Simulation de la signalisation calcique dans les prolongements fins astrocytaires
Auteur / Autrice : | Audrey Denizot |
Direction : | Hugues Berry |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 08/11/2019 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale InfoMaths (Lyon ; 2009-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....) |
Laboratoire : Laboratoire d'InfoRmatique en Images et Systèmes d'information (Ecully, Rhône ; 2003-....) - Laboratoire d'InfoRmatique en Image et Systèmes d'information / LIRIS | |
Equipe de recherche : BEAGLE | |
Jury : | Président / Présidente : Laurent Venance |
Examinateurs / Examinatrices : Hugues Berry, Laurent Venance, Geneviève Dupont, Leonid Savtchenko, Guillaume Beslon, Christian Henneberger, Aude Panatier | |
Rapporteur / Rapporteuse : Geneviève Dupont, Leonid Savtchenko |
Résumé
Les astrocytes sont des cellules gliales du système nerveux central, essentielles à la formation des synapses, à la barrière hémato-encéphalique ainsi qu’au maintien de l'homéostasie. Récemment, les astrocytes ont été identifiés comme éléments clés du traitement de l'information dans le système nerveux central. Les astrocytes peuvent communiquer avec les neurones au niveau des synapses et moduler la communication neuronale en libérant des gliotransmetteurs et en absorbant des neurotransmetteurs. L’utilisation de nouvelles techniques comme la microscopie à super-résolution et les indicateurs calciques encodés génétiquement a permis de révéler une grande diversité spatio-temporelle des signaux calciques astrocytaires. La majorité de ces signaux sont observés au sein de leurs prolongements cellulaires, qui sont le site de communication entre neurones et astrocytes. Ces prolongements sont trop fins pour être observés en microscopie optique conventionnelle, de sorte que la microscopie à super-résolution et la modélisation informatique sont les seules méthodes adaptées à leur étude. Les travaux présentés dans cette thèse ont pour but d’étudier l'effet des propriétés spatiales (telles que la géométrie cellulaire, les distributions moléculaires et la diffusion) sur les signaux calciques dans les prolongements astrocytaires. Historiquement, les signaux calciques ont été modélisés à l'aide d'approches déterministes non spatiales. Ces modèles ont permis l'étude des signaux calciques à l’échelle de la cellule entière voire à l’échelle du réseau de cellules. Ces méthodes ne prennent cependant pas en compte la stochasticité inhérente aux interactions moléculaires ainsi que les effets de diffusion, qui jouent un rôle important dans les petits volumes. Cette thèse présente un modèle stochastique et spatial qui a été développé dans le but d’étudier les signaux calciques dans les prolongements fins astrocytaires. Ce travail a été réalisé en collaboration avec des expérimentateurs, qui nous ont fourni des données de microscopie électronique et à super-résolution. Ces données ont permis de valider le modèle. Les simulations du modèle suggèrent que (1) la diffusion moléculaire, fortement influencée par la concentration et la cinétique des buffers calciques endogènes et exogènes, (2) l'organisation spatiale intracellulaire des molécules, notamment le co-clustering des canaux calciques, (3) la géométrie du reticulum endoplasmique et sa localisation dans la cellule, (4) la géométrie cellulaire influencent fortement les signaux calciques et pourraient être responsables de leur grande diversité spatio-temporelle. Ces travaux contribuent à une meilleure compréhension du traitement de l’information par les astrocytes, un prérequis pour une meilleure compréhension de la communication entre les neurones et les astrocytes ainsi que de son influence sur le fonctionnement du cerveau.