Thèse soutenue

Modélisation numérique des procédés LCM à l’échelle des milieux homogènes équivalents en cours de déformation – intégration de la pression capillaire lors de l’infusion et équilibrage post-infusion

FR  |  
EN
Auteur / Autrice : Koloina Andriamananjara
Direction : Sylvain DrapierJulien Bruchon
Type : Thèse de doctorat
Discipline(s) : Mécanique et Ingénierie
Date : Soutenance le 01/02/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ed Sis 488
Partenaire(s) de recherche : établissement opérateur d'inscription : École nationale supérieure des mines (Saint-Etienne ; 1816-....)
Laboratoire : Département Mécanique et Procédés d'Elaboration / MPE-ENSMSE
Jury : Président / Présidente : Christophe Binétruy
Examinateurs / Examinatrices : Sylvain Drapier, Julien Bruchon, Christophe Binétruy, Christian Geindreau, Joël Bréard, Luisa Alexandra Rocha da Silva, Nicolas Moulin
Rapporteurs / Rapporteuses : Christophe Binétruy, Christian Geindreau

Résumé

FR  |  
EN

Le procédé par infusion de résine liquide consiste à imprégner un renfort fibreux à travers son épaisseur, sous l’effet d’un gradient de pression créé par la mise sous vide du système. Ce procédé hors autoclave, a été mis au point afin de réduire les coûts de fabrication et de stockage des matériaux et assurer un bon remplissage des pièces de grandes dimensions ; d’où l’intérêt grandissant de l’industrie aéronautique pour cette technique. Ces travaux de thèse, dans le cadre de la Chaire Hexcel-Mines Saint-Etienne visent à établir un outil numérique robuste et prédictif pour simuler à l’échelle de la structure élaborée les principaux phénomènes physiques apparaissant pendant le procédé. Afin de mieux représenter ces phénomènes complexes multi-physiques, et multi-échelles lors de l’élaboration, une nouvelle approche numérique basée sur la méthode éléments-finis est développée pour modéliser d’une part les effets capillaires lors de la phase critique d’infusion, et d’autre part les écoulements post-infusion durant la phase de rééquilibrage. A l’échelle macroscopique, les effets capillaires sont représentés par un tenseur de contraintes capillaires agissant à l’interface bi-fluide de l’écoulement modélisé par les équations de Darcy. Le modèle est aussi adapté à l'échelle mésoscopique afin de simuler l’écoulement dans des torons de fibres. Une première approche de la modélisation de l'étape de post-infusion qui décrit la forte interaction entre la déformation de la préforme et l’écoulement de résine à la fin du remplissage, est ensuite propose.L’intégration de la modélisation de cette phase présente un premier pas vers les simulateurs dans un contexte industriel.