Thèse soutenue

Atomic Layer Deposition of thin dielectric films for high density and high reliability integrated capacitors

FR  |  
EN
Auteur / Autrice : Maxime Lemenager
Direction : Bruno Allard
Type : Thèse de doctorat
Discipline(s) : Electronique, Micro et Nanoélectronique, Optique et Laser
Date : Soutenance le 22/10/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : AMPERE - Génie Electrique, Electromagnétisme, Automatique, Microbiologie Environnementale et Applications (Rhône)
Jury : Président / Présidente : Fabrice Gourbilleau
Examinateurs / Examinatrices : Bruno Allard, Fabrice Gourbilleau, Ulrike Lüders, Fred Roozeboom, Florent Lallemand
Rapporteur / Rapporteuse : Ulrike Lüders, Fred Roozeboom

Résumé

FR  |  
EN

Le stockage d’énergie dans les systèmes embarqués fait toujours l’objet d’importants efforts de R&D car il nécessite une constante diminution du volume occupé par les composants électroniques. Il apparaît que la taille des composants discrets que sont les condensateurs est un des freins à la miniaturisation des dispositifs finaux. Bien que des technologies, principalement basées sur la gravure profonde du silicium à l’échelle micrométrique, aient permis des avancées considérables, elles se montrent dorénavant limitées en termes de densité d’intégration. De ce fait, Murata IPS a développé une nouvelle technologie 3D à l’échelle nanométrique permettant une plus forte surface développée. L’utilisation d’une telle matrice requiert une méthode de dépôt de l’empilement MIM telle que l’ALD, adaptée aux structures à fort rapport d’aspect. Le but de cette thèse est ainsi l’intégration de la structure MIM dans la nouvelle matrice 3D dans le respect des contraintes inhérentes à l’industrie de manière à donner lieu à la cinquième génération des technologies PICS™. Le premier challenge résidait dans la conformalité des dépôts que nous nous sommes efforcés d’obtenir avec un équipement de production. Cela a permis de démontrer une densité de capacité supérieure à 1µF/mm² en utilisant un film diélectrique d’alumine de 10nm. Il s’avère également que l’intégration des électrodes TiN joue un rôle important sur la structure 3D. En effet, les contraintes ont dû être réduites pour assurer la tenue mécanique de la structure, notamment en jouant sur le pulse NH3. Les interfaces métal-diélectriques ont également fait l’objet d’une étude approfondie où l’influence de l’oxydation du TiN pendant le dépôt diélectrique a pu être mise en évidence et caractérisée électriquement. Cette étude a amené à l’intégration d’un matériau supplémentaire jouant le rôle de barrière aux interfaces, produisant des condensateurs avec une durée de vie supérieure à 10ans dans les conditions d’utilisation visées.