Une approche moléculaire de la réponse de friction ultime des fluides confinés
Auteur / Autrice : | Alejandro Porras Vazquez |
Direction : | Nicolas Fillot, Laëtitia Martinie |
Type : | Thèse de doctorat |
Discipline(s) : | Génie mécanique |
Date : | Soutenance le 29/10/2019 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....) |
Laboratoire : LaMCoS - Laboratoire de Mécanique des Contacts et des Structures (Lyon, INSA ; 2007-....) - Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] / LaMCoS | |
Equipe de recherche : Tribologie et Mécanique des Interfaces | |
Jury : | Président / Présidente : Laurent Joly |
Examinateurs / Examinatrices : Nicolas Fillot, Laëtitia Martinie, Laurent Joly, Guillaume Galliero, Ashlie Martini, Kirsten Martens | |
Rapporteur / Rapporteuse : Guillaume Galliero, Ashlie Martini |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Afin de contrôler les pertes d'énergie dans les systèmes mécaniques, un film mince de lubrifiant est souvent introduit entre les solides en contact. Les contacts lubrifiés ponctuels fonctionnent en régime élastohydrodynamique, caractérisé par des pressions élevées (de l’ordre du GPa) et des épaisseurs de film minces (de l’ordre de 100 nanomètres). A des taux de cisaillement élevés, le fluide peut présenter une contrainte de cisaillement limite dont l’origine physique est encore incertaine. Actuellement, les modèles empiriques disponibles pour la prédiction du frottement ne décrivent pas la réponse ultime des lubrifiants dans ces conditions sévères. De plus, l'analyse expérimentale in-situ est très difficile à réaliser en raison du confinement et des fortes pressions. Ainsi, dans cette thèse, le problème est abordé sous l’angle de la modélisation à l’échelle atomique. Le comportement en cisaillement de trois de fluides (un fluide de traction, un lubrifiant modèle et un lubrifiant industriel pour le secteur aérospatial) est analysé par simulation Dynamique Moléculaire. Les résultats numériques sont ensuite comparés qualitativement et quantitativement à des essais expérimentaux. La réponse en frottement est indépendante du profile de vitesse dans l’épaisseur du confinement, ce dernier apparaissant plutôt comme une conséquence des conditions limites aux surfaces. Le régime de frottement limite apparaît naturellement lorsque le lubrifiant est soumis à des conditions thermodynamiques caractéristiques d’un état solide. Dans ce cas, la dynamique des molécules est fortement ralentie. L’énergie d’activation augmente rapidement avec la pression, de sorte que la diffusion devient négligeable à forte pression, même aux taux de cisaillement sévères imposés dans les simulations Dynamique Moléculaire. La réponse macroscopique à ce phénomène est donc une saturation de la valeur du frottement. Ce travail s’achève en jetant les bases d’une modélisation qui pourra permettre la prédiction du frottement lubrifié sous conditions sévères.