Mécanismes et cinétique de l’isomérisation et du craquage d’alcènes dans la zéolithe chabazite quantifiés par dynamique moléculaire ab initio contrainte
Auteur / Autrice : | Jérôme Rey |
Direction : | Pascal Raybaud |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 20/09/2019 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale de Chimie (Lyon ; 1995-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : École normale supérieure de Lyon (2010-...) |
Laboratoire : Institut français du pétrole Énergies nouvelles (Rueil-Malmaison, Hauts-de-Seine) | |
Jury : | Président / Présidente : Arnaud Travert |
Examinateurs / Examinatrices : Pascal Raybaud, Arnaud Travert, Paul Fleurat-Lessard, Felix Studt, Tomas Bucko, Céline Chizallet, Carine Michel, Joachim Sauer | |
Rapporteur / Rapporteuse : Paul Fleurat-Lessard, Felix Studt |
Mots clés
Mots clés contrôlés
Résumé
Les catalyseurs d’hydrocraquage et d’hydroisomérization sont bifonctionnels, avec une fonction hydro-déshydrogénante et une fonction acide, une zéolithe protonée, pour isomériser et craquer les alcènes. Par dynamique moléculaire ab initio avancée, et avec prise en compte explicite des effets thermiques (300 – 500 K), nous avons étudié les mécanismes d’isomérisation et de craquage d’alcènes C7 dans la zéolithe chabazite dans le but d’obtenir des constantes de vitesse fiables et d’interpréter la distribution des produits.Par la méthode blue moon, nous avons établi les premiers profils d’énergie libre d’isomérisations d’alcènes C7, avec des carbocations intermédiaires (et des états de transition cyclopropanes protonés, PCP), reliant des isomères di- à tri- et mono- à di-branchés (Sections III et IV). Nos simulations démontrent que les effets dynamiques et l’échantillonnage correct des rotamères jouent un rôle crucial sur la stabilité des intermédiaires et des états de transition. Ces effets ne pouvaient pas être décrits par les précédentes études de DFT statiques. Les barrières bien plus basses pour l’isomérisation de type A sont ainsi retrouvées, et expliquées par un état de transition mou, alors que l’état de transition de l’isomérisation de type B est contraint, à cause de la formation d’un edge PCP. L’étude des réactions de craquage avec les mêmes méthodes (Section V) éclaircit le rôle des cations secondaires. Pour la première fois, nous identifions les états de transitions des β-scissions. Nous déduisons de cette analyse des constantes de vitesse ab initio qui pourront être utilisées dans un modèle cinétique pour prédire l’activité et la sélectivité du catalyseur.