bois modifie la forme des fronts d'onde par rapport au cas d’un matériau isotrope. Les rayons entre émetteur et récepteur sont courbes. Afin de comparer et de valider les résultats obtenus avec l'approche « raytracing », la méthode des éléments finis (FEM) a été utilisée pour modéliser la propagation des ondes élastiques dans le bois. Le modèle FEM a abouti à des estimations des TOF très proches de celles obtenues avec l'approche « raytracing ». Une validation expérimentale du modèle « raytracing » a été effectuée sur des disques de deux essences. Des défauts dans le tronc ont été créés en perçant des trous. Ces défauts ont été testés dans deux positions (centrée et excentrée). Les expériences réalisées ont permis d’obtenir des profils de temps de propagation similaires à ceux obtenus par le modèle numérique.Une méthode de reconstruction d'image tomographique 2D adaptée au bois a été développée. La méthode proposée prend en compte l'orthotropie locale du matériau avec une géométrie cylindrique ; c’est un processus itératif qui reconstruit à la fois les rayons de propagation et les propriétés intrinsèques locales du matériau. Quatre configurations numériques ont été testées représentant des cas réels généralement rencontrés sur le terrain. Les images reconstruites utilisant la méthode proposée ont été comparées à la méthode de reconstruction classique avec l’hypothèse d’isotropie (FBP, rayons droits). La comparaison des images obtenues a mis en évidence une identification et une quantification plus détaillées de l'état interne du tronc avec la méthode proposée. La méthode d'inversion proposée a ensuite été testée expérimentalement sur des échantillons de bois de deux essences pour trois configurations différentes : un cas sain, avec défaut centré et avec un défaut excentré. Comme pour la validation numérique, la méthode développée a permis d'obtenir une représentation plus précise des défauts par rapport à une reconstruction classique par rayons droits, en particulier dans le cas de défauts centrés.